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Abstract – It is shown how S -matrix theory and the concept of continuous quantum measure-
ments can be combined to yield Markovian master equations which describe the environmental
interaction non-perturbatively. The method is then applied to obtain the master equation for the
effects of a gas on the internal dynamics of an immobile complex quantum system, such as a
trapped molecule, in terms of the exact multi-channel scattering amplitudes.
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Introduction. – A truism of quantum physics tells
that no system is perfectly isolated and it is therefore
not surprising that the study of open quantum systems
is an ubiquitous theme of present-day quantum mechan-
ics, see [1–4] and references therein. An important class
of evolution equations for open systems are Markovian
master equations. They imply that environmental correla-
tions disperse fast, so that on a coarse-grained timescale
the temporal change of the system state ρ depends on the
present state of the system, but not on its history. From
the strict point of view of an operationalist (who dismisses
the notion of a “system” altogether and takes ρ as describ-
ing an equivalence class of preparations in the lab [5])
one may even argue that any valid differential equation
for the time evolution of ρ must generate a completely
positive dynamical semigroup [6] and must hence be
Markovian.
Putting the pros and cons of Markovian vs. non-

Markovian formulations aside, it is fair to say that a large
class of open quantum systems is described appropriately
by time-local master equations. At the same time, it
is curious that the Markov property does not emerge
naturally in standard microscopic derivations. Rather,
one has to impose it “by hand”, usually by interpreting
some quantities as correlation functions, which must
then be assumed to be δ-correlated. This may be still
transparent in weak-coupling calculations such as the
Bloch-Redfield approach [1], but tends to be awkward if

a non-perturbative treatment of the interaction with the
environment is needed.
In the present letter I would like to motivate and

exemplify a general method of obtaining master equations
which do incorporate the microscopic interactions in a
non-perturbative fashion. It differs from the standard
approaches in that it takes the Markov assumption not as
an approximation in the course of the calculation, but as a
premise, implemented before tracing out the environment.
It will be applicable whenever the interaction with the
environment can reasonably be described in terms of
individual interaction events or “collisions”, that is, if one
can take the environment as consisting of independent
(quasi)-particles which probe the system each at a time, in
the sense that both the rate and the effect of an individual
collision are separately physically meaningful and can be
formulated microscopically. One may then implement the
Markov requirement right from the outset by disregarding
the change of the environmental state after each collision.
This will be justified if the environment is sufficiently
large and stationary, and in particular if many different
environmental (quasi)-particles are involved so that each
has much time to carry away and disperse its correlation
with the system.
It is clear that the apparatus of time-dependent

scattering theory [7] is predestined for this type of
description. Its microscopically defined S -matrix maps
from the incoming to the exact outgoing asymptotes of the
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system-environment state without a temporal evolution,
and a partial trace over the scattered environment yields
the system state after a single collision. One would like
to write the temporal change of the system as the rate of
collisions multiplied by this change due to an individual
scattering. The great difficulty with this is that in general
also the rate depends on the system state so that a
naive implementation would yield a nonlinear equation.
Below, I describe how this is circumvented by applying
the concept of generalized and continuous measurements.
The use and strength of the method is then demonstrated
by deriving the master equation for the internal quantum
dynamics of an immobile system affected by a gaseous
environment in terms of the multichannel scattering
amplitudes.

Monitoring approach. – My first aim is to argue that
the system ρ evolves as ∂tρ= (i�)

−1
[H, ρ] +Lρ with

Lρ = i

2
Trenv

([
T+T†,Γ1/2 [ρ⊗ ρenv] Γ1/2

])
+Trenv

(
TΓ1/2 [ρ⊗ ρenv] Γ1/2T†

)
−1
2
Trenv

(
Γ1/2T†TΓ1/2 [ρ⊗ ρenv]

)
−1
2
Trenv

(
[ρ⊗ ρenv] Γ1/2T†TΓ1/2

)
. (1)

Here H is the Hamiltonian of the isolated system and
ρenv the reduced single-particle state of the environment.
The operator T is the nontrivial part of the two-particle
S -matrix S= I+ iT describing the effect of a single colli-
sion between environmental particle and system. The rate
of collisions is described by Γ, a positive operator in the
total Hilbert space, which determines the probability of a
collision to occur in a small time interval ∆t,

Prob (C∆t|ρ) =∆t tr (Γ [ρ⊗ ρenv]) . (2)

Like the S -matrix, the operator Γ can in principle be
characterized operationally in independent experiments.
Its microscopic formulation will in general involve a total
scattering cross-section and the current density operator
of the relative motion (see below).
To motivate the time evolution (1) we picture the

environment as monitoring the system continuously by
sending probe particles which scatter off the system at
random times. The state-dependent collision rate can
now be incorporated into the dynamical description by
assuming that the system is encased by a hypothetical,
minimally invasive detector with time resolution ∆t. It
tells at any instant whether a probe particle has passed
by and is going to scatter off the system.
The important point to note is that the information

that a collision will take place changes our description of
the impinging two-particle state. According to the theory
of generalized measurements [5,8,9] the new state is the
normalized image of a norm-decreasing completely posi-
tive map M(·|C∆t) in the total Hilbert space satisfying

tr (M(�|C∆t)) =∆t tr (Γ�). For an efficient [10] and mini-
mally invasive detector it has the form

M(�|C∆t) =∆tΓ1/2�Γ1/2. (3)

The significance of this measurement transformation is to
imprint our improved knowledge about the incoming two-
particle wave packet, and it may be viewed as enhancing
those parts which head towards a collision. In principle,
an efficient measurement (which introduces no classical
noise by mapping pure states to pure states) may be given

by a more general operator, M(�|C∆t) =M∆t�M†∆t as
long as it satisfies M†∆tM∆t =∆tΓ. The above “minimally
invasive” choice of M∆t is reasonable because a possible
unitary part U∆t in its general polar decompositionM∆t =
U∆tΓ

1/2
√
∆t would describe a reversible “back action”

which has no physical justification in our case of a
thought measurement invoked only to account for the state
dependence of collision probabilities.
Also the absence of a detection event during ∆t

changes the state. The corresponding complementary
map M(·|C∆t) satisfies tr

(M(�|C∆t))= 1−∆t tr (Γ�)
and the Kraus representation with time-invariant
operators readsM(�|C∆t) = �−Γ1/2�Γ1/2∆t.
We can now form the unconditioned system-probe state

after time ∆t by allowing for the fact that the detection
outcomes are not really available. Thus, the infinitesimally
evolved state is given by the mixture of the colliding state
transformed by the S -matrix and the untransformed non-
colliding one, weighted with the respective probabilities,

�′ (∆t) = Prob (C∆t|ρ) S M(�|C∆t)
tr (M(�|C∆t))S

†

+Prob
(
C∆t|ρ

) M(�|C∆t)
tr
(M(�|C∆t))

= SΓ1/2�Γ1/2S†∆t+ �−Γ1/2�Γ1/2∆t.

Using the unitarity of S, which implies i(T−T†) =−T†T,
the differential quotient can be written as

�′ (∆t)− �
∆t

= TΓ1/2�Γ1/2T†− 1
2
T†TΓ1/2�Γ1/2

−1
2
Γ1/2�Γ1/2T†T+ i

[
Re (T) , Γ1/2�Γ1/2

]
.

One arrives at (1) by tracing out the environment with
�= ρ⊗ ρenv, taking the limit of continuous monitoring
∆t→ 0, and adding the generator of the free system
evolution. Thus, the collision rate with its state depen-
dence is incorporated by the operators Γ1/2 and they may
be thought of, in a stochastic unravelling of the master
equation [2,11–15], as serving to weight each trajectory
with the rate before it scatters. The operators T describe
the individual microscopic interaction process without
approximation. Note also that (1) generates a dynamical
semigroup by construction sinceM(·|C∆t) andM(·|C∆t)
are completely positive.
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To judge whether the trace in (1) yields a useful master
equation one has to specify system and environment. A
first application of this general equation can already be
found in the recent ref. [16], where it is used to describe the
motion of a distinguished, freely moving point-particle in
the presence of a gas. The above discussion thus serves to
complete the derivation in [16], where a quantum version
of the linear Boltzmann equation was obtained which
displays all expected limiting properties. In the following,
I will demonstrate the use and generality of eq. (1) by
posing a complementary question, namely, how the the
internal dynamics of an immobile system gets affected by
an environment of structureless gas particles.

Application to an immobile system. – If the
motional system degrees of freedom are disregarded, a
single-particle S -matrix can be used to describe the (in
general inelastic) interaction with the environmental
particles. The resulting master equation should describe
non-perturbatively both the coherent and the incohe-
rent processes induced by this coupling. An example
would be the collisional decay of molecular eigen-
states into chiral configurations, or the phonon-induced
decoherence of a quantum dot. For concreteness, the
environment is assumed to be an ideal Maxwell gas of
density ngas, atomic mass m, and single-particle state
ρenv =

(
λ3th/Ω

)
exp
(−βp2/2m) with p the momentum

operator, λth = �
√
2πβ/m the thermal wavelength, and

Ω the normalization volume.
In the language of scattering theory the free energy

eigenstates of the non-motional degrees of freedom are
called channels. In our case, they form a discrete basis
of the system Hilbert space, and |α〉 will be used to
indicate internal (and possibly rotational), non-degenerate
system eigenstates of energy Eα. In this channel basis,
ραβ = 〈α|ρ|β〉, the equation of motion (1) takes on the
form of a general master equation of Lindblad type,

∂tραβ =
Eα+ εα−Eβ − εβ

i�
ραβ +

∑
α0β0

ρα0β0M
α0β0
αβ

−1
2

∑
α0

ρα0β
∑
γ

Mα0α
γγ −

1

2

∑
β0

ραβ0
∑
γ

Mββ0
γγ

(4)

with energy shifts εα discussed below and rate coefficients

Mα0β0
αβ = 〈α|Trenv

(
TΓ1/2 [|α0〉〈β0| ⊗ ρenv] Γ1/2T†

)
|β〉.
(5)

To calculate these complex quantities we need to specify
the rate operator Γ. In the present case it is naturally given
in terms of the current density operator j= ngasp/m of
the impinging gas particles and the channel-specific total
scattering cross-sections σ(p, α),

Γ =
∑
α

|α〉〈α| ⊗ngas |p|
m
σ (p, α) . (6)

Defining the channel operator c=
∑
α α|α〉〈α|, one can

thus write Γ= |j|σ (p, c).
In principle, Γ must also involve a projection to the

subspace of incoming wave packets, attributing zero
collision probability to any wave packet located far off
the scattering center and travelling away from it. This is
important because such an outgoing state will not remain
invariant under S. (It may be strongly transformed since
the definition of S involves a backward evolution.) In
practice, the microscopic definition of Γ is easier if one
takes care of the projection separately. This is easily done
if ρenv admits a convex decomposition into incoming and
outgoing states. Alternatively, one may dispense with
the projection by modifying the definition of S so that
outgoing wave packets are kept invariant (see below).

Let us now evaluate the rate coefficients Mα0β0
αβ by

using a decomposition of ρenv that permits to separate
in- and out-wave packets. As shown in [17] the thermal
gas state can be written as a phase space integration over
projectors onto minimum uncertainty Gaussian states

|ψr0p0〉= λ̄3/2th exp
(
−β̄ (p−p0)2/4m

)
|r0〉 whose spatial

extension λ̄th = �
√
2πβ̄/m is determined by an inverse

temperature β̄ > β,

ρenv =

∫
dp0µ̂ (p0)

∫
Ω

dr0
Ω
|ψr0p0〉〈ψr0p0 |. (7)

Here µ̂(p0) = (2πm/β̂)
−3/2 exp(−β̂p20/2m) is the Maxwell-

Boltzmann distribution corresponding to the temperature
β̂−1 = β−1− β̄−1, so that by setting a β̄ one splits up
the gas temperature β−1 into a part determining the
localization of the |ψr0p0〉 and a part characterizing their
motion. We choose β̄ large and take eventually the limit
β̄→∞, β̂→ β of very extended wave packets so that µ̂
approaches the original Maxwell-Boltzmann distribution
µ. Inserting (7) into (5) yields

Mα0β0
αβ =

∫
dp0µ̂ (p0)

∫
Ω

dr0
Ω

mα0β0αβ (r0,p0) . (8)

Here the phase space function

mα0β0αβ (r0,p0) :=

∫
dp 〈α|〈p|TΓ1/2|α0〉|ψr0p0〉

×〈β0|〈ψr0p0 |Γ1/2T†|β〉|p〉 (9)

gives the contribution of different phase space regions to
the rate coefficientMα0β0

αβ . This permits now to restrict the

calculation to incoming wave packets. Since the mα0β0αβ are
averaged over all available positions in (8) it is natural
to confine this spatial average at fixed p0 to a cylinder
pointing in the direction of p0, whose longitudinal support
Λp0 vanishes at outgoing positions and whose transverse
base area is given by an average cross-section Σp0 . In
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terms of the longitudinal and transverse positions r‖p0 :=
(r ·p0)p0/p20 and r⊥p0 = r− r‖p0 we have

Mα0β0
αβ =

∫
dp0 µ̂ (p0)

∫
Λp0

dr‖p0
Λp0

∫
Σp0

dr⊥p0
Σp0

×mα0β0αβ

(
r‖p0 + r⊥p0 ,p0

)
. (10)

In order to evaluate mα0β0αβ , insert momentum resolutions
of unity between the T and Γ operators in (9) and use the
representation [7]

〈αf |〈pf |T|αi〉|pi〉=
fαfαi

(
pf ,pi

)
2π�m

δ
(
Epfαf −Epiαi

)
(11)

in terms of the multi-channel scattering amplitude and
total energies Epα = p

2/2m+Eα. By transforming the
new integration variables to mid-points and chords, one
obtains a Gaussian function which approaches, for large
β̄, a δ-function in the midpoints. Integrating out the latter
one finds that the combination of the δ-functions from (11)
confine the chord integration to a plane perpendicular
to p0. Integrating out the parallel component leads to

the factor exp
(
−β̄m (Eα−Eα0 −Eβ +Eβ0)2/8p20

)
which,

again for large β̄, can be replaced by

χα0β0αβ :=

{
1, if Eα−Eα0 =Eβ −Eβ0 ,
0, otherwise.

The resulting expression is independent of r‖p0 ,

mα0β0αβ (r0,p0) = χα0β0αβ

ngas

m2

∫
dp

∫
dp̃⊥p0
(2π�)

2

× exp
(
−β̄ p̃

2
⊥p0
8m

− ir0,⊥p0 · p̃⊥p0
�

)

× fαα0
(
p,p+0

)
f∗ββ0

(
p,p−0

)
× δ
(
p2− (p+0 )2
2m

+Eα−Eα0
)

×
√√√√(1+ p̃2⊥p0

4p20

)
σ
(
p+0 , α0

)
σ
(
p−0 , β0

)

with p±0 := p0± p̃⊥p0/2. The r‖p0-integration in (10)
yields an approximate two-dimensional δ-function in p̃⊥p0
so that we obtain

Mα0β0
αβ = χα0β0αβ

ngas

m2

∫
dp dp0µ (p0) fαα0 (p,p0)

×f∗ββ0 (p,p0) δ
(
p2−p20
2m

+Eα−Eα0
)
,

(12)

provided we identify the average cross-section of (10)
with the geometric mean of the total cross-sections of
the involved channels, i.e., Σp0 =

√
σ (p0;α0)σ (p0;β0).

Moreover, the final limit β̄→∞ replaced µ̂ by µ in (12).

With the same method one shows that the first term
in (1) merely modifies the unitary evolution. Its effect is to
shift the system energies from Eα to Eα+ εα by a thermal
average of the “forward scattering amplitudes”,

εα =−2π�2ngas
m

∫
dp0µ (p0)Re [fαα (p0,p0)] . (13)

It is reassuring that the explicit expressions (12) and (13)
can be shown to be equivalent to the more abstract
master equation by Dümcke [18], obtained in a “low-
density limit” scaling approach [1,6,19] for the special case
of a factorizing interaction potential, Vtot =A⊗Benv,
and for times large compared to all system time scales. The
present approach thus generalizes this result to arbitrary
interaction potentials (satisfying asymptotic complete-
ness) and to arbitrary times as long as they are greater
than the duration of a single collision.
It is worth noting that the Mα0β0

αβ can as well be
obtained in a more direct, while less solid way if the
diagonal momentum representation of ρenv is used instead
of (7). A projection to the incoming wave packets is then
hard to implement and, as discussed above, the application
of S to improper momentum states leads to the unwanted
transformation also of its “outgoing components”. As a
consequence, the resulting expression for Mα0β0

αβ is ill-
defined, involving the square of the δ-functions in (11)
and the normalization volume Ω. This can be healed
by noting that any consistent modification of S which
keeps outgoing wave packets invariant must conserve the
probability current. This condition provides a simple rule
how to form a well-defined expression [17,20], whose
multichannel version yields the result (12) immediately
for any momentum diagonal ρenv.
The expression for the rate coefficients can be

rewritten, for isotropic µ, in terms of an average over
the velocity distribution ν (v) = 4πm3v2µ (mv) and
angular integrations, which bring about the velocity
vout =

√
v2− 2 (Eα−Eα0) /m of the gas particle after

a possibly inelastic collision. For rotationally invariant
scattering amplitudes, fαα0

(
cos (p,p0) ;E = p

2
0/2m

)
, we

have

Mα0β0
αβ = χα0β0αβ

∫ ∞
0

dv ν (v)ngasvout2π

∫ 1
−1
d (cos θ)

×fαα0
(
cos θ;

m

2
v2
)
f∗ββ0

(
cos θ;

m

2
v2
)
. (14)

This shows that limiting cases of (4) display the expected
dynamics. For the populations ραα it reduces to a rate
equation where the total cross sections σαα0

(
m
2 v
2
)
for

scattering from channel α0 to α determine the transi-
tion rates, Mα0α0

αα =
∫
dv ν (v)ngasvoutσαα0 . In the case

of purely elastic scattering, on the other hand, i.e.,
Mα0β0
αβ =Mαβ

αβ δαα0δββ0 , the coherences decay exponen-

tially, ∂t |ραβ |=−γelasticαβ |ραβ |, with a rate determined by
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a difference of scattering amplitudes,

γelasticαβ = π

∫
dv ν (v)ngasvout

∫ 1
−1
d (cos θ)

×
∣∣∣fαα(cos θ; m

2
v2
)
−fββ

(
cos θ;

m

2
v2
)∣∣∣2 . (15)

It shows clearly that the more coherence is lost, in this
case, the better the scattering environment can distinguish
between system states |α〉 and |β〉.
Conclusions. – In conclusion, a general method of

incorporating formal scattering theory into the dynamic
description of open quantum systems was presented.
Based on the theory of generalized measurements, it
yields completely positive master equations which account
for the environmental interaction in a non-perturbative
fashion. When applied to an immobile system in the
presence of a gas, it provides a detailed and realistic
account of the interplay between coherent system dynam-
ics and the (possibly much faster) incoherent effects of the
environment.
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