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Abstract
Chaos implies unpredictability, fluctuations, and the need for statistical modelling.
Quantum optics has developed into one of the most advanced subdisciplines of
modern physics in terms of the control of matter on a microscopic scale, and, in
particular, of isolated, single quantum objects. Prima facie, both fields therefore ap-
pear rather distant in philosophy and outset. However, as we shall discuss in the
present review, chaos, and, more specifically, quantum chaos opens up novel per-
spectives for our understanding of the dynamics of increasingly complex quantum
systems, and of ultimate quantum control by tailoring complexity.

1. Introduction

Quantum optics has nowadays largely accomplished its strictly reductionist pro-
gram of preparing, isolating and manipulating single quantum objects—atoms,
ions, molecules, or photons—such as to access the very fundaments of quan-
tum theory, from quantum jumps [2,3] over the measurement process [4] and
decoherence [5], to quantum nonlocality and entanglement [6], in the laboratory.
The field turns “complex” now, by building up—or “engineering”—complexity
from the bottom, with nonlinear Hamiltonian dynamics [7], particle–particle in-
teractions [8,9], disorder [10] or noise [11,12] as essential ingredients. Somewhat
unexpectedly, quantum optics therefore makes contact with quantum chaos—the
theory of finite size, strongly coupled quantum systems.

While for a long time under the suspicion of rather mathematical interest, com-
ing up with “large fluctuations and hazardous speculations”, quantum chaos [1]
now finds an ever expanding realm of experimental applications [7,13–30]. In ad-
dition, it provides novel tools for the understanding and the robust control [14,
28,29,31,32] of the dynamics of increasingly “complex” quantum systems. In the
present review, we recollect some of the generic features encountered within such
“chaotic” quantum systems, and spell out their potential for the control of quan-
tum dynamics in light-matter interaction.

2. Spectral Properties

There are different ways to approach quantum chaos. Possibly the most sugges-
tive one proceeds along the semiclassical line, juxtaposing classical phase space
structures or dynamics on the one side, and the quantum spectral density or wave
function evolution in phase space, on the other [33–35]. The specific motivation
of this program lies in the intricate nature of the semiclassical limit (“h̄ → 0”,
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meaning the vanishing of Planck’s quantum when compared to typical classical
actions on macroscopic scales), and, hence, of the emergence of classical from
quantum dynamics at sufficiently large actions. This is an extremely attractive
approach, with a beautiful mathematical and theoretical machinery, leading to
important practical consequences, such as the rather recent semiclassical elucida-
tion of the helium spectrum [36–41]. However, it is—by construction—bound to
quantum systems with a well-defined classical counterpart, since it derives quan-
tum features from the backbone of the underlying classical dynamics.

While we shall adopt the semiclassical perspective for the motivation or inter-
pretation of some of the results to be discussed in this paper, we will often deal
with systems which lack a well-defined classical analog. Therefore, most of our
observations will be derived directly from the quantum spectrum of the specific
systems under study.

2.1. PARAMETRIC LEVEL DYNAMICS AND UNIVERSAL STATISTICS

On the spectral level, quantum chaos is tantamount to the destruction of good
quantum numbers [42,43]. Since the latter express symmetries, or dynamical in-
variants, of the specific system under study, quantum chaos occurs when these
symmetries are destroyed, e.g., by the nonperturbative coupling of initially sepa-
rable degrees of freedom. If a well-defined classical Hamiltonian dynamics un-
derlies the quantum dynamics, good quantum numbers are inherited from the
classical constants of the motion, and their destruction is paralleled by the in-
vasion of classical phase space by chaotic motion.

Good quantum numbers can be considered, in a bounded system with a discrete
spectrum, as the labels attributed to individual eigenvalues of the Hamiltonian.
Symbolically, we may write for a system with three degrees of freedom:

(1)H(λ)|n � m〉(λ) = E
(λ)
n � m|n � m〉(λ).

These labels are good labels in the sense that, if H(λ) depends parametrically on a
real scalar λ, the eigenvectors |n � m〉(λ) do not (ex)change their specific character
over a finite interval of λ.

The corresponding good quantum numbers loose their significance for the iden-
tification of individual eigenstates as soon as different eigenstates of H(λ) are
strongly mixed by a perturbation which couples at least two of the degrees of
freedom represented by the quantum numbers n, �, and m, on arbitrarily small
intervals of λ—they are “destroyed” by the perturbation-induced coupling.

In the jargon of quantum chaos, the parametric evolution of the eigenval-
ues E(λ) of some Hamiltonian H(λ) parametrized by the real scalar λ is called
“regular level dynamics” if completely classifiable by good quantum numbers.
“Chaotic” or “irregular level dynamics” (also “level spaghetti”) is encountered
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when all good quantum numbers are destroyed. Such irregular level dynamics
alone is one possible indicator of quantum chaos, without any recourse to some
analogous classical dynamics.1

A nice illustration of the transition from regular to irregular level dynamics is
provided by the Floquet–Bloch spectrum generated by the Bose–Hubbard Hamil-
tonian under static tilt,

(2)HB = −J

2

(
L∑
l=1

â
†
l+1âl + h.c.

)
+ F

L∑
l=1

dln̂l + W

2

L∑
l=1

n̂l(n̂l − 1).

The Hamiltonian is formulated in terms of the creation and annihilation opera-
tors â†

l and âl of a bosonic atom at the lattice site l, with the associated num-
ber operators n̂l . It describes the dynamics of N ultracold bosonic atoms in a
one-dimensional optical lattice of length L and lattice constant d . The implicit
single band approximation assumes that no excitations to the first conduction
band of the lattice can be mediated by the tilt, Fd � �Egap, nor by ther-
mal activation, kT � �Egap, with �Egap the band gap. J and W quantify the
strength of the nearest neighbor tunneling coupling J , and of the on-site inter-
action strength W between the atoms, respectively, which compete with a static
forcing of strength F . A suitable gauge transform reestablishes the translational
invariance in space apparently broken by the static field term in (2), and addi-
tionally introduces an explicit, periodic time dependence with the Bloch period
TB = 1/F [44]. The time evolution operator for one Bloch cycle in this time
dependent coordinate frame is the Floquet–Bloch operator associated with HB.

Figure 1 displays the level dynamics of the one cycle propagator, parametrized
by F , for different values of the ratio of tunneling coupling to interaction strength.
Clearly, when J and W become comparable, the eigenstates of the Floquet–Bloch
operator interact strongly for any value of F , while in the limit W � J (and
equally so for J � W ) individual eigenstates are clearly identifiable over large
intervals of F . In this specific model—which is actually realized in laboratory
experiments which load Bose Einstein condensates (BEC’s) into periodic op-
tical lattices [8,45]—the transition from regular dynamics to quantum chaos is
apparent and unambiguous. Yet, this interacting multiparticle system has no well-
defined classical counterpart! Further down in this review (see Section 3.5), we
will analyze the dynamical (and experimentally highly relevant) consequences of
this transition. At present, it is enough to state that the qualitative transition ob-
served in Fig. 1 is actually qualitatively underpinned by the cumulative spacing

1 The term “dynamics” is motivated by considering the parameter λ as some generalized time, with

the eigenvalues E(λ) some generalized particle position evolving under variations of λ.
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FIG. 1. Spectrum of the Floquet–Bloch operator generated by HB as defined in (2), as a function
of 1/F , for N = 4 particles distributed over a lattice with L = 7 wells (periodic boundary condi-
tions). Only states with quasimomentum κ = 0 are shown, in order to separate different symmetry
classes [44]. The particle–particle interaction strength and the tunneling coupling are set equal to
W = 0.032, and J = 0.00076 (top) and J = 0.038 (bottom), respectively. As we tune the tunneling
coupling to a value comparable to the interaction strength, the “individuality” of the energy levels
drowns in an irregular pattern: isolated avoided crossings between different energy levels which can
be labeled by the interaction energy between the different particles of a given multiparticle eigenstate
in the lattice [44] (for weak tunneling coupling, the distribution of the particles over the lattice char-
acterizes a given eigenstate very well, except for resonant tunneling enhancements at isolated values
of F ) are replaced by strongly interacting levels, for arbitrary values of F .
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FIG. 2. Cumulative level spacing distribution of the Floquet–Bloch operator generated by HB
(Eq. (2)), for N = 7 bosonic atoms distributed over a lattice of length L = 9 (periodic boundary
conditions), static tilt F = 0.01, tunneling strength J = 0.038, interaction strength W = 0.032
(full line). The statistics is obtained from the unfolded spectrum [43] with the symmetry class defined
by quasimomentum κ = 0 [44]. The dashed and dash-dotted line indicate the RMT prediction for
Poissonian and Wigner–Dyson statistics, respectively.

distribution,

(3)I (s) =
s∫

0

P
(
s′
)
ds′,

with P(s) the probability distribution of the (normalized and unfolded, see,
e.g., [43]) spacings s between adjacent eigenphases of the Floquet–Bloch op-
erator [44]. Inspection of Fig. 2 clearly shows that I (s) (and equally so P(s),
but the comparison of I (s) with the random matrix prediction is known to be
more reliable, in particular in the vicinity of s = 0) exhibits Poissonian sta-
tistics, P(s) = exp(−s), in the regular limit, and Wigner–Dyson statistics,
P(s) = πs exp(−π

4 s
2)/2, in the chaotic limit (more precisely, the level spacings

faithfully reproduce the COE statistics of random matrices of the circular (C) or-
thogonal (O) ensemble (E) [46]). Hence, by simply tuning the ratio of J and W , in
the perfectly deterministic Hamiltonian (2), we induce a spectral structure which
enforces a statistical description if we seek for a robust, quantitative description
of the system dynamics.

Another example of chaotic level dynamics is shown in Fig. 3, where we dis-
play the parametric evolution of the eigenphases of the Floquet operator of the
kicked harmonic oscillator. The Floquet operator—or one cycle propagator—
U = exp(−i ∫ τ0 H(t ′) dt ′/h̄), with τ the kicking period, is generated by the
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FIG. 3. Spectrum of the Floquet operator generated by Hkho in (4), as a function of the
Lamb–Dicke parameter η, for a fixed phase space structure indicated by the single trajectory runs over
40,000 kicks in the insets (u and v are suitably defined, canonical phase space variables, see [32]).
Only eigenphases with an overlap larger than 10−3 with the initial state |ψ0〉 are represented. Filled
circles represent |ψ0〉 = |0〉, while dots refer to a displaced vacuum centered at (1.3, 3.0) (top) and
(1.2, 2.0) (bottom).

Hamiltonian

(4)Hkho = h̄νâ†â +K
mν

k2

{
cos
[
η
(
â + â†)]} ∞∑

n=0

δ(t − nτ).
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This is a paradigmatic example of a quantum chaotic system which, on the classi-
cal level, does not obey the Kolmogorov–Arnold–Moser (KAM) theorem (which
guarantees stability with respect to small perturbations) [47], due to the degener-
acy of the unperturbed spectrum of the harmonic oscillator. In (4), â and â† rep-
resent the annihilation and creation operators of the harmonic oscillator modes of
the translational degree of freedom (for a particle of mass m), and K measures
the strength of the kicking mediated by the periodically flashed standing wave
potential with wave vector k. η = k

√
h̄/2mν is the experimentally easily tun-

able Lamb–Dicke parameter, which essentially measures the ratio of the width
of the harmonic oscillator ground state in units of the wave length of the kicking
potential.
Hkho can be realized in semiconductor heterostructures [48] as well as with

cold, harmonically trapped ions, and allows for unlimited, superdiffusive energy
growth (i.e., for trapped ions, unlimited heating) under rather precisely defined
conditions, as we will see further down in this review. This specific dynamical
behavior has once again its root in the largely irregular level dynamics shown in
Fig. 3, which is here illustrated for two different ratios q = 2π/τν = 5 (top)
and q = 6 (bottom) of kicking period τ and oscillator period 1/ν, under variation
of η. These two choices correspond to a crystalline and quasicrystal [49] sym-
metry of the classical phase space structure, as indicated by the classical sample
trajectories shown in the corresponding insets. The crystal case still bears some
remnants of regularity, with regularly aligned avoided crossings coexisting with
apparently randomly distributed anticrossings of variable size. The quasicrystal
case, in contrast, exhibits an extremely complicated level structure, with no ap-
parent regularity left. The details and structure of the level dynamics remain to
be understood, but part of its peculiarities can already be exploited for novel per-
spectives of quantum control, as we shall see further down in Section 3.2.

2.2. SPECTRAL SIGNATURES OF MIXED, REGULAR-CHAOTIC PHASE SPACE

STRUCTURE

In quantum systems with a well-defined classical analog which exhibits mixed
regular chaotic phase space structure [21,31,36,50–62], the parametric evolu-
tion of the eigenenergies does not exhibit an unambiguously “chaotic” structure.
Eigenenergies associated with eigenstates that are localized in phase space do-
mains of regular motion are only weakly affected by the adjacent chaotic phase
space component and evolve, in general, smoothly under variations of some con-
trol parameter λ. Since regular domains of phase space are associated with local
dynamical invariants, these states can actually be labeled with good quantum
numbers, and undergo, in general, only locally avoided crossings with states living
on the chaotic phase space component. Consequently, such states “go straight” in
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FIG. 4. Parametric evolution of the spectrum of a microwave driven hydrogen atom, in suitably
rescaled energy units, under variation of the driving field amplitude F0 (measured in units of the
Coulomb field experienced by the Rydberg electron propagating along an unperturbed Kepler orbit
with principal quantum number n0) [31]. Two energy levels, which anticross at F0 � 0.036, clearly
“go straight” in this plot, and only weakly interact with the “level spaghetti” background: They repre-
sent eigenstates of the atom in the field which are localized on elliptic regions in the classically mixed
regular-chaotic phase space, and are therefore shielded against strong interaction with states living in
the chaotic phase space component.

the energy level dynamics, with almost constant slope, as displayed in Fig. 4 for
the (quasi)energy level associated with a wave packet eigenstate of a microwave-
driven Rydberg state of atomic hydrogen (see also Section 4.1 below). In a
rather abstract sense, such states can therefore sometimes be attributed solitonic
character [63]—they anticross with “chaotic” eigenstates without changing their
characteristic features like localization properties, dipole moments, or the like.
Conversely, the soliton-like motion under variations of λ can serve as an identifier
for eigenstates which are shielded from the irregular part of the spectrum, even in
the absence of an unambiguous classical dynamics—examples are found, e.g., in
microwave driven Rydberg states of alkali atoms [64], with their nonhydrogenic
multielectron core which induces quantum mechanical diffraction effects on top
of the semiclassical Rydberg dynamics [57,65].

3. Dynamics and Transport

The specific spectral structure of a given quantum system fully determines the
associated time evolution. If we initially prepare our system in the state |ψ0〉, the
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action of the time evolution operator is given by

(5)U(t)|ψ0〉 =
∑
n

exp(−iEnt/h̄)|En〉〈En|ψ0〉,

where we assume, for simplicity, a discrete spectrum {En} of H . Alternatively,
the energies En may be thought of as complex eigenvalues En − iΓn/2 of some
effective Hamiltonian, with the decay rates Γn representing, for instance, the
nonvanishing coupling to a continuous part of the spectrum [66–69]. In most ex-
periments, some sort of (auto)correlation signal like

C(t) = 〈ψ0|U(t)|ψ0〉 =
∑
n

∣∣〈ψ0|φn〉
∣∣2 exp(−iEnt/h̄)

(6)→
∑
n

∣∣〈ψ0|φn〉
∣∣2 exp(−iEnt/h̄) exp

(
−Γn

2
t

)
is measured [70,71], which, besides the purely spectral ingredients En and Γn
also includes a local “probe” |〈ψ0|φn〉|2 of the spectrum, in the vicinity of the
state |ψ0〉 with which the time evolved wave function is to be correlated. Also
ionization or survival probabilities which are often encountered in atomic ion-
ization experiments or in model systems which probe quantum mechanical phase
space transport are closely related to such correlation functions, possibly amended
by an additional summation over a (discrete or continuous) set of “test functions”
|ψ0〉 [53,72–75].

3.1. ATOMIC CONDUCTANCE FLUCTUATIONS

It is immediately clear from the form of (6) that the dynamics of a chaotic quan-
tum system in the sense of chaotic level dynamics as illustrated in Section 2 will
exhibit a sensitive parameter dependence, reflecting the parametric evolution of
the spectrum. A nice example is provided by the ionization yield of one electron
Rydberg states under microwave driving—which probes the asymptotic electron
transport induced by the external perturbation. In such type of experiments [21,
50,76–88], one electron Rydberg states (with excitations to principal quantum
numbers around n0 � 70) are exposed to a microwave field of frequency ω and
amplitude F , for an adjustable interaction time t . The experimentally easily ac-
cessible ionization yield Pion is formally given [73] by

(7)Pion = 1 −
∑
j

∣∣〈ψ0|φj 〉
∣∣2 exp(−Γj t).

The sum extends over the complete spectrum of the atom dressed by the field,
though weighted by the overlap of the (field free) initial state with the atomic
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FIG. 5. Typical distribution of the ionization rates Γj and local weights Wj = |〈ψ0|φj 〉|2 entering
the expression (7) for the ionization yield Pion of an atomic Rydberg state under electromagnetic
driving. In the upper plot, 500 spectra of a one-dimensional model atom initially prepared in the
Rydberg state |n0 = 100〉 are accumulated, for driving field frequenciesω/2π = 13.16 . . . 16.45 GHz,
at fixed photonic localization length � = 1 (see Eq. (9)). In the lower plot, one single spectrum of
the three-dimensional hydrogen atom initially prepared in the state |n0 = 70 �0 = 0 m0 = 0〉, at
ω/2π = 35.6 GHz and � = 1 is shown. There is no apparent correlation between ionization rates and
local weights—which also manifests in the parameter dependence of Pion itself, see Fig. 6.

dressed states for the specific choice of ω and F . Typically, several hundreds to
thousands dressed states contribute to the representation of |ψ0〉 [89,90].

Under changes of ω or F , not only the decay rates Γj of the individual dressed
states will fluctuate, but, equally important, the local weights |〈ψ0|φj 〉|2—as a
corollary of the destruction of good quantum numbers in the realm of quan-
tum chaos: The characteristic properties of the system eigenstates vary rapidly
with the control parameter (here ω or F ), and so does the decomposition of the
(parameter-independent) initial state |ψ0〉. In general, the fluctuations of decay
rates and overlaps are uncorrelated, as illustrated in Fig. 5, for typical driving fre-
quencies and amplitudes, and for a one-dimensional model of the driven atom,
as well as for the real, three-dimensional system. While one might believe that
these fluctuations average out under the summation in (7), this is actually not
the case—Fig. 6 shows the ionization yield of atomic hydrogen, initially pre-
pared in the unperturbed n0 = 100 Rydberg state, under microwave driving
with variable frequency. Indeed, Pion fluctuates rapidly with the scaled frequency
ω0 = ω × n3

0 [93] in this plot, at fixed n0. This is the dynamical manifestation
of the sensitive ω0-dependence of the quantities which determine Pion, according
to (7). While this sensitive dependence shows that the mere ionization yield for
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FIG. 6. Ionization yield Pion, Eq. (7), of a one-dimensional Rydberg atom launched in the Rydberg
state |n0 = 100〉, as a function of the scaled driving field frequency ω0 = ω×n3

0, at fixed localization
length � = 1 (see Eq. (9)). The strong fluctuations of the signal under variations of ω0 are characteristic
of a strongly localized (in the sense of Anderson [91]) transport process (here on the energy scale, and
induced by the external driving) in disordered media [92].

given ω and F does not provide a robust characterization of the electronic trans-
port process induced by the external drive, a statistical analysis allows for some
insight: The atomic conductance [94]

(8)gatom = 1

�

∑
j

∣∣〈ψ0|φj 〉
∣∣2Γj ,

formally equivalent to the time derivative of the ionization yield at t = 0 (with �
the average spacing between adjacent energy levels), exhibits a log-normal dis-
tribution, i.e., ln gatom is normally distributed, when sampled for a fixed photonic
localization length [95]

(9)� = �E

ω
= 6.66F 2

0 n0

ω
7/3
0

(
1 − n2

0

n2
c

)−1

.

The latter is a measure of the typical decay length of the electronic population
distribution over the near resonantly coupled Rydberg states away from the atomic
initial state |ψ0〉, and determines the asymptotic continuum transport on average,
according to [93]:

(10)〈ln gatom〉 ∼ 1/�.

In particular, this proportionality relation together with the lognormal distribu-
tion for fixed localization length, which are established in Figs. 7 and 8 for a
one-dimensional hydrogen atom (which is a reliable model for the description of
real 3D hydrogen under external microwave driving, when initially prepared in
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FIG. 7. Average value of the natural logarithm of the atomic conductance g vs. the inverse pho-
tonic localization length 1/�, for a one-dimensional Rydberg atom initially prepared in the state |n0〉
with principal quantum number n0 = 40, 60, 70, 90, 100 (from top to bottom). Clearly, the direct pro-
portionality (10) predicted by the Anderson picture is very well satisfied for sufficiently large values
of n0 [93].

FIG. 8. Distribution (histograms) of the atomic conductance g of a one-dimensional Rydberg
atom [93,94,97], sampled over 500 different spectra with photonic localization length � = 0.2, in
the frequency range ω0 = 2.0 . . . 2.5, for initial principal quantum number n0 = 40 (left) and
n0 = 100 (right). The log-normal fit is excellent for n0 = 100, in perfect quantitative agreement
with the Anderson picture. Finite size effects lead to discrepancies between the numerical distribution
of ln g and the lognormal fit at lower excitations around n0 = 40.

an extremal parabolic state [96,97]), provide strong quantitative support for the
analogy between electronic transport along the energy axis in periodically driven
atomic Rydberg states and electronic transport across one-dimensional disordered
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wires [92,94,98–100]: Destructive quantum interference of the many transition
amplitudes connecting the initial atomic state to the atomic continuum, in the
atomic problem, and the left and the right edge of the disordered wire, in the
mesoscopic problem, leads to an exponential suppression of the quantum trans-
port, as opposed to diffusive transport in a classical description. This phenomenon
is known as Anderson localization [91,101–104] (also strong localization), and
was baptized dynamical localization [17,19,105–115] in the realm of quantum
chaos, where dynamical chaos substitutes for disorder.

3.2. WEB-ASSISTED TRANSPORT IN THE KICKED HARMONIC OSCILLATOR

An alternative scenario for the detection of chaos-induced fluctuations on the level
of quantum transport properties is provided by cold, harmonically trapped ions
under periodic kicking. We already have seen in Section 2.1 that the energy level
dynamics of the kicked harmonic oscillator which is realized in such a setting
exhibits many avoided crossings of variable size. Indeed, if we launch a wave
packet in the harmonic oscillator ground state and monitor its mean energy as
time evolves, the energy growth rate is found to depend sensitively on the pre-
cise value of the Lamb–Dicke parameter η, which is easily tuned in state of the
art ion trap experiments. Figure 9 shows such behavior, for three different values
of η, at fixed classical phase space structure (η ∼ √

h̄ determines the effective
size of h̄ with respect to the typical classical action of the harmonic oscillator;
also see Fig. 3). Correspondingly, the mean energy extracted by the atoms from
the kicking field, after a fixed interaction time, exhibits strong, apparently random
fluctuations with the Lamb–Dicke parameter, as illustrated in Fig. 10. Once again,
this can be directly associated with the avoided crossings in the energy level dia-
gram in Fig. 3, and is strongly reminiscent of the atomic conductance fluctuations
encountered in Fig. 6. Note, however, that the classical phase space structure of
the kicked harmonic oscillator is different from the phase space structure of the
harmonically driven Rydberg atom, since we are here dealing with a non-KAM
system. The signature of this non-KAM structure in the spectral statistics is hith-
erto unexplored, and represents a formidable challenge, both for random matrix
theory, as well as for computational physics.

We can nonetheless precisely identify the universal cause of the locally en-
hanced energy absorption of the trapped ions from the kicking field, by inspection
of the eigenstates which undergo the specific avoided crossing, at a given value
of η: Fig. 11 shows the Husimi phase space projections [69] of those eigenfunc-
tions which account for the dominant part in the decomposition of the ionic initial
state |ψ0〉 = |0〉 in the vicinity of η = 0.464 (the associated level anticrossing
is shown by the inset in Fig. 9), i.e., at a value where strongly enhanced heating
of the ions is observed. While for Lamb–Dicke parameters slightly below and
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FIG. 9. Mean energy of the kicked harmonic oscillator, Eq. (4), for crystal symmetry, q = 6,
kicking strength K = 2.0, and initial state |ψ0〉 = |0〉. Tiny changes of the Lamb–Dicke parameter
from η = 0.459 (a) over η = 0.464 (b) to η = 0.469 (c) lead to a locally dramatic enhancement of the
energy absorption by the trapped particle from the kicking field, with respect to the classical heating
process. This local enhancement can actually be traced back to an avoided crossing of the continuation
of the eigenphase associated with |ψ0〉 in the level dynamics (inset) with a “web-state” (see Fig. 11)
reaching far out to high energies in the harmonic oscillator phase space. The above values of η are
indicated by the corresponding labels, in the inset. Filled black circles indicate an overlap of more
than 1% of the associated eigenstate with the initial state |ψ0〉.

FIG. 10. Mean energy (left vertical axis) after 600 (full line) kicks vs. the Lamb–Dicke parame-
ter η. The classical phase space structure is fixed by K = 2.0 and q = 6. Locally strongly enhanced
energy absorption can always be traced back to avoided crossings of the initial state with web states,
as apparent from the underlaid energy level dynamics (right vertical axis).



48 J. Madroñero et al. [3

FIG. 11. Husimi representations of the eigenstates associated with the labels a (left column) and
c (right column) in the inset of Fig. 9, in the rescaled phase space coordinates v/2η = −60 . . .+60
and u/2η = −60 . . .+60 of the insets of Fig. 3. The top left and bottom right plot represent web
states associated with the top left and bottom right branch of the avoided crossing shown in the inset
of Fig. 9. At η = 0.464, i.e., at the center of that avoided crossing, they strongly mix with the contin-
uation (bottom left and top right branch of the avoided crossing, and bottom left and top right Husimi
representation in the present figure) of |ψ0〉, thus giving rise to efficient transport from the trap center
to high energy states of the harmonic oscillator, along the stochastic web of the underlying classical
phase space flow. Since the avoided crossing of the web state with the localized state occurs at fixed
phase space structure, this is a pure quantum tunneling effect, without classical analog.

slightly above this critical value the eigenstate which is strongly localized in the
vicinity of the origin of phase space has the largest weight in the initial state de-
composition, an eigenstate localized on the stochastic web has equal weight right
at η = 0.464. The existence of such web states is a peculiarity of non-KAM sys-
tems and is at the very origin of the observed enhanced energy growth, simply
since the stochastic web reaches out to infinity, and therefore provides an effi-
cient transport channel to high energy states of the oscillator. Since the avoided
crossing which mediates the coupling of the initial state to the web state occurs
under changes of the effective value of h̄ (via η), at fixed phase space structure,
we have here—much as in the above case of strong localization in the ionization
process of periodically driven atoms—a pure quantum effect without classical
analog, leading now to a dramatic enhancement of the asymptotic transport, as
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compared to the classical dynamics. A closely related phenomenon has been ob-
served in the conductance across semiconductor superlattices, in the presence of
a tunable magnetic field [48]. Since there the magnetic field allowed to switch
between localized and delocalized (i.e., web-) states, web-states mediate, in some
sense, metal-insulator like transitions.

3.3. ERICSON FLUCTUATIONS IN ATOMIC PHOTO CROSS SECTIONS

In the preceding two subsections, we encountered examples of a sensitive de-
pendence of asymptotic transport on some control parameter, typical of quantum
chaotic systems, in explicitly time dependent transport processes. As a third exam-
ple, we now consider the continuum decay of Rydberg electrons induced by static
external fields, which can be probed through the photoabsorption cross section
for a probe laser beam from the atomic ground state into the Rydberg spectrum.
Indeed, an atomic one electron Rydberg system exposed to perpendicularly ori-
ented, static electric and magnetic fields, allows us to realize such a situation: The
Hamiltonian reads

(11)HExB = p2

2
+ Vatom(r)+ B

2
Lz + B2

8

(
x2 + y2)+ Fx,

in atomic units, with F and B the strength of the electric and magnetic field, re-
spectively, and Lz the angular momentum projection on the magnetic field axis.
If Vatom(r) is given by the hydrogenic Coulomb potential, the diamagnetic term
in (11) is known to induce chaotic motion in the bound space dynamics of the
Rydberg electron. For B = 0 the electric field, while leaving the dynamics com-
pletely integrable, induces a Stark saddle and, hence, strong coupling of the bound
eigenenergies with the continuum part of the spectrum. If both external fields are
present, all symmetries of the unperturbed Coulomb problem are destroyed, and
one faces a truly three-dimensional problem which exhibits dynamical chaos. In
the case of alkali atoms, the additional presence of a multielectron core is not ex-
pected to suppress the signature of the classically chaotic Coulomb dynamics, on
the spectral level [57,116,117].

Due to the suppression of the ionization threshold by the electric field, the high
lying Rydberg states can acquire relatively large autoionization rates Γj , with
an average value Γ̄ which can become larger than the mean level spacing � of
the (quasi)discrete energy levels Ej , i.e., Γ̄ > �. In this regime of overlapping
resonances, Ericson fluctuations [118–122] are expected in the photoabsorption
cross section

(12)σ(E) = 4π(E − E0)

ch̄
Im
∑
j

|〈g|T |Ej 〉|2
Ej − iΓj /2 − E
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FIG. 12. Distribution of the resonance widths Γj which contribute to the photo cross section σ(E),
Eq. (12), in an energy interval which covers the experimentally [27,123] scanned region. The dashed
line indicates the average (local) spacing � of the resonance states on the energy axis. Approx. 65%
of them exhibit overlapping widths, Γj > �.

from the atomic ground state |g〉 into the Rydberg regime at energy E: Bound-
continuum transition amplitudes which mediate the decay of individual reso-
nances couple to overlapping intervals of continuum states, and thus may inter-
fere. Consequently, one expects interference structures in the cross section which
can no more be attributed to individual resonance eigenstates with a specific
width Γj , but are rather due to the interference of several decay channels, and
exhibit typical widths smaller than Γ̄ . If a classical analog dynamics is available,
these structures are predicted to be correlated on an energy scale which is deter-
mined by the dominant Lyapunov exponent of the classically chaotic dynamics,
i.e., by the shortest decorrelation time scale of the classical dynamics [120].

Indeed, the transition into the Ericson regime has recently been observed in
the photoionization cross section of rubidium Rydberg states in the presence of
crossed fields [27,123]. A detailed theoretical analysis of the experimental situ-
ation shows that the laboratory results indeed entered the regime of overlapping
resonances, and approx. 65% of all resonance eigenstates contributing to the pho-
toabsorption signal have widths which are larger than the mean level spacing �.
Figure 12 shows the numerically calculated distribution of resonance widths over
the energy range probed by the experiment, under precisely equivalent conditions
as in the experiment (fixed by the strength of the magnetic and electric fields).
Besides the strongly fluctuating background signal, the cross section σ(E) dis-
played in Fig. 13 also shows some narrow resonances on top, which stem from
isolated resonances with Γj < �. However, many of the structures with a width
smaller than Γ̄ can no more be associated with single isolated resonances, and
thus indicate the interference of different decay amplitudes.

Thus, we observe the coexistence of individually resolved resonances with
Ericson fluctuations. This it is not too surprising, since the original Ericson sce-
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FIG. 13. Numerically obtained photo cross section (12) of rubidium Rydberg states in crossed
electric and magnetic fields [124], deduced from a parameter free diagonalization of the Hamil-
tonian (11), using exactly the experimental parameters [27], B = 2.0045 T, F = 22.4 kV/m.

nario was inspired by highly excited compound nuclei with a large number of
essentially equally weighted decay channels, while we are here dealing with a
low-dimensional atomic decay problem, where different decay channels (e.g.,
through different angular momentum channels) have certainly different weights
and equally different effective bound-continuum coupling constants.

Once again, due to the underlying chaotic level structure—here additionally
complicated by resonance overlap—the experimentally accessible cross section
shows erratic fluctuations, essentially uncorrelated on energy scales which are
larger than the inverse of the characteristic life time of the ion–electron com-
pound (which, in a classical picture, is determined by the largest Lyapunov expo-
nent).

3.4. PHOTONIC TRANSPORT IN CHAOTIC CAVITIES AND

DISORDERED MEDIA

In the previous section, we showed how the fine interplay between overlapping
and isolated resonances determines the nature of the fluctuations in the transport
properties of chaotic systems. In this section, we shall consider a novel kind of
systems for which this interplay has also a determinative role: random lasers.

In contrast to standard lasers, random lasers do not possess mirrors. They are
a class of nonlinear amplifiers realized in disordered dielectrics with a fluctuating
dielectric constant that varies randomly in space. Light amplification is provided
by an active optical medium, while the multiple chaotic scattering of photons in
the random medium constitutes the feedback mechanism. Due to multiple scat-
tering, the time spent by the light inside the active medium is enhanced. This, in
turn, increases the probability of stimulated emission, making the field amplifica-
tion efficient. Laser oscillations emerge when the radiation losses are overcome
by the light amplification.
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In recent years, several experiments on random lasers (see Ref. [125] for a
review) as well as on lasers in chaotic resonators [126,127] have attracted consid-
erable interest in the characterization of the properties of light emitted by these
devices. Most striking are the generic signatures of the underlying disorder of
the random media in the emission spectra: In samples with a low density of scat-
terers [128], light is only weakly confined and we expect the resonant modes to
overlap. Once the pump energy exceeds the laser threshold, the onset of lasing is
signaled by a collapse of the thermal emission spectrum into a single broad peak
with a width of a few nanometers at the center of the amplification bandwidth.
For samples with a high density of scatterers [128], on the other hand, some well-
resolved resonant modes exist. As soon as the laser enters the operation regime
above threshold, several very sharp peaks appear, the frequencies (within the am-
plification bandwidth) and strengths of which fluctuate strongly from sample to
sample.

The above-mentioned features of the emission spectra cannot be explained by
standard laser theory [129–131]. The reasons are twofold: First, in random lasers
the spatial structure of the resonant modes as well as their frequencies depend
on the statistical properties of the disordered medium. Random lasers, therefore,
must be analyzed in an statistical fashion. Second, due to the absence of mir-
rors, light in random lasers is only weakly confined, giving rise to spectrally
overlapping resonances. Recently, based on a field quantization method for open
systems with large outcoupling losses [132–134], a quantum theory of random
lasing incorporating both effects, random scattering of light and mode overlap,
was proposed [135].

For a random laser with an active medium composed of two-levels atoms, the
quantum Langevin equations of motion for the field variables are

(13)ȧλ(t) = −i
∑
λ′

Hλλ′aλ′(t)+
∑
p

g∗λpσ−p(t)+ Fλ(t).

Here, aλ is the annihilation operator of the field mode λ, and σ−p is the dipole
operator of the pth atom. The coupling amplitudes gλp between field and atoms
are proportional to the atomic dipole d and to the field amplitude u(r) at the po-
sition of the atom, gλp ∝ duλ(rp). Equation (13) should be complemented with
the equations of motion for the atomic operators, which we have omitted as they
remain the same as those found in standard laser theory [129]. There are drastic
differences between Eq. (13) and the independent-oscillator equations of standard
laser theory. They arise from the fact that in order to account for the strong cou-
pling of the field with the outside, all internal modes must now leak into the same
external channels, i.e., they are coupled to the same bath. Hence, the internal dy-
namics of the field is determined by the non-Hermitian operator H, accounting for
the system’s losses due to the coupling with the exterior, and coupling the different
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modes aλ. Additionally, and consistently with the fluctuation–dissipation theo-
rem, the noise operators Fλ of the different modes are correlated, 〈F †

λFλ′ 〉 	= δλλ′
(the expectation value is defined with respect to the state of the bath).

The emission properties of random lasers are determined by the complex eigen-
values ωk − iΓk/2, and the nonorthogonal eigenfunctions R(r) of H. Due to the
strong correlation among modes, the relation between the mean frequency sepa-
ration � of the real frequencies ωk , and the average decay rate Γ̄ of the modes
is of crucial relevance for the emission spectra. In the regime of overlapping res-
onances, Γ̄ > �, typically many broad modes will contribute to the emitted
radiation. The resulting spectrum is then a smooth function of the frequency. On
the contrary, in the regime of isolated resonances, Γ̄ < �, the spectrum consists
of a set of sharp peaks located at the resonant frequencies of the system. More
striking, however, is the effect of the mode correlations on the coherence time
of the random laser emission. For single mode lasing the coherence time δτ is
inversely proportional to the laser line width δω. The latter was first calculated
for standard lasers by Schawlow and Townes [136], by taking into account the
spontaneous emission noise, and was found to decrease for increasing output in-
tensities, δωST ∼ 1/I . In random lasers, however, the noise correlation between
different modes leads to an enhancement of the line width. One then has [132]

(14)δω = KδωST,

where K � 1 is the so called Petermann factor [137–139]. K can be related to
the self-overlap of the nonorthogonal laser mode R(r), and is a measure of the
correlations in the system. Hence, the coherence time of a random laser is smaller
than the coherence time of a standard laser with the same output intensity.

The signatures of the underlying disorder in random lasers are also present in
the photon statistics of the emitted light. Though for light propagating in a disor-
dered material the photon statistics below threshold is well understood [140,141],
only recently the nonlinear optical regime above threshold has been investi-
gated [142–145]. As an example, we evaluate the mean photocount of the emitted
field from a chaotic laser resonator in the regime of single-mode lasing [142]. We
consider the coupling of the cavity to the outside to be weak, so that all resonances
in the cavity are well defined. In this perturbative limit, the non-Hermitian oper-
ator H in Eq. (13) becomes diagonal, and the laser mode a decouples from all
other modes. Moreover, since the cavity opening is small, we can replace R(r) by
the orthogonal close cavity modes u(r). In chaotic resonators the amplitude u(r)
at a point r behaves like a Gaussian random variable, and is uncorrelated with the
amplitude at any other point, provided it lies further apart than an optical wave
length λ [146,147]. As we shall show, these spatial fluctuations induce strong
mode-to-mode fluctuations in the laser emission.

In its steady-state, the laser is characterized by three parameters comprising
the effects of the active medium on the field: The linear gain A, the nonlinear
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saturation B, and the total loss rate C. The photon number distribution giving the
probability to find the laser field at a time t with n photons is [130]

(15)Pn = N (Ans/C)
n+ns

(n+ ns)! ,

where the symbol N stands for a normalization constant, and the nonlinear satu-
ration B enters through the so called saturation photon number ns = A/B. When
the number of atoms in the active medium is large, A and B are shown to acquire
sharp values.C = Γ +κ , on the other hand, is the sum of the photon escape rate Γ
due to the cavity opening, and the absorption rate κ accounting for all other loss
mechanisms of the radiation inside the resonator. While here κ may be considered
fixed, the photon escape rate depends on the resonator mode u. Thus, inasmuch as
the resonator mode represents wave chaos, Γ , and therefore C, become random
numbers. The distribution P(Γ ) over an ensemble of modes in time-reversal in-
variant cavities is a well-know result from random-matrix theory [148,149], and is
given by the χ2

ν distribution. Here, ν is an integer, counting the number of escape
channels at the opening of the resonator. For the case ν = 1, the corresponding
distribution is known as the Porter–Thomas distribution.

For a single-mode laser, the mean output intensity is given by I = Γ 〈n〉, where
〈n〉 is the mean photon number inside the cavity. Over an ensemble of chaotic
cavity modes the mean output intensity fluctuates from one mode to the other. Its
distribution is given by

(16)P(I) =
∫

dΓ P (Γ )δ
(
I − Γ 〈n〉).

Note that the right-hand side involves a twofold average, the quantum optical
average with the distribution Pn (represented by the brackets 〈. . .〉) and the en-
semble average over the cavity modes with distribution P(Γ ). We evaluate nu-
merically P(I). The results for an ensemble of chaotic cavities with one escape
channel are plotted in Fig. 14, for two different sets of parameters. In both cases
A > C̄, i.e., they correspond to lasers above threshold in the ensemble aver-
age. We note that all distributions are strongly non-Gaussian. They are all peaked
as I−1/2 at small intensities, and present a second peak for maximal intensity.
Furthermore, for one of the parameter sets (dashed lines) the distribution P(I)

displays a shoulder for submaximal I . This last feature is seen to be a signature of
spontaneous emission [142]. Thus, for lasers in resonators with irregular shape the
chaotic nature of the cavity modes gives rise to fluctuations of the photocount on
top of the quantum optical fluctuations known from laser theory. Chaos-induced
fluctuations are found when a single-mode photodetection is performed over an
ensemble of modes.

In recent years, in the light of nonlinear optical effects, the investigation on mul-
tiple scattering of photons has received new impetus. A fresh and fertile field for
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FIG. 14. Distribution P(I/Imax) as a function of the dimensionless mean intensity I/Imax, for
one escape channel and two sets of parameters. Rates are given in units of A ≡ 1, the nonlinearity is
B = 0.005. The solid line corresponds to κ = 0.7, Γ̄ = 0.02; the dashed line to κ = 0.7, Γ̄ = 0.2.

interesting physics is found in this region where nonlinear optics and wave chaos
intersect. Random lasers are just one example of the kind of problems encoun-
tered there. Other relevant examples constitute studies of coherent backscattering
of light by a cloud of cold atoms. In these system, for sufficiently high intensities
of the incident light, nonlinearities becomes relevant and a new class of coherent
effects are seen to arise [150,151]. In the near future, new questions concerning
the consequences of nonlinear effects for the strong localization of light are likely
to move into focus.

3.5. DIRECTED ATOMIC TRANSPORT DUE TO INTERACTION-INDUCED

QUANTUM CHAOS

All the above examples of transport in quantum chaotic systems stem from the
realm of one (active) particle dynamics—where we also include the phenomena
observed with alkaline atoms, since the multielectron atomic core only induces
additional quantum diffraction effects, which can be accounted for on the one
particle level. In our last example, we consider now an interacting many-particle
problem, which is motivated by recent progress in the manipulation of ultracold
atoms loaded into optical lattices, and which establishes, in some sense, the exper-
imentally “controlled” version of multiparticle quantum chaos originally thought
of by Bohr [152] and Wigner [153] when they modelled compound nuclear reac-
tions.

One of the prominent models to describe the dynamics of matter waves in opti-
cal potentials is defined by the Bose–Hubbard Hamiltonian (2) which we already
encountered above. Indeed, it can be shown that (2) exhibits Wigner–Dyson sta-
tistics in a broad interval of tunneling coupling J and interaction strength W , for
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filling factors n̄ = N/L, N the particle number and L the lattice length, even in
the absence of any static forcing, i.e., for F = 0 [154]. Surprisingly, this was real-
ized only recently, despite the fact that (2) is a standard “working horse” for quite
a big community—which, however, is mostly interested in ground state properties
rather than dynamics. Only recent experiments in quantum optics laboratories [8,
155–160] have triggered enhanced interest in dynamics, and hence in the excita-
tion spectrum of the many-body Hamiltonian.

On the dynamical level, the chaotic character of the Bose–Hubbard spec-
trum induces the rapid decay of single particle Bloch oscillations across a one-
dimensional lattice, for not too large static forcing (such that the static term in (2)
does not dominate the symmetry of the problem) [161,162]. The single particle
dynamics can be defined equally well by the reduced single particle wave func-
tion of the bosonic ensemble, or by a second, spin-polarized fermionic component
loaded into the lattice [163]. We shall here adopt the latter scenario, where non-
interacting fermionic atoms interact with a bosonic “bath”. The corresponding
two-component Hamiltonian writes

(17)HFB = HF +HB +Hint,

and decomposes into the (single particle) fermionic part

(18)HF = −JF

2

(
L∑
l=1

|l + 1〉〈l| + h.c.

)
+ Fd

L∑
l=1

|l〉l〈l|,

the (many particle) bosonic part

(19)HB = −JB

2

(
L∑
l=1

â
†
l+1âl + h.c.

)
+ WB

2

L∑
l=1

n̂l(n̂l − 1),

and a term which mediates the collisional interaction between fermions and
bosons,

(20)Hint = WFB

L∑
l=1

n̂l |l〉〈l|.

Here we built in the assumption that only the fermions experience the external
static force—this can be arranged by preparing the fermionic and bosonic compo-
nent in appropriate internal electronic states, which couple differently to external
fields.

Since in (17) there is a clear separation between “system” (the fermions) and
“bath” (the bosons), we can derive a master equation for the time evolution in
the fermionic degree of freedom, in Markovian approximation [163]. A crucial
ingredient for this derivation is the chaotic level dynamics of the bath degree of
freedom, what ensures a broad distribution of frequencies of the bath modes, such
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as to act as a Markovian environment, with a rapid decay of the bath correlations,
on the relevant time scales of the system dynamics [164]. One ends up with

(21)
∂ρ

(F)
l,m

∂t
= − i

h̄

[
HF(t), ρ

(F )
]
l,m

− γ (1 − δl,m)ρ
(F)
l,m ,

where ρ is the fermionic one particle density matrix, and the relaxation rate γ is
completely determined by the parameters of our original Hamiltonian (17):

(22)γ = τ n̄2W 2
FB

h̄2
� 3n̄2W 2

FB

h̄JB
.

In other words, we can “engineer” incoherent Markovian dynamics in a perfectly
Hamiltonian system, (17), by exploiting the chaotic dynamics of one system com-
ponent. The resulting decay of the fermionic Bloch oscillations is illustrated in
Fig. 15, where perfect agreement of the actual decay rate (resulting from an ex-
act numerical propagation of the dynamics generated by (17)) with the analytical
expression (22) is observed.

The collisional interaction of the fermions with the bosonic bath provides a
relaxation mechanism which, in the theory of electronic conductance across a pe-
riodic potential, is the necessary ingredient for observing a net current across the
lattice [165]. Yet, in Fig. 15 we do not observe any net drift of the electrons. This

FIG. 15. Bloch oscillations of the fermionic mean velocity in the optical lattice, under a static
tilt Fd = 0.57 × JF, with JF = JB, and WFB = 0.101 × JF, 0.143 × JF, 0.202 × JF (from top to
bottom). The bosonic bath, which is the source of the collisionally induced damping of the oscillations,
is composed of N = 7 particles, distributed over a lattice of length L = 9. v0 = JFd/h̄. The typical
time scale of the interaction induced decay fits the time scale predicted by Eq. (22) (dash-dotted lines)
very well [163].
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is due to the fact that we are here dealing with a perfectly closed system, without
attaching any leads—in particular, we are dealing with a finite size bath, which,
consequently, has a finite heat capacity. Therefore, the initial state of the bath
plays a crucial role for the effective fermionic transport across the optical lattice:
If prepared in the thermalized state (as in Fig. 15), with equal population of all
energy levels of the bath, no net energy flux can occur from the fermionic into the
bosonic degree of freedom, and, hence, no net drift velocity of the fermions can
emerge. In contrast, if we prepare the bath in a low temperature state, with only the
ground state and few excited states initially populated, the bath can absorb energy
from the fermions, via collisions, and the fermionic component acquires a non-
vanishing drift—which lasts until the bath is fully thermalized. This is illustrated
in Fig. 16, together with the corresponding energy increase of the bath. Figure 17
shows the resulting current (fermionic drift velocity v̄) voltage (static tilt F expe-
rienced by the fermionic component) characteristics under variations of F , which
displays a marked transition from Ohmic behavior (small F ) to negative differ-
ential conductance (large F )! Note that such behavior was earlier predicted for
semiconductor superlattices [166], on the basis of a semiclassical theory with a
phenomenologically determined relaxation rate γ , whereas the present scenario
allows for the experimental tuning of the relaxation rate, on the basis of our mi-
croscopic theory (with crucial input from the theory of quantum chaos).

FIG. 16. Mean velocity v(t) of the fermionic component (top, solid line) for a low temperature
(kBT � 2.86×JB) bath, under static tilt Fd = 0.143×JF, with WFB = 0.143×JF, WB/JB = 3/7,
JB = JF, N = 7, L = 9. The solid line in the bottom plot shows the associated time evolution of
the mean energy EB of the bath. Dashed lines in both plots indicate the result for a thermalized bath
(kBT � 150 × JB), when no net energy exchange between the fermions and the bosons is possible.
Clearly, only for the low temperature bath do we observe a nonvanishing drift velocity (i.e., a directed
current) of the fermions across the lattice.
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FIG. 17. Current–voltage (expressed as drift velocity v̄ vs. tilt Fd) characteristics for the directed
fermionic current across the optical lattice (stars) [163], for the same parameters as in Fig. 16. The
continuous line shows the prediction of a phenomenological model of charge transport in semicon-
ductor superlattices [166], with the relaxation rate γ extracted from Eq. (22). A clear transition from
Ohmic to negative differential conductance at large tilt potentials is observed.

4. Control through Chaos

We have seen in the preceding sections that quantum chaos is tantamount to strong
coupling of the various degrees of freedom of a given quantum system, of the
destruction of good quantum numbers, and that all this usually leads to large fluc-
tuations of various observables under slight changes of some control parameter,
or to decoherence-like reduced dynamics. Though, does quantum chaos provide
us with any means not only to describe, but also to control complex quantum
systems in a robust way?

Indeed, there is a positive response to this question, at least for periodically
driven quantum systems with a mixed regular-chaotic structure of the underlying
classical dynamics. The phase space of such systems decomposes into domains
of regular and of chaotic motion, see Fig. 18, which are associated with ellip-
tic (i.e., stable) and hyperbolic (i.e., unstable) periodic orbits. Elliptic periodic
orbits are surrounded by elliptic islands in phase space, which define regions
of regular, i.e., integrable classical motion. A classical particle launched within
such an island cannot leave it (or, in higher dimensions, only on rather long time
scales [167,168]), and the only way for a quantum particle to leave the island is by
tunneling. It is rather obvious on semiclassical grounds [169], and has also been
realized by approximating the quantum dynamics in elliptic islands by a quantum
pendulum [170], that such regular regions in classical phase space lend support
for quantum eigenstates localized on top of them, provided the island’s volume
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FIG. 18. Example for the surface of section of the classically mixed regular-chaotic phase space of
a periodically driven system in a one-dimensional configuration space—here derived from the equa-
tions of motion of a one-dimensional hydrogen atom under periodic electromagnetic driving (in dipole
coupling) [31]. The phase space—spanned by the classical action I (measured in units of some ref-
erence action n0) and the conjugate angle θ—decomposes into essentially three main components:
a near-integrable (weakly perturbed) part (for actions below approx. 0.9), a prominent resonance is-
land structure centered around (θ = π, I/n0 = 1.0), and a chaotic region—the complement of
near-integrable and island domain.

is large enough to accommodate the typical phase space volume hf (with f the
number of degrees of freedom) of a quantum state. Later on it was realized that, in
periodically driven systems, these quantum eigenstates faithfully follow the time
evolution of the elliptic trajectory they are anchored to [20,171–173], and that
their localization properties are preserved by the elliptic island—i.e., by the un-
derlying nonlinearity of the classical dynamics—thus protecting them against the
usual dispersion of quantum wave packets in unharmonic systems. Hence, elliptic
islands in classical phase space give rise to the emergence of nondispersive wave
packets on the quantum level [31]. The only mechanism which limits their life
time (as long as incoherent processes can be excluded [31,174,175]) is tunneling
from the island into the surrounding chaotic sea, which, however, is strongly sup-
pressed in the semiclassical limit of large classical actions as compared to h̄ [176].

Since elliptic structures in mixed regular chaotic classical dynamics are ubiq-
uitous, so are nondispersive wave packets in the microscopic world. And the
classical nonlinear dynamics bears yet another blessing: The KAM theorem guar-
antees that elliptic islands in classical phase space are extremely robust against
perturbations—i.e., for sufficiently small perturbations, an elliptic island is possi-
bly slightly distorted in phase space, though preserves its topology. While KAM
might appear of essentially mathematical interest on a first glance, this statement
has indeed very far-reaching consequences on the experimental level: Note that it
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is very hard to prevent conventional Rydberg wave packets, built, e.g., on a Stark
manifold (by exciting a coherent superposition of the Stark levels, with a laser
pulse, from the atomic ground state) from dispersion [71]—since any small (un-
controlled) perturbation shifts the Stark levels and thus induces an unharmonicity
in the spectrum, leading to dispersion of the wave packet. In contrast, a nondis-
persive wave packet anchored to an elliptic island in classical phase space is
essentially inert against any perturbation which is not strong enough to destroy
the island, as a consequence of KAM. In other words, the KAM theorem as one of
the fundamental theorems of classical nonlinear dynamics shields nondispersive
wave packets against technical noise (alike stray fields, etc.). It is this robustness
which allows the experimentalist to realize and manipulate nondispersive wave
packets in the laboratory [28], over time scales which exceed “traditional” wave
packet dynamics by orders of magnitude!

4.1. NONDISPERSIVE WAVE PACKETS IN ONE PARTICLE DYNAMICS

The simplest realization of nondispersive wave packets is provided by an unhar-
monic, bounded, one-dimensional system under periodic driving, described by
the Hamiltonian

(23)Hwp = H0(z)+ λV (z) cos(ωt).

Transformation to the action-angle variables (I, θ) of H0 allows one to rewrite
this as

(24)Hwp = H0(I )+ λ

m=+∞∑
m=−∞

Vm(I) cos(mθ − ωt),

where we assumed, for simplicity, that the Fourier amplitudes Vm(I) are real [31].
Reminding ourselves of θ = Ωt , with Ω the classical roundtrip frequency along
the unperturbed trajectory with action I , we immediately realize that choices of
the driving frequency ω such that sθ − ωt � 0, for some term m = s in the
above sum in (24), will lead to a separation of time scales in the time evolution
generated by Hwp. While all terms in (24) except the one with m = s will os-
cillate rapidly, a resonance will occur between the external drive at frequency ω

and the unperturbed motion along the trajectory with sΩ(I) = ω. In other words,
proper choice of the driving frequency allows one to selectively address a spe-
cific trajectory of the unperturbed dynamics, via this resonance condition. For
s = 1, a suitable coordinate transformation, followed by a secular approxima-
tion (which averages over the rapidly oscillating terms in (24), at resonance), and
a final quadratic expansion around the action of the resonantly driven classical
orbit yields a pendulum Hamiltonian, which establishes the backbone of the typ-
ical phase space structure of an elliptic island at weak perturbation amplitudes,
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FIG. 19. Typical phase space structure in the vicinity of a resonantly driven trajectory of a
bounded, one-dimensional system, in action-angle coordinates I and θ . I is measured in units of
some reference action n0. The external driving frequency is chosen such as to match the unperturbed
roundtrip frequency of the trajectory with action I/n0 = 1.0. The consequent separation of time
scales in (24) induces an onion-like, elliptic island structure centered around (θ = π, I/n0 = 1.0),
already at weak perturbation strengths λ. With increasing λ chaos invades phase space, at the expense
of the elliptic island and of near integrable regions at low actions. However, comparison with Fig. 18
also shows that the center of the elliptic island survives (actually to rather large values of λ [31,63]),
what is a consequence of the KAM theorem, and identifies elliptic islands as very robust topological
structures in classical phase space.

FIG. 20. Electronic density of a nondispersive electronic wave packet in a periodically driven,
one-dimensional Rydberg atom. The wave packet starts (at phase ωt = 0 of the driving field) at the
outer turning point of the classical eccentricity one orbit, is reflected from the Coulomb singularity
at ωt = π , and precisely refocuses at the outer turning point, without dispersion, after one complete
field cycle.

displayed in Fig. 19. The KAM theorem essentially guarantees that the core of
this structure survives even a considerable increase of λ, whilst all the remaining
phase space volume may undergo a dramatic metamorphosis, as evident from a
comparison of Figs. 18 and 19.

Figure 20 shows the configuration space representation of a nondispersive wave
packet launched along the Rydberg orbit with principal quantum number n0 = 60,
for the one-dimensional Coulomb problem [20]. This model describes the dynam-



4] QUANTUM CHAOS, TRANSPORT, AND CONTROL 63

ics of quasi one-dimensional (i.e., extremal parabolic) Rydberg states of atomic
hydrogen in a near resonant field reasonably well [96,97]. Such a nondispersive
electronic wave packet propagating without dispersion along a highly excited Ry-
dberg orbit has recently been excited and probed in laboratory experiments with
lithium atoms [28,29]. In particular, these experiments succeeded to demonstrate
the extremely long life time of these objects, by probing the electron’s position on
its Rydberg orbit after 15,000 cycles of the driving microwave field. This is equiv-
alent to 15,000 Kepler orbits of the unperturbed Coulomb dynamics, and thus by
approximately three orders of magnitude longer than the life time of any Rydberg
wave packet so far generated in the laboratory. Furthermore, the experimentally
measured life time only gives a lower bound for the wave packet’s endurance,
since longer probing times were not possible due to the geometry of the exper-
imental setup. Theory predicts life times of approx. 106 Kepler orbits, at these
excitations [31,176].

4.2. NONDISPERSIVE WAVE PACKETS IN THE THREE BODY

COULOMB PROBLEM

The above scenario of nondispersive one particle wave packets can be general-
ized for the three body Coulomb problem, naturally realized in the helium atom.
A very nontrivial complication arises here from the fact that the electron–electron
interaction term in the helium Hamiltonian

(25)HHe = p1
2

2
+ p2

2

2
− 2

r1
− 2

r2
+ 1

|r1 − r2| ,

generates classically chaotic dynamics even in the absence of any external per-
turbation [39]. This is nowadays identified as the cause of the failure of the early
semiclassical quantum theory to come up with a quantitative description of the he-
lium spectrum [41]. Furthermore, doubly excited states of helium have a finite au-
toionization probability, again due to the electron–electron interaction [177,178].
Hence, the helium atom itself has to be treated as an open system, and bears
some similarity with the crossed fields problem which we discussed in Section 3.3
above. Indeed, Ericson fluctuations are also expected in the photoabsorption cross
section of helium [179], for sufficiently high excitations, though the required en-
ergy range has not yet been reached in the lab [23].

Thus, since the classical phase space structure of the helium atom is globally
chaotic, our above motivation of the typical elliptic island structure on which
to build nondispersive wave packets is not straightforward, since there are no
global action-angle variables for irregular classical dynamics. However, we can
focus on specific regular domains in the classical phase space of the helium
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FIG. 21. Characteristic frozen planet trajectory of the unperturbed three body Coulomb problem.
The inner electron precesses on highly eccentric ellipses, with a rapid Kepler oscillation between the
inner and the outer turning point. Upon average over the inner electron’s rapid motion, Coulomb at-
traction due to the screened Coulomb potential of the nucleus and electron–electron repulsion conspire
such as to create an adiabatic, shallow binding potential for the outer electron [181]. Consequently,
the outer electron is locked upon the precessing motion of the inner electron, leading to a strong
correlation of both electrons’ positions.

FIG. 22. Phase space structure for the outer electron of the (collinear) frozen planet configura-
tion [182], in the absence (a) and in the presence (b) of an external, near resonant driving field. If the
external field frequency is chosen to match a resonance condition with the unperturbed outer electron’s
motion, secondary resonance islands emerge as in (b).

atom, which are elliptic islands themselves.2 These lend support for stable eigen-
states of the unperturbed helium atom—the most prominent thereof being the
frozen planet configuration [36,180]. Figures 21 and 22 show a typical clas-
sical, highly correlated two-electron trajectory, and the phase space structure
of the frozen planet configuration, respectively. Given the regular phase space
structure with well-defined, stable periodic orbits as shown in Fig. 22, we are
back to our original setting: If we apply an external field with a frequency near

2 Indeed, by mapping an f degrees of freedom system on a periodically driven f − 1 degrees of
freedom system, where the periodic time dependence of the drive is provided by the periodic time
dependence of the remaining degree of freedom, these islands can be made formally equivalent to
those considered above [31,47].
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FIG. 23. Top: Husimi representation of a nondispersive two-electron wave packet propagating
along the collinear frozen planet orbit of the planar helium atom [184], in the phase space coordinates
of the outer electron along the quantization axis defined by the linear field polarization vector, for dif-
ferent phases ωt = 0 (left), π/2 (middle), and π (right). Very clearly, the electronic density faithfully
traces the resonantly driven frozen planet trajectory, as obvious from a comparison with the classical
phase space structure shown below (on identical scales).

resonant with one of the stable periodic orbits of the classical phase space of
the unperturbed system, we induce elliptic islands which propagate along the
unperturbed trajectory, phase-locked on the period of the drive. Consequently,
for sufficiently high excitations, we find nondispersive two-electron wave pack-
ets [182,183] propagating along the frozen planet trajectory, as illustrated in
Fig. 23 for an excitation to the fifth autoionization channel (in other words,
the inner electron is launched along an extremal parabolic orbit with principal
quantum number N = 6). Note that a quantum treatment of the planar three
body Coulomb problem (an accurate treatment of the fully three-dimensional
problem is hitherto out of reach, due to the size of Hilbert space when many
angular momenta are coupled by the driving field) predicts life times of ap-
prox. 1000 driving field periods (or, due to the resonance condition on drive
and unperturbed two-electron orbit, 1000 frozen planet periods) for these wave
packet eigenstates [184,185]. This prediction can be expected to be reliable, on
the basis of a comparison of typical He autoionization rates in 1D, 2D, and
3D configuration space [186]. The predicted two-electron wave packet’s life
times are considerably less than the life times predicted for the one electron
problem considered in the previous section, though still much longer than life
times of conventional Rydberg wave packets, and thus eligible for applications
in coherent control. Recently, the excitation of another type of nondispersive
two-electron wave packets has been suggested, with both electrons far from the
nucleus [187].
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4.3. QUANTUM RESONANCES IN THE DYNAMICS OF KICKED COLD ATOMS

Nondispersive wave packets as those discussed above are ubiquitous, and can be
realized in any driven quantum system with an unharmonic spectrum (the un-
harmonicity guarantees the selectivity of the addressing of a specific classical
trajectory by the near resonant drive) and mixed regular-chaotic phase space [31].

Importantly though, their creation is not necessarily restricted to the realm of
semiclassical physics, where h̄ becomes small in comparison to the classical ac-
tions of the dynamics. This has been realized recently, in the treatment of quantum
resonances [188] and quantum accelerator modes [189] in the translational degree
of freedom of periodically kicked cold atoms loaded into one-dimensional optical
lattices which are flashed periodically. Such quantum resonances occur due to the
close similarity of the kicked atom Hamiltonian

(26)HKA = p2

2
−K cos(kx)

+∞∑
m=−∞

δ(t −mτ)

with the kicked rotor, apart from the different boundary conditions (an infinite pe-
riodic lattice in the atomic problem, a circle in the case of the kicked rotor [188]).
They are excited by kicking periods τ = 2π�, � integer, since then the kicks are
synchronized with the exact revivals of the free evolution of the rotor dynamics
(we omit here the discussion of the specific value of the atomic quasimomentum,
which implies further restrictions, though is not indispensable for our present ar-
gument), leading to ballistic energy growth, for the appropriately prepared initial
quasimomentum state of the atoms [188].

If one considers the quantum dynamics close to the resonance condition, i.e., at
τ = 2π�+ε, with a small detuning ε, it turns out [188,189] that the time evolution
generated by the Hamiltonian (26) can be obtained from the formal quantization
of some well-defined classical dynamics described by a map, with the detuning
ε taking the role of h̄ ≡ τ (which itself remains constant and can be arbitrarily
large!).

The quantum accelerator modes are created when an additional static potential
(such as provided by gravity) is added to the Hamiltonian of Eq. (26). For appro-
priate parameters, this Stark field allows the experimentalist to design classical
nonlinear-resonance islands (classical in the above sense of ε taking the role of h̄)
embedded in a surrounding chaotic sea. These islands support ballistic transport,
which—in contrast to the ballistic motion at quantum resonance—is directed due
to the destruction of the translational invariance by the Stark field (see the accel-
erated tail of the atoms’ momentum distribution in Fig. 24).

In this generalized classical picture, both quantum resonances and quantum ac-
celerator modes are nothing but quantum eigenstates anchored to elliptic islands
in the phase space of that classical map, i.e., a variant of our above nondispersive
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FIG. 24. (Courtesy of Gil Summy.) Time dependence (measured by the number of pulses or kicks)
of the atomic momentum distribution under periodic kicks along the gravitational field [15], in a
reference frame freely falling with the atoms. Besides the bulk of the atomic ensemble, which does
not acquire momentum, there is an atomic component which exhibits ballistic acceleration. This is the
experimental signature of a quantum accelerator mode.

wave packets. This mode-locking of the external drive to the intrinsic charac-
teristic frequency of the system allows the experimentalist to efficiently transfer
large momenta to the atoms. Once again, these modes are robust against perturba-
tions [190], are clearly identifiable in laboratory experiments [14–16], see Fig. 24,
and offer a variety of experimental applications, such as for high precision mea-
surements of the gravitational constant [14].

5. Conclusion

As quantum optics addresses the dynamics of more and more complex quantum
systems, methods imported from quantum chaos provide useful tools for identi-
fying statistically robust quantities for their description, and also to control their
time evolution. In this review, we have seen examples for characteristic universal
features of chaotic quantum systems on the spectral as well as on the dynamical
level, in such different settings like ultracold atoms in periodic optical potentials,
excitation and ionization processes of one and two-electron atoms subject to sta-
tic or oscillating external fields, random laser theory, and cold atoms kicked by
standing light fields. The chosen examples are far from exploring all the diver-
sity of current experimental and theoretical activities at the interface of quantum
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optics and chaos—we did not discuss here the recently predicted and observed
universal ionization threshold of one electron Rydberg states under microwave
driving [84,117], weak and strong localization phenomena in the scattering of
photons off clouds of cold (or ultracold) trapped atoms (with close connections to
random lasing) [191], nor the complementary scenario of matter wave transport
in disordered optical or magnetic potentials [10,115], or the role of incoherent
processes which might compete with coherent quantum transport in complex dy-
namics [12,86,174,175]. Nonetheless, we hope that the examples treated already
give a flavor of the potential applications of quantum chaos, from the microscopic
modelling of an atomic current across a periodic potential, by using a chaotic
bosonic system as a bath which provides the necessary relaxation processes, to
nondispersive, one and two-electron wave packets which, due to their extraordi-
narily long life times and robustness against technical noise (inherited from the
KAM theorem), might find applications in robust quantum control schemes or as
quantum memory, in the context of quantum information processing. In partic-
ular, the analogies between quantum chaos and quantum transport in disordered
systems are currently coming into focus, and hold a panoply of intriguing chal-
lenging questions, to be tackled in the near future.
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