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Abstract

We present a simple model for chiral molecules which yields the frequency-dependent multipole–multipole polarizabilities required for
calculating the dispersive van der Waals constants in a simple, closed, and consistent form. The model consists of a single effective charge
confined to a one-dimensional wire formed by two circular arcs, which are twisted with respect to each other by an angle characterizing
the chirality. The resulting polarizabilities show a simple functional dependence on the model parameters, and they serve to mimic the
chiral properties of small molecules, such as H2S2, in a reasonably realistic way.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Wire models [1,2] are popular to describe molecular con-
figurations where electrons are allowed to move almost
freely along quasi-one-dimensional structures, as is the case
e.g. with the dislocated p-electrons in organic chain mole-
cules [3–5]. Studies comparing these models with ab initio
electronic configuration calculations [2,6] show that, in
spite of their simplicity, these models succeed in reproduc-
ing many qualitative features and yield even quantitatively
reasonable results.

In the present article, we discuss a simple wire model
which aims at describing small chiral molecules, and in par-
ticular the dependence of the chiral nature on their elec-
tronic susceptibilities. The latter determine important
molecular properties such as the optical activity and the
dispersion forces acting between molecules. While the chir-
optical properties have already been subject of several pub-
lications [1–5], the present article is focused on the
dispersion forces.
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In general, it is a difficult task to calculate the dispersive
interaction potential strengths between chiral molecules
(with few or no symmetries) and other polarizable particles
if one has to go beyond the bulk van der Waals force
U = �C6/r6. This is the case, e.g. if one needs to assess
the relative strength of chirality-discriminative part of the
interaction versus the non-discriminative ones. The reason
is that multipole–multipole polarizabilities are required on
the whole imaginary frequency spectrum for calculating the
higher order dispersion constants which are linear combi-
nations of integrals [7]Z 1
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ecules A and B, respectively, in spherical tensor notation,
see Eq. (51).

The van der Waals dispersion constant C6 depends on
the electric-dipole–electric-dipole polarizabilities of both
molecules ð‘A ¼ ‘0A ¼ ‘B ¼ ‘0B ¼ 1Þ. While it does not dis-
criminate between the left- and right-handed configura-
tions of an oriented chiral molecule, higher order
dispersion interactions differ in general for left and right
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configurations. Often, a rotational average over all orienta-
tions of the chiral molecule cancels this left-right distinc-
tion in the cross-sections. However, consider a coherent
superposition of the left- and right-handed configuration
states [8], which will be subject to decoherence due to col-
lisions with the atoms of a surrounding gas. In this case,
the decoherence process is determined by collisions of
spherical gas atoms B off the oriented chiral molecule A.
Here, the lowest order discriminative interaction with B
ð‘B ¼ ‘0B ¼ 1Þ is given by the electric-dipole–electric-quad-
rupole polarizability [9], ‘A = 1 and ‘0A ¼ 2. The resulting
dispersive interaction depends on the distance r between
the molecules as r�7 [10]. We will focus on this dominant
discriminative interaction below, motivated by the above-
mentioned question of collisional decoherence. We note
that there might be additional forces of comparable
strength which do not discriminate left and right, and that
only non-retarded forces are considered in the following.
For a discussion of retarded interaction between chiral
molecules, see [11–13].

The main aim of the present model is therefore to provide
a minimalist, while consistent and trustworthy model for the
bulk electronic properties of chiral molecules. In particular,
we give explicit and closed results for the rotatory power, the
electric-dipole–electric-dipole polarizability, and the elec-
tric-dipole–electric-quadrupole polarizability, both at imag-
inary frequencies. The simplicity of the model even admits
the calculation of further higher multipole–multipole polar-
izabilities with small effort.

The model is specified by two parameters, the length L
determining the bulk polarizability and the twist angle v,
which corresponds to the dihedral angle in a molecule,
see Fig. 1. By choosing the parameters to represent the chi-
ral dihydrogen disulfide, H2S2, we obtain reasonable values
for its various electronic properties, suggesting that the
model may serve as a good approximation for a typical
small chiral molecule. Yet, the aim here is of course not
to reproduce precise numbers, but to have an easily acces-
sible, consistent and plausible description of the depen-
Fig. 1. The twisted arc model is given by a wire of length L in the form of
two arcs formed by quarter circles. They can be twisted with respect to
each other by an angle v. This way a three-dimensional chiral structure is
formed, except for v = 0 and v = p, when the wire is in its planar trans-
and its cis-configuration.
dence of the electronic susceptibilities on the molecular
parameters, and in particular on the dihedral angle.

The structure of the article is as follows. Section 2 pre-
sents the model and its quantization based on the canonical
description of the one-dimensional dynamics. The explicit
forms of the most important Cartesian operators (position,
momentum, magnetic dipole, and electric quadrupole
moment) are then derived in Section 3, together with closed
expressions for their matrix elements in the energy eigenb-
asis. Based on these results the rotatory strength is calcu-
lated in Section 4, as a function of the chiral angle.
Section 5 contains the calculation and discussion of the
electric-dipole–electric-dipole and electric-dipole–electric-
quadrupole polarizability for imaginary frequencies. An
example for interaction strengths derived from the polariz-
abilities is discussed in Section 6 and we present our con-
clusions in Section 7.

2. The twisted arc model

Our model aims at describing the excitation properties
of a chiral quantum system in the easiest possible way. It
is formed by two connected circular arcs, CI and CII, each
described by the common radius R and an angle of 90�.
The total length of the wire is thus L = pR. We put the ori-
gin of the coordinate system at the junction of the arcs such
that CI lies in the xy-plane. For v = 0 also CII lies in the xy-
plane (trans-configuration), while for v 5 0 it is turned
around the x-axis, see Fig. 2. We call v the twist angle,
and take it as the angle between the osculating plane of
CII and the y-axis (�p < v 6 p). For v = p the wire is in
its cis-configuration, and for v 5 0,p the angles v and �v
correspond to configurations with opposite chirality. Alter-
natively one could choose the dihedral angle / = p � v.

A charged particle of mass M and charge q is confined to
move freely along the wire defined by the two arcs. It is
constrained by an infinite potential step at both ends, but
there is no force in the x-direction at the joint of CI and CII.

The model shows C2 symmetry. The symmetry axis
(dashed line in Fig. 2) lies in the yz-plane and includes
Fig. 2. Projections of the twisted wire model onto the xy-plane (left) and
the yz-plane (right). The arcs CI and CII are quarter circles with a radius
of R = L/p. CI lies in the xy-plane as indicated and the twist angle v is
defined to be positive (negative) for CII pointing into the positive
(negative) z-direction. The origin of the parameterization coordinate s is
taken to be the loose end of CI. The C2 symmetry axis, drawn as a dashed
line, lies in the yz-pane.
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the origin. It has an angle of �v/2 with respect to the
z-axis.

We note that an alternative construction, suggested in
[5], would be to take (at least) three straight wire parts joint
together at angles of 90�. We prefer the present cornerless
structure, since it consists only of two equivalent legs which
mirror the symmetry of the wave function, and admit sim-
ple closed expressions for the relevant matrix elements, see
below. For a critical examination of the thin wire model
with corners see [14]. Another widely used model for chiral
molecules is the helical thin wire model [15], which, how-
ever, does not allow the straightforward modelling of the
dihedral angle of H2S2.

2.1. Quantization of the twisted arc

In order to quantize the motion let us first consider the
canonical description of the classical motion [1]. The natu-
ral generalized coordinate is the length of the wire s

(0 6 s 6 L). Noting R = L/p we find from Fig. 2 its rela-
tion to the Cartesian coordinates:

x ¼ � L
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As can be easily checked, this parameterization guarantees
that the kinetic energy T is given by the generalized velocity

T ¼ M
2

_x2 þ _y2 þ _z2
� �

¼ M
2

_s2: ð3Þ

In the absence of a (magnetic) potential the Lagrange func-
tion equals the kinetic energy, L ¼ T . The conjugate
momentum is defined as ps ¼ oL=o_s ¼ M _s, so that the
Hamilton function H = T takes the form H ¼ p2

s=ð2MÞ.
The Cartesian components of the momentum are thus ob-
tained, via px ¼ M _x ¼ Mðox=osÞ_s, as

px ¼ sin
ps
L

� �
ps;
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L

� �
ps for 0 6 s 6 L

2
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2
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( ð4Þ

We turn to the quantum description by replacing ps by the
differential operator

ps ¼
�h
i

o

os
: ð5Þ

acting in L2([0,L]). Operators will be indicated by sans-ser-
ifs throughout. The Hamiltonian is now

H ¼ � �h2

2M
o

2

os2
: ð6Þ
Together with the boundary condition w(0) = w(L) = 0, it
yields the eigenfunctions of a particle in a one dimensional
box with length L

wnðsÞ ¼
ffiffiffi
2

L

r
sin

nps
L

� �
; n ¼ 1; 2; 3; . . . ð7Þ

The corresponding energies depend quadratically on the
excitation number, En = n2E1, with the ground state energy
given, for M = me, by

E1 ¼
p2

2

L
a0

	 
�2

Ehartree ¼
35:06 eV

ðL=ÅÞ2
: ð8Þ

Choosing L as the sum of the binding lengths of H2S2, i.e.
L = 8.6a0, yields a first excitation energy of E2 � E1 =
3E1 = 5.4 eV, which is in good agreement with the result
of ab initio calculations for the excitation energy,
5.48 eV, for the longest wavelength transition [16].

In the following, we will use atomic units (a.u.),
�h = e0 = me = 1, with M = me.

3. The Cartesian operators

The functional dependence of the Cartesian operators on
the coordinate s will in general be different on CI and CII.
It is therefore convenient to introduce for any operator A
the corresponding partial operators A(I) and A(II) satisfying

AðsÞ ¼ H
L
2
� s

	 

AðIÞðsÞ þH s� L

2

	 

AðIIÞðsÞ: ð9Þ

The matrix elements of A with respect to the energy eigen-
states (7) can then be calculated as

hmjAjni ¼
Z L=2

0

dsw�mðsÞA
ðIÞðsÞwnðsÞ

þ
Z L

L=2

dsw�mðsÞAðIIÞðsÞwnðsÞ: ð10Þ

The C2 symmetry of the wire model will allow to express
matrix elements of operator A by the restricted operator
A(I) alone, see below.

3.1. The position operator

The Cartesian dipole operator is determined by the
Cartesian components of the position operator, ~d ¼ q~r.
From (2) we obtain immediately

xðIÞ ¼ � L
p

cos
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L

� �
¼ xðIIÞ;

yðIÞ ¼ L
p
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� 1

h i
;
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¼ � cos vyðIÞ;

zðIIÞ ¼ L
p

sin v 1� sin
ps
L

� �h i
:

ð11Þ
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As an advantage of the present model, the matrix elements
can be shown to be simply interrelated

mjzðIIÞjn
� �

¼ ð�Þnþmþ1 sin v mjyðIÞjn
� �

;

mjyðIIÞjn
� �

¼ ð�Þnþmþ1 cos v mjyðIÞjn
� �

:
ð12Þ

It follows that only a small fraction of the matrix elements
needs to be evaluated. For those we obtain

hmjxjni ¼ mjxðIÞjn
� �

þ mjxðIIÞjn
� �

¼
� L

2p ðdn;mþ1 þ dn;m�1Þ for m > 1;

� L
2p dn;2 for m ¼ 1;

(
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¼ L
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1

D2
mn � 2Smn þ 1

2

Dmn
ðnð3m2 þ n2 � 1ÞÞcnrm


�mð3n2 þ m2 � 1Þcmrn � 4mn

�
¼ njyðIÞjm
� �

for m 6¼ n; n� 1;

1jyðIÞjn
� �

¼
� 2L

p2
2Dn1þðSn1þ1Þcn

nDn1Dn2
for n > 2;

� L
3p2 for n ¼ 2:

(
ð13Þ

Here we introduced abbreviations which will be used
throughout the paper

Smn :¼ m2 þ n2;

Dmn :¼ m2 � n2:
ð14Þ

Moreover, the following factors show up frequently:

cm :¼ cos
mp
2

� �
¼

1 for m ¼ 0 mod 4;

�1 for m ¼ 2 mod 4;

0 otherwise;

8><>: ð15Þ

rm :¼ sin
mp
2

� �
¼

1 for m ¼ 1 mod 4;

�1 for m ¼ 3 mod 4;

0 otherwise:

8><>: ð16Þ

The matrix elements of dipole operators in spherical form
are calculated from the basic matrix elements, Eq. (13)

h1jd0jni ¼ q 1jzðIIÞjn
� �

¼ ð�Þn sin vq 1jyðIÞjn
� �

;

h1jd�1jni ¼ �
qffiffiffi
2
p ½h1jxjni � ih1jyjni�

¼ � qffiffiffi
2
p h1jxjni � ið1� ð�Þn cos vÞ 1jyðIÞjn

� �� �
:

ð17Þ
3.2. The momentum operator

The Cartesian components of the momentum operator
on the individual arcs can be obtained for the correspond-
ing classical expressions (4). However, unlike the full oper-
ator p, the hermiticity of p(I) and p(II) is not guaranteed.

By replacing the canonical momentum ps in the symme-
trized version of (4) by its corresponding operator (5), and
carrying out the derivatives as far as possible, we get the
Cartesian momentum operators
pðIÞx ¼ �i sin
ps
L

� � o

os
þ p

2L
cos

ps
L

� � �
¼ pðIIÞ

x ;

pðIÞy ¼ �i cos
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L

� � o
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� p

2L
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L

� � �
;

pðIIÞ
y ¼ �i cos v � cos
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L

� � o
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þ p

2L
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L

� � �
¼ � cos vpðIÞy ;

pðIÞz ¼ 0;

pðIIÞ
z ¼ �i sin v � cos
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L

� � o
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þ p

2L
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L

� � �
¼ � sin vpðIÞy :
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The operators pðIÞy ; pðIIÞ

y ; pðIÞz ; and pðIIÞ
z are Hermitian, while

pðIÞx and pðIIÞ
x , are individually not Hermitian, but only their

sum. For example, pðIÞx obeys the relation

njpðIÞx jm
� �

¼ mjpðIÞx jn
� �� � 2

L
isnsm: ð19Þ

The second term on the right-hand side is the boundary
term of the partial integration showing up if the differential
operator is applied to the bra. It does not necessarily vanish
here, since the wave function may be finite at the boundary
point s = L/2. A remedy would be to define a modified
momentum operator

~pðIÞx :¼ pðIÞx þ 2id s� L
2

	 

: ð20Þ

This operator on CI is now Hermitian, hmjepðIÞx jni ¼
hnjepðIÞx jmi

�, since the d-function cancels the contribution
of the boundary term. Similarly, the definition

~pðIIÞ
x :¼ pðIIÞ

x � 2id s� L
2

	 

ð21Þ

ensures both the hermiticity on CII and the relation
px ¼ epðIÞx þ epðIIÞ

x . In general, it would be therefore more con-
venient to express momentum matrix elements in terms of
the Hermitian operators (20) and (21). However, below the
momentum operator will occur only as part of the mag-
netic dipole operator, where this modification is not re-
quired, as discussed next.

3.3. Magnetic dipole moments

The magnetic moment is proportional to the angular
momentum operator

~m ¼ q~L ¼ q~r�~p ¼ q

ypz � zpy

zpx � xpz

xpy � ypx

0B@
1CA; ð22Þ

where we still use atomic units and allow for an effective
charge q = Zeff e0, which might be useful as a fitting
parameter.

The magnetic dipole moment depends on the origin, and
it is natural to choose the position of the joint between the
two arcs in the present model. It can be easily seen that the
non-hermiticity of the parts pðIÞx and pðIIÞ

x is then irrelevant
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since the x-component of the momentum is multiplied by y

or z, which vanish at s = L/2 and thus suppress the hermi-
ticity terms in Eqs. (20) and (21). The ability to evaluate the
magnetic moment directly, without having to resort to Her-
mitian corrections, is another advantage of the present
model.

Again one can derive helpful inter-relations of the
matrix elements:

hmjðxpy � ypxÞ
ðIIÞjni ¼ ð�Þnþm cos v mjðxpy � ypxÞ

ðIÞjn
D E

;

hmjzpx � xpzjni ¼ mjðzpx � xpzÞ
ðIIÞjn

D E
¼ ð�Þnþmþ1 sin v mjðxpy � ypxÞ

ðIÞjn
D E

;

mjypz � zpy jn
� �

¼ mj ypz � zpy

� �ðIIÞjn
D E

¼ 0:

ð23Þ

The last relation follows immediately from the proportion-
ality of y and z components of the operators and the van-
ishing of the z components on CI. It follows that a single
integral remains to be calculated.

i mjðxpy � ypxÞ
ðIÞjn

D E
¼

0 for n ¼ m;

� 4ð4�pÞmðmþ1Þ�p
8ð2mþ1Þp for n ¼ mþ 1:

(
ð24Þ

For n > m + 1 we get

i mjðxpy � ypxÞ
ðIÞjn

D E
¼ � 2mnðD2

mn � 1ÞðR2
mn � 1Þ þ 2mnð2Smn � 1Þcmcn

�
þð2S2

mn � D2
mn � SmnÞrmrn

�
= pDmnðD2

mn � 1ÞðR2
mn � 1Þ

� �
:

ð25Þ

Here we added the abbreviations

Rmn :¼ mþ n

Dmn :¼ m� n
ð26Þ

to those defined in (14)–(16). The hermiticity of the part
mðIÞz is now evident, hnjmðIÞz jmi ¼ hmjmðIÞz jni

�, implying with
(23) that all the components of ~m are Hermitian.

3.4. Electric quadrupole moments

The quadrupole moments are given by a quadratic com-
bination of the position operators. In Cartesian coordi-
nates,~r ¼ ðx; y; zÞ, we have

Hij ¼ q 3rirk � dik~r2
� �

: ð27Þ

Again, a variety of proportionality relations serves to re-
duce the calculational effort considerably:

njyðIIÞ2jm
� �

¼ cos2 vð�1Þnþm njyðIÞ2jm
� �

;

njz2jm
� �

¼ njzðIIÞ2jm
� �

¼ sin2 vð�1Þnþm njyðIÞ2jm
� �

;

njxðIIÞyðIIÞjm
� �

¼ cos vð�1Þnþm njxðIÞyðIÞjm
� �

;

hnjxzjmi ¼ njxðIIÞzðIIÞjm
� �

¼ sin vð�1Þnþm njxðIÞyðIÞjm
� �

;

hnjyzjmi ¼ njyðIIÞzðIIÞjm
� �

¼ sin v cos vð�1Þnþm njyðIÞ2jm
� �

: ð28Þ

It follows that three integrals need to be evaluated:

njx2jm
� �

¼ L2

2p2
dmn þ

1

2
dm;nþ2 þ

1

2
sdm;n�2

	 

; ð29Þ

njyðIÞ2jm
� �
¼ 4L2

p2
2nmðD2

mn � 4ÞDmn þ 3nð5m4 þ n4 þ 10m2n2
�

� 15m2 � 5n2 þ 4Þcnrm � 3mð5n4 þ m4 þ 10m2n2

�15n2 � 5m2 þ 4Þcmrn

�
� DmnðD2

mn � 4ÞðD2
mn � 1ÞðR2

mn � 4ÞðR2
mn � 1Þ

� ��1
; ð30Þ

njxðIÞyðIÞjm
� �
¼ 2L2

p3
�2nmðD2

mn � 1ÞðR2
mn � 1Þ þ 6mnð2Smn � 5Þcncm

�
þ3ð2S2

mn � Dmn � 5Smn þ 4Þrnrm

�
� ðD2

mn � 4ÞðD2
mn � 1ÞðR2

mn � 4ÞðR2
mn � 1Þ

� ��1
: ð31Þ

The last two expressions, (30) and (31), are valid for those
combinations of values n and m for which the denomina-
tors do not vanish. We omit the general results for
m � n = 1, 2 since the matrix elements will be needed only
for m = 1 below. In this case they take the form:

njyðIÞ2j1
� �

¼ 4L2

p3nDn;2
2� 3ðn2 þ 6Þcn

Dn;1Dn;3

	 

for n > 3;

2jyðIÞ2j1
� �

¼ 2L2

15p3
;

3jyðIÞ2j1
� �

¼ 2L2

p3

4

15
� p

16

	 

;

njxðIÞyðIÞj1
� �

¼ 2L2

p3

2nDn;2 þ 3Sn;1rn

Dn;1Dn;2Dn;3
for n > 3;

2jxðIÞyðIÞj1
� �

¼ 4L2

p3

p
16
� 2

15

	 

;

3jxðIÞyðIÞj1
� �

¼ 7L2

30p3

ð32Þ

Using these results one gets quite compact expressions for
the quadrupole moments, which display a simple depen-
dence on the twist angle v. Here we note the matrix ele-
ments of the spherical quadrupole operators, Q2,l, with
magnetic quantum number l. They are required for the cal-
culation of the electric-dipole–electric-quadrupole polariz-
ability in tensorial form, a1;2

k;k0 ðxÞ, see below:

h1jQ2;0jni :¼ q
2

1j2z2� x2� y2jn
� �

¼�q
2

1jxðIÞ2jn
� �

� q
2
½ð�1Þnð3sin2 v� 1Þþ 1� 1jyðIÞ2jn

� �
;
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h1jQ2;�1jni :¼�q

ffiffiffi
3

2

r
h1jzx� izyjni

¼ �q

ffiffiffi
3

2

r
sinvð�1Þn 1jxðIÞyðIÞjn

� �
� i cosv 1jyðIÞ2jn

� �� �
;

h1jQ2;�2jni :¼ q

ffiffiffi
3

8

r
1jx2� 2ixy� y2jn
� �

¼ q

ffiffiffi
3

8

r
1jxðIÞ2jn
� ��

� 2i½1� ð�1Þn cosv� 1jxðIÞyðIÞjn
� �

�½1�ð�1Þn cos2 v� 1jyðIÞ2jn
� ��

: ð33Þ
4. The rotatory strength

We proceed with the discussion of the rotatory strength,
the most prominent property of chiral molecules. We do so
to demonstrate the ability of the twisted arc model to dis-
play electromagnetic properties of real, chiral molecules.
The latter are usually optically active, and their chiroptical
properties depend on the optical rotatory tensor [17]:

Rn1
ij ¼ Im h1jdijnihnjmjj1i

� �
: ð34Þ

The trace of the optical rotatory tensor yields the rotatory
strength

Rn1 ¼ Rn1
xx þ Rn1

yy þ Rn1
zz ¼ Im 1j~djn

D E
� nj~mj1h i

n o
: ð35Þ

It determines the optical rotation angle for orientationally
averaged molecules. Recognizing an energy-resolution of
the identity operator one finds that the sum over all states
must vanishX1

n¼1
Rn1 ¼ Im

X1
n¼1

1j~djn
D E

� nj~mj1h i ¼ Im 1j~d � ~mj1
D E

¼ 0;

ð36Þ
because the expectation value of the Hermitian operator
~d � ~m must be real. We note also that the rotatory strength
does not depend on the choice of origin. The most conve-
nient choice of origin is therefore the joint of the arcs, since
hermiticity corrections of the momentum operator are then
not required, as discussed above. Note that an object inde-
pendent of the origin is obtained by amending the rotatory
tensor (34) with additional terms depending on the quadru-
pole–dipole tensor, which, however, cancel out after rota-
tional averaging [18].

From the above formulas for the matrix elements of
~m and ~d one obtains

Rn1 ¼ Z2
effL

4

p3
sin vð�1Þn

� 4

Dn;1Dn;2
þ 2ðn2 þ 2Þcn

D2
n;1Dn;2

þ 2ðn2 þ 5Þrn

nDn;1D2
n;2

" #
for n > 2;

ð37Þ

R21 ¼ Z2
effL

4

3p3
sin v

2

3
� 3p

16

	 

: ð38Þ
As one expects, the rotatory strength is antisymmetric with
respect to the twist angle, and the sum rule (36) for the
rotatory strength is fulfilled.

Reasonable parameters for a small chiral molecule such
as for H2S2 are L = 8.6 and Z2

eff ¼ 4:5 (see Section 5.2).
With these values one finds that R21 for v ¼ p

2
is

0.388 a.u., corresponding to about 180 · 10�40 esu, which
is larger by a factor of 5–10 compared with theoretical val-
ues for H2S2 [16,19]. This is mainly due to cancellation
effects generated by the two lowest lying excited states of
H2S2, which are nearly degenerated for dihedral angles
around p/2. They have rotatory strengths which are similar
in absolute values but opposite in sign [16].

Having found reasonable choices for the parameters L
and Zeff, we now proceed to evaluate the frequency depen-
dent rotatory power G 0(x), a further quantity which per-
mits a comparison with the literature values of the real
molecule H2S2. The rotatory power is expressed by the elec-
tric-dipole–magnetic-dipole polarizability [20]:

G0ijðxÞ ¼ �2x
X1
n¼2

Rn1
ij

ðEn � E1Þ2 � x2
: ð39Þ

The average over all orientations of G0ij is given by the trace

G0ðxÞ ¼
X

i¼x;y;z

G0iiðxÞ ¼ �2x
X1
n¼2

Rn1

ðEn � E1Þ2 � x2
; ð40Þ

which can be expanded for small frequencies (compared to
the excitation gap). For v = p/2 we find

G0p=2ðxÞZ�2
eff L�3 ¼�1:142� 10�4x� 1:61� 10�5x3þOðx5Þ:

ð41Þ
Here, the frequencies are in units of E1/�h. The polarizabil-
ity, given in atomic units, scales as Z2

eff L
3, where a factor

Z2
effL is contributed by the dimensions of the rotatory ten-

sor and a factor L2 by the decrease of the excitation energy
with increasing length scale.

The specific rotation angle / per dm can be calculated as
(see e.g. [10])

/ðxÞ ¼ �187:5	 dm�1 sin v
g

ðmol=dlÞ
�hx
E1

G0p=2

�hx
E1

	 

; ð42Þ

where g is the concentration of chiral molecules modeled by
twisted wires. The validity of (42) is restricted to frequen-
cies well below the first excitation energy. Inserting the fre-
quency for the sodium D-line (ENa 
 1.17E1 for L = 8.6a0),
with the above choice of L = 8.6a0 and Z2

eff ¼ 4:5, one gets

/Na–D ¼ �103	 dm�1 sin v
g

ðmol=dlÞ : ð43Þ

The specific rotation angle of H2S2 has a somewhat differ-
ent functional dependency on v due to above-mentioned
cancellation effects, but its value is about the same order
of magnitude as in CI calculations [19].

Note that the optical rotatory tensor (34) appears in the
discriminatory part of the dispersion interaction between
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two chiral molecules (here without rotational averaging)
[17]:

Ech–ch ¼
2

R6
dik � 3bRi

bRk

� �
djl � 3bRj

bRl

� �X
n;m

Rn1
ij Rm1

kl

En1 þ Em1

:

ð44Þ
We will not evaluate the expression further since we are
mainly concerned with interactions between a chiral mole-
cule and achiral atoms.

5. Electric multipole–multipole polarizabilities

We proceed to calculate the electric multipole–multipole
polarizability tensor required for evaluating the dispersion
interaction coefficients, C6 and C7. With this application in
mind, the results will not be presented in full generality, but
aðix; vÞ ¼ Z2
effL

4

aðxÞ 2
3p ð1þ cvÞaðxÞ 2

3p svaðxÞ
2

3p ð1þ cvÞaðxÞ gþðxÞð1þ c2
vÞ þ 2g�ðxÞcv ðgþðxÞ þ g�ðxÞcvÞsv

1
3p svaðxÞ ðgþðxÞ þ g�ðxÞcvÞsv gþðxÞs2

v

0B@
1CA ð49Þ
will be confined to the ground state polarizability at imag-
inary frequencies.

5.1. General form of the electric-dipole–electric-dipole

polarizability tensor

Apart from axx, all elements of the polarizability tensor
a depend on the twist angle v. We start by discussing this
dependence in more detail, noting that the elements of
the polarization tensor of the state m are given as [20]

aðmÞij ðx; vÞ ¼
X1
n 6¼m

hmjdiðvÞjnihnjdjðvÞjmi
En � Em � x


þhmjdjðvÞjnihnjdiðvÞjmi

En � Em þ x

�
; ð45Þ

where i, j 2 {x,y,z}.
Due to the time-reversal invariance the tensor elements

are real at imaginary frequencies, see e.g. [21], implying
that the tensor is a symmetric matrix and can hence be
written as

aðmÞij ðix; vÞ ¼ 2
X1
n 6¼m

ðEn � EmÞ
ðEn � EmÞ2 þ x2

hmjdiðvÞjnihnjdjðvÞjmi:

ð46Þ
For the special case m = 1 and inserting ~d ¼ Zeff~r we get
finally

að1Þij ðix; vÞ ¼
4L2Z2

eff

p2

X1
n¼2

ðn2 � 1Þh1jriðvÞjnihnjrjðvÞj1i
ðn2 � 1Þ2 þ x2

;

ð47Þ
where we absorbed a factor p2/2L2 into the frequency, thus
measuring the frequency x again in units of E1/�h, see (8).
The index indicating the reference state m = 1 will be sup-
pressed from now on.

We find that, due to the interrelations of the position
matrix elements noted above, the frequency dependence
of the spherical tensor is determined by only three
functions:

geðxÞ ¼
4

p2L2

X
n¼2;4;...

n2 � 1

ðn2 � 1Þ2 þ x2
njyðIÞj1
� �2

;

goðxÞ ¼
4

p2L2

X
n¼3;5;...

n2 � 1

ðn2 � 1Þ2 þ x2
njyðIÞj1
� �2

;

aðxÞ ¼ 1

p4

3

9þ x2
:

ð48Þ

With their help the structure of a at imaginary frequencies
is readily specified
Here we used the abbreviations sv :¼ sinv and cv :¼ cosv
and g±(x) :¼ ge (x) ± go(x). The sums in (48) converge
rapidly as the terms are of order O(n�6) for large n.

The dependence on the twist angle is particularly simple
in (49) due to the proportionality relations (12). One
observes that only the off-diagonal elements in the third
row and the third column change their sign when switching
to opposite handedness, v!�v. Such a change of sign in v
is equivalent to a reflection at the xy-plane, z!�z. After
an additional rotation by p around the z-axis a full parity
operation,~r ! �~r, is obtained. Hence, one gets the tensor
of the �v configuration after rotating the polarizability
tensor of the +v configuration, which illustrates the well
known fact that all dispersive interactions solely derived
from the electric-dipole–electric-dipole polarizability tensor
do not discriminate left- and right-handed enantiomers.
5.2. Choice of parameters

In the following we present numerical results for a spe-
cific choice of parameters, which are adapted to mimic the
literature values for H2S2, e.g. [16,19]. First we fix the
length parameter L by the sum of the binding lengths of
the molecule which is found to be 8.6a0. The twist angle
in the wire model is chosen to be v ¼ � p

2
which is a good

approximation of the dihedral angle in the molecule.
To fix the effective charge Zeff we consider the static (i.e.,

x = 0) values for the electric-dipole–electric-dipole polariz-
ability g+(0) = 1.963 · 10�4 a.u., g�(0) = 1.218 · 10�4 a.u.,
and a(0) = 3.42 · 10�3 a.u. The values of g+ and g� as
function of x are depicted in Fig. 3. A comparison with
the Lorentzian Z2

eff L
4aðxÞ from (48), which has a width



Fig. 3. Frequency dependence of the functions Z2
eff L

4gþðxÞ (solid line) and
Z2

eff L
4g�ðxÞ (dashed line) [atomic units; L = 8.6; Z2

eff ¼ 4:5]. The frequency
is given in terms of the ground state energy E1/�h, see (8).
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of 3 and a strength of 84.2, shows that the latter dominates
the polarizability tensor.

The rotational average of the static polarizability for
v = ± p/2 is then given by

L4Z2
eff �að0Þ ¼

L4Z2
eff

3
ðaxxð0Þ þ ayyð0Þ þ azzð0ÞÞ


 L4Z2
eff 1:271� 10�3 a:u: ð50Þ

Here the contribution of axx(0) dominates the average sta-
tic polarizability. A comparison with the literature value
[16] for H2S2 of about 31 a.u. results in Z2

eff ¼ 4:5
(Zeff 
 2.12).

5.3. Electric-dipole–electric-quadrupole polarizability

The dominant discriminative dispersion interaction
between an oriented chiral and an achiral atom or molecule
depends on the electric-dipole–electric-quadrupole polariz-
ability tensor [9]. In addition to the dipole matrix elements,
it is determined by the matrix elements quadratic in the
coordinate operators, hnjrirjjmi, discussed in Section 3.4.

For the calculation of dispersion constants it is prefera-
ble to consider polarizability tensors for imaginary fre-
quencies in spherical representation

a‘;‘
0

k;k0 ðixÞ ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2‘0 þ 1Þ

q
�
X1
n¼2

En � E1

ðEn � E1Þ2 � ðixÞ2
h1jQ‘;kjnihnjQ‘0 ;k0 j1i;

ð51Þ

with the spherical multipole functions

Q‘;kð~rÞ ¼ Zeff r‘
ffiffiffiffiffiffiffiffiffiffiffiffiffi

4p
2‘þ 1

r
Y ‘;kðh;uÞ: ð52Þ

For the electric-dipole–electric-quadrupole polarizability
the multipole operators have ranks ‘ = 1 and ‘ 0 = 2,

a1;2
k;k0 ðixÞ ¼

ffiffiffiffiffi
15
p

2p

X1
n¼2

En � E1

ðEn � E1Þ2 þ x2
h1jdkjnihnjQ2;k0 j1i:

ð53Þ
The required matrix elements can be found in (17) and (33).
Obviously, the polarizability a1;2

k;k0 transforms under parity
operation like a product of three coordinates, rirjrl, which
results in an overall negative sign. Thus, the dispersive
interaction derived from it discriminates left-handed and
right-handed molecules. Finally, it should be noted that
the electric-dipole–electric-dipole polarizability a1,1 does
not depend on the choice of the origin, while the electric-
quadrupole–electric-dipole polarizability a2,1 does [10].

6. Potential strengths

As an illustration for the use of the polarizability ten-
sors, let us evaluate the interaction potential between a
helium atom in ground state and the twisted arc. Its calcu-
lation requires the electric-dipole–electric-dipole polariz-
ability of helium. Since helium is spherically symmetric
only a single element of the spherical polarizability tensor
does not vanish, namely a1;1

0;0. For our purposes it suffices
to approximate the helium polarizability by

a1;1
0;0ðixÞ ¼

g
x2

He þ x2
ð54Þ

with g = 2 and xHe 
 1.33 (atomic units), which is a good
approximation for frequencies well below the excitation en-
ergy [22].

After evaluating the integrals (1) the dispersion poten-
tials can be calculated following the theory in [23] by disre-
garding retardation effects. They assume the form

U 6ð~rÞ ¼ �
C6ðr̂Þ

r6
and U 7ð~rÞ ¼ �

C7ðr̂Þ
r7

ð55Þ

with ~r the distance vector between helium atom and the
center of mass, and r̂ ¼~r=r. For simplicity, we take the cen-
ter of mass to lie in the origin. The potential strength C6ðr̂Þ
is calculated using the spherical dipole–dipole polarizabil-
ity tensor, a1;1

kk0 , of the twisted wire model which is readily
obtained from the Cartesian polarizability (49). The calcu-
lation of C7ðr̂Þ uses the dipole–quadrupole tensor (53).

To compare the interaction potentials we consider the
surface of equality:

reqðr̂Þ ¼
jC7ðr̂Þj
jC6ðr̂Þj

: ð56Þ

Thus, at distances r = nreq the strengths of the potentials
are related by jU6j = njU7j. Since the potential strengths
are linear combinations of the polarizabilities reqðr̂Þ is pro-
portional to L. At the same time, the dependence on Zeff

cancels out.
Fig. 4 shows C7/C6 for twist angles v = p and v = ±p/2

at L = 8.6a0. Here, the direction of the helium atom,
r̂ ¼ ðh;uÞ, is specified with respect to the symmetry axis
of the twisted wire (the dashed line in Fig. 2). The azi-
muthal angle (with respect to the x-axis) is chosen to be
u = p/2. Negative values of C7/C6 indicate that U 7ð~rÞ is
repulsive. As can be seen, the achiral cis-configuration
v = p is anti-symmetric with respect to h = p/2 (dash-



Fig. 4. The relative strength of the discriminative potential C7ðr̂Þ
compared to the dipole–dipole potential C6ðr̂Þ in Bohr radii as a function
of the polar angle h (see text). The azimuthal angle is chosen to be u ¼ p

2

and the values of the three different twist angles v are indicated in the
figure.
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dotted line). This is the case for all u, and it is a conse-
quence of the additional reflection symmetry for a planar
configuration. For the other achiral situation, v = 0 (the
trans-configuration), the potential strength C7 vanishes
identically, C7 = 0. For all pairs of left- and right-handed
configurations, v 5 0, p, the surfaces of equality cannot
be transformed into each other by a proper rotation. Thus,
unlike U6, the U7 interaction does distinguish between
right- and left-handed form, the difference depending on
both the distance r = nreq, and the orientation r̂.

7. Conclusions

We described a minimalist model for chiral molecules,
which, in spite of its simplicity, admits a physically plausi-
ble and consistent description of their chiral properties. As
a big advantage of this twisted arc model, the evaluation of
higher order electric moments can be reduced to a small
number of simple functions given in closed form. This
way the functional dependence of the multipole polarizabil-
ities on the frequency and on the model parameters shows
up transparently. The derived chiral properties, such as the
rotatory strength and the dispersive interaction potentials,
thus display a simple, while physically consistent depen-
dence on the model parameters. This was demonstrated,
specifically for the dihedral angle, by evaluating the chiral-
ity-distinguishing part of the dispersive interaction with a
polarizable atom for molecular parameters adopted to
the dihydrogen disulfide molecule. The comparison with
the dominant bulk interaction thus permits to assess to
what degree right- and left-handed, oriented molecules
can be distinguished by the dispersion interaction.
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