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Abstract We consider various effects that are encountered in matter wave interfer-
ence experiments with massive nanoparticles. The text-book example of far-field in-
terference at a grating is compared with diffraction into the dark field behind an
opaque aperture, commonly designated as Poisson’s spot or the spot of Arago. Our
estimates indicate that both phenomena may still be observed in a mass range exceed-
ing present-day experiments by at least two orders of magnitude. They both require,
however, the development of sufficiently cold, intense and coherent cluster beams.
While the observation of Poisson’s spot offers the advantage of non-dispersiveness
and a simple distinction between classical and quantum fringes in the absence of par-
ticle wall interactions, van der Waals forces may severely limit the distinguishability
between genuine quantum wave diffraction and classically explicable spots already
for moderately polarizable objects and diffraction elements as thin as 100 nm.
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1 Introduction

Quantum physics ranks among our best-confirmed concepts of nature. And yet, a
conceptual gap in the transition between quantum physics and classical observations
has not yet been overcome. Matter wave interferometry with massive particles [1]
has always been paradigmatic for the peculiar predictions of quantum physics as
it demonstrates quantum delocalization and the superposition principle for material
particles such as free electrons [2], neutrons [3], atoms [4], dimers [5] and complex
molecules [6] during their unperturbed propagation.

Much of the pioneering work on matter wave interferometry is in particular asso-
ciated with developments in neutron quantum optics. And in this issue we celebrate
the birthdays and work of two central figures in research on the foundations of quan-
tum physics, Helmut Rauch [7] and Daniel Greenberger [8]. A number of recent ad-
vances both in the cooling of micromechanical oscillators (see collection in [9]) and
in matter wave manipulation methods [6, 10–13] now promise future extensions of
experiments testing the superposition principle to much higher mass and complexity.
In this paper we focus on two particularly simple concepts of particle interferome-
try, namely far-field diffraction behind a grating and near-field interference behind an
opaque sphere or disk, i.e. the observation of Poisson’s spot. Recent developments of
new nanoparticle sources [14–16] and novel detection methods [17] may soon allow
one to experimentally access them in a mass regime between 104 and 106 atomic
mass units (amu).

Grating diffraction has already been thoroughly studied with electrons [18–20],
neutrons [21], atoms [22–24] and molecules [25–28]. The Poisson spot was observed
with matter waves for the first time with electrons [29, 30] and later extended to 1D
diffraction behind a wire and 2D interference behind either a free disk or a zone plate
using neutrons [21, 31], atoms [32, 33] and most recently also the diatomic molecule
D2 [34].

In the following we assume quantum physics to be the correct theory for arbi-
trary particle size and mass, putting aside recently suggested modifications of stan-
dard quantum theory [35–41]. Instead, we ask which experimental constraints will
in practice be limiting matter wave observations when the particle complexity grows
such as its mass, size or number of internal degrees of freedom.

The de Broglie wavelength λdB = h/mv of a particle at speed v determines the
size of the diffraction pattern. If the particle source is in contact with a thermal bath
the thermal de Broglie wavelength λth = h/(2kBT m)1/2 corresponds to the most
probable particle velocity vmp = (2kBT /m)1/2 where the temperature T is measured
in Kelvin and kB is Boltzmann’s constant. Present-day interferometers [12, 17] are
designed to deal with matter waves with wave lengths of about λdB � 1 pm. This
corresponds to a C60 fullerene with a mass of 720 amu at v = 550 m/s or equiva-
lently to the gold cluster Au5000 with a mass of about 106 amu and v = 0.4 m/s. The
latter is close to the thermal velocity at about 10 K and in reach of cryogenic buffer
gas technologies inside a cold ion trap. In the following we compare the diffraction
of C60 at a most probable velocity of 150 m/s, corresponding to a thermal beam at
900 K (case 1), to the case of Au5000 at v = 1 m/s (case 2). The polarizabilities are
taken to be 89 Å3 for C60 [42] and 2.5 × 104 Å3 for the gold cluster [43].
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2 Far-Field Matter Wave Diffraction

Far-field diffraction as depicted in Fig. 1(a) faces several requirements. First, the par-
ticles must be smaller than the grating period in order to neither get stuck in a material
mask nor to average over neighboring potential wells in case of an optical diffraction
grating. Second, both the beam diameter and its transverse coherence have to cover
at least two slits, separated by the distance d . This condition is met if the collima-
tion angle � of the molecular beam (half width at half maximum, HWHM) satisfies
� = D/2L1 < λdB/d . We assume a symmetric setup, where the source of width D

acts as the first collimator, equal in width to a second collimation slit, immediately in
front of the diffraction grating, at a distance L1 further downstream.

Mechanical nanogratings with slit openings as tiny as 50 nm and periods of
100 nm are close to the smallest structures that can currently be made. Assuming
a typical grating membrane thickness b � 100 nm, the van der Waals interaction be-
tween the traversing molecules and the slit wall leads to a significant attractive force
which results in the narrowing of the effective slit width [28, 44]. Since the effect
of this dispersion force grows with increasing polarizability and decreasing velocity
v, a particle may even be adsorbed by the surface if it approaches it within a cutoff
distance [45]

xc = (18C4b
2/mv2)1/6. (1)

This estimate is based on the asymptotic form of the Casimir-Polder potential, with
the constant C4 = 3�cα/8π . In case 1, all fullerenes that approach the wall within
17 nm will be removed from the beam. For the Au5000 cluster (case 2) the cutoff
distance amounts to already 46 nm. This reduction of the useful slit width indicates
that there is a technical limit for grating diffraction. Ultra-thin membranes—made for

Fig. 1 (a) In a far-field diffraction experiment the collimation slits S1 and S2 prepare the transverse co-
herence and the collimation required in order to resolve an interference pattern on the screen Sc behind the
grating G. The interference pattern in the figure represents experimental data for C60 molecules from [28].
(b) The Poisson spot experiment is based on a radially symmetric setup consisting of a small pinhole P and
an opaque aperture B. Wave diffraction at the edge of the circular aperture leads to a bright interference
spot located at the center axis in the geometric shadow. The depicted interference pattern is an illustration
with laser light that was observed behind a 1 mm sphere illuminated with at a wave length of 532 nm
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instance from atomically thin graphene [46] or nanometer-sized graphenoids [47]—
appear therefore very promising for future diffraction experiments if they are to be
performed with material gratings. It is yet still necessary to show that such nanosheets
can be prepared with the required accuracy and mechanical stability.

Optical absorption [11] or phase gratings [27] do not suffer from this limitation,
but they are also intrinsically limited in their minimal period. Fluorine excimer lasers
currently offer the shortest commercially available laser wavelength of λL = 157 nm.
Even though shorter wavelengths will become available one day, a natural limit is set
by the size of the interfering particle. For instance, a rhinovirus of 106 amu has a di-
ameter of 30 nm, which would be comparable to 40% of the grating period d = λL/2
already at λL = 157 nm. And even for the densest metal clusters the density never
exceeds 2 × 104 kg/m3. A gold cluster with 106 amu thus measures already 5.4 nm
in diameter, i.e. about 7% of the 78 nm grating period produced by the mentioned ex-
cimer laser. Even though an optical grating would neither be clogged nor destroyed
by an incident particle, the experienced effective potential will be smeared out if the
particle size becomes comparable with or even larger than the grating period.

A further practical mass limit is given by the above mentioned collimation condi-
tion which can be expressed as a momentum condition. The transverse momentum
must be smaller than the momentum kick imparted by the diffraction process:

m <
h

dvT

= h

dvL�
= 2h

d

t1

D
= h2

2d2kBT �2
. (2)

Here vT and vL are the transverse (HWHM) and the longitudinal velocity, respec-
tively, and t1 is the transit time in the collimation stage between S1 and both S2 and
the grating. This emphasizes the need for small transverse velocities vT , i.e. trans-
verse cooling. While the cooling of atoms is an established laboratory technology,
the cooling of clusters and molecules to below 1 K is still a challenge. A collima-
tion to better than 10−5 rad corresponds already to a ratio between the transverse and
the longitudinal temperature of (vT /vL)2 = 10−10. In many current experiments, one
therefore relies on selection rather than cooling. According to (2) a reduction in D

will increase the mass limit, but at the expense of a reduction of the transmitted flux
in proportion to D2. Also, increasing the flight time t1 requires either a longer dis-
tance L1 or a lower longitudinal velocity vL. But since the particle flux scales with
L2

1 and v2
L the diffraction of massive objects is bound to low signals. At the right-

hand side of (2) we replaced the longitudinal velocity by the most probable thermal
speed. This equation leads to a mass limit of 106 amu for a source temperature of
10 K and a collimation to � � 10−5 rad, i.e. a transverse temperature of 1 nK. This
corresponds to the parameters of the gold cluster. A source of appropriate intensity at
this temperature still has to be demonstrated.

So far, our discussion included geometrical and kinematic arguments as well as
the filtering of molecules in the presence of van der Waals forces. But also external
or inertial forces can induce a fringe shift when they are oriented parallel to the grat-
ing vector. Their influence can be estimated using semiclassical arguments since, in
the presence of conservative force fields, the shift of the beam envelope equals the
displacement of the quantum interference pattern.
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Gravity may cause a dispersive fringe shift: In a horizontally oriented beam ex-
periment the grating bars will ideally be oriented parallel to the line of gravity g,
however with an experimentally unavoidable misalignment angle ε1. We require the
gravitational shift of two contributing velocity classes v and v + �v to be smaller
than the separation of two interference fringes. This leads to the requirement

�v/v ≤ vL2h/mdg(L1 + L2)
2ε1. (3)

For the gold clusters this yields �v/v ≤ 5 × 10−7/ε1, implying that we require a
collimation and maximal misalignment of better than ε1 < 10−5 rad for a practical
experimental velocity bandwidth of �v/v = 5%. It should be noted, however, that
at a velocity of 1 m/s and a flight distance of L1 + L2 = 2 m the gravitational free
fall distance would already amount to 20 m! This may still be feasible but it certainly
poses a technological challenge. The falling time would be shortened by a factor of
ten if we used ten times faster gold clusters with a ten times better collimation, i.e.
� = 10−6 rad. The falling distance would thus be reduced by a factor of one hundred
to merely 20 cm. The collimation requirement of 10−6 rad appears to be a formidable
task as well, given our present-day technologies [48].

Also the rotation of the Earth shifts the interference patterns. We choose a
coordinate system such that the angular frequency vector of the Earth is � =
ω(0, cosφ, sinφ), where ω = 73 µrad/s and φ specifies our geographical latitude.
The Coriolis acceleration is given by aC = 2v × �; if we orient the experiment ver-
tically and such that vx = 0 and with grating bars aligned along x, the Coriolis ac-
celeration will point along the slits and the contrast will only be reduced by angular
misalignments.

In order to quantify this effect we set vx = vy = ε2vL and vz = vL − gt , where
ε2 represents the angle between the molecular beam and gravity. We neglect the time
dependence of v due to the Coriolis force. A double integration of aC over time yields
the fringe shift. Here, we are only interested in the displacement along the grating
vector, i.e.

yc = −2ω(vLt2ε2 sinφ/2 + (vLt2/2 − gt3/3)ε3 cosφ). (4)

While the first term describes the Coriolis shift along y, the second term accounts
for the finite alignment of the grating bars in relation to x, where ε3 measures the
angle between the grating bars and the x-direction. We require that the fringe shifts
for different velocity classes should be smaller than one interference fringe, i.e. yc �
hH/(dmvL). Assuming a flight time of t = vL/g − (v2

L/g2 − 2H/g)1/2 and taking
the derivative with respect to vL leads us to the velocity selection criterion

�v

v
≤ hH

mv2
Ld

[
vL + gt

vL − gt
ε2 sinφ + ε3 cosφ

]−1

. (5)

With H = 1 m, d = 100 nm, φ = 48◦, vL = 4.5 m/s and M � 106 amu, we find
that �vL/vL ≤ 1/(4.1 × 102ε2 + 36ε3). This shows that the Coriolis force can be
neglected even for a thermal molecular beam when the setup is aligned to better than
10−3 rad.
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To fulfill the combination of all requirements, i.e. collimation, velocity selection,
orientation/alignment, high detection efficiency and source brilliance, for highly mas-
sive clusters is still a substantial challenge. We therefore proceed by illustrating an
intermediate experiment in the mass range of around m = 30.000 amu. Assuming the
possibility of sublimation at a temperature of 600 K the de Broglie wavelength would
still reach λdB = 0.7 pm at a most probable velocity of 18 m/s. When collimating the
beam to 2 µrad on the screen by two slits with a width of D = 4 µm separated by a
distance L1 = 1 m it should still be possible to identify two neighboring diffraction
orders, separated by the diffraction angle θ = λdB/d = 7 × 10−6 rad. The transverse
coherence width then reaches 175 nm at the location of the second collimator, where
the d = 100 nm diffraction grating is placed; this is sufficient for a genuine double
slit experiment. We choose the distances L2 = L1 = 1 m and find a total transit time
of ttot = 2t1 = 110 ms, corresponding to a falling distance in the gravitational field of
H = 6 cm.

A molecular flux of � = NL2
1v/D2Y 2ητ�v = 1.04 × 1016 cm−2 s−1 sterad−1

would be required to finally detect N = 1000 individual molecules on the screen.
Here we assume the source and collimator slits to be Y = 100 µm high, and take the
accumulation time τ and the grating transmission η to be τ = 3600 s and η = 1/3,
respectively. Starting from a thermal velocity distribution, the beam intensity will
further be reduced by the required velocity selection, i.e. by about �v/v � 5%.

3 Poisson’s Spot

The problem of small de Broglie wavelengths and low source intensities can often be
alleviated in near-field diffraction experiments, where beam coherence and geomet-
rical requirements are usually less demanding than in the far-field. Near-field effects
comprise various phenomena, from diffraction at an edge [21], a grating [32, 49] or a
circular obstacle [34] up to the Talbot-Lau interferometry in an arrangement of two or
three gratings [10, 50–52]. Here we focus on the diffraction pattern behind a radially
symmetric obstacle of radius R, such as a disc or a sphere, that is illuminated by a
point-like wave source [53, 54]. The most prominent feature here is the appearance of
a bright spot (Poisson’s spot) in the center of the shadow region behind the obstacle,
which is related to wave-like diffraction at the obstacle boundaries.

At a first glance it appears appealing to use this effect to demonstrate the wave-
particle duality for very massive particles, as the mere existence of intensity in the
dark field could be interpreted as an indicator of the particle’s wave nature. A second
glance reveals, however, that the dispersive interaction between the particles and the
obstacle walls must be taken into account. In particular, the presence of van der Waals
forces can significantly obscure the spot even for neutral particles when they have a
large polarizability. At the same time the attraction to the obstacle walls alone may
already explain the appearance of a bright spot in the dark-field, even if we take polar-
izable clusters to behave like billiard balls following classical Newtonian mechanics.
Our following theoretical treatment transcends earlier methods for near-field Poisson
patterns [55] in that it now includes, for the first time quantitatively, the attractive
interaction.
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The geometry of the setup is sketched in Fig. 1b. The beam is directed along the
z-axis, with the points z = 0, z = L1, and z = L1 + L2 defining the xy-planes of
the source, the obstacle, and the detection screen, respectively. A circular pinhole of
radius R0 represents the source which emits a beam of particles with a collimation
angle � towards an opaque obstacle of radius R at the distance L1. We are interested
in the spatial density w(u) of the particles another distance L2 further downstream,
as a function of the dimensionless screen coordinate u = (x/R,y/R). In the paraxial
approximation the size of both the source and the obstacle are taken small compared
to the distances, R0,R � L1,L2, and the beam is well collimated, � � 1 rad. The
diffraction pattern of a monochromatic particle beam with the de Broglie wavelength
λdB = h/mvz is then given by

w(u) = 1

π

∫
|u0|≤1

d2u0

∣∣∣∣ψ
(∣∣∣∣u + L2

L1

R0

R
u0

∣∣∣∣
)∣∣∣∣

2

(6)

with ψ defined in (7), as follows from a phase-space description similar to [45, 56]. It
is normalized to the constant density of particles on the screen that would be observed
in the absence of an obstacle, w(|u| � 1) = 1. We introduce the dimensionless pa-
rameters � = (L2 + L1)/L1 and k = R2/(L2λdB), the main quantities characterizing
the dimensionless amplitude function

ψ(u) =
∫ ∞

1
ds2πk�s exp(iπk�s2 + iφ(s))J0 (2πkus) . (7)

It contains the Bessel function of the first kind J0 and a phase φ(s) related to the
interaction between the particles and the obstacle (see below). In the absence of the
van der Waals interaction the diffraction pattern associated with a point source at the
origin u0 = (0,0) reads wp(u) = |ψ(u)|2 [53]. The integral in the amplitude function
(7) can be evaluated numerically by exploiting the exact result for φ = 0 when the
lower integral bound is extended to zero.

3.1 The Ideal Poisson Spot

In Fig. 2(a) and Fig. 2(b), we plot the radial profile of the rotationally symmetric
interference pattern (6) for k = 0.2 and k = 2, respectively, for a symmetric experi-
mental setup, i.e. � = 2. The dotted line depicts the expected classical shadow profile
which would be observed in the absence of diffraction. Its shadow region has a radius
of Rcl = �R on the screen. The diffraction pattern exhibits a wavelike behavior with
wide interference fringes for small k, while it approaches the classical shadow profile
for large k, i.e. in the ‘classical limit’ λdB → 0 at finite distances from the symmetry
axis. However, one can always observe an intensity peak at u = 0 in the center of
the classical shadow region. The spot is as bright as the classically expected inten-
sity outside the shadow region, wp(0) = 1, independently of the setup geometry and
the de Broglie wavelength. It is only the width of the spot that depends on both the
wavelength and the geometry. The radius Rs of the central spot is determined by the
first zero of the Bessel function J0 in (7), which yields Rs ≈ 0.4R/k = 0.4L2λdB/R.
Consequently, the successful observation of the spot requires only that its width be
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Fig. 2 Figures (a) and (b) depict a radial cut of the Poisson diffraction pattern on the screen, assuming
an ideal point source and the absence of any van der Waals forces. The parameters � = (L2 + L1)/L1 and
k = R2/(L2λdB) are chosen as � = 2 for both cases and as k = 0.2 and k = 2 for (a) and (b), respectively.
The dashed line represents the classical shadow profile. The screen coordinate is given in units of the
obstacle radius; the signal is normalized to the constant intensity in the absence of an obstacle. In (c),
where a finite extension of the source is taken into account, the height of the Poisson spot at the origin is
plotted as a function of the source radius (in units of the obstacle radius). The cases (a) and (b) are here
represented by the solid and by the dashed line, respectively. The visibility condition for the source radius
(8) is marked by a filled dot in both cases

smaller than the width of the classical shadow Rcl = �R, which results in the rather
lax condition k� � 0.4. The condition is met exactly in Fig. 2(a), and by a factor of
10 in 2(b). In a setup with an obstacle radius of R = 500 nm and L1 = L2 = 12.5 cm,
the two plotted cases cover a range of de Broglie wavelengths λdB of 1 pm to 10 pm.

At first glance one might therefore think that no velocity selection is needed. This
advantage, however, must be put into perspective as we have assumed an idealized
point source, where the spot maximum is always w(0) = 1, regardless of the incident
de Broglie wavelength. In a real physical situation, the source has a finite extension
and the spot is washed out because of the averaging over the source aperture, as de-
scribed by (6). This renders the height of the central spot wavelength-dependent. The
reduction of the spot maximum w(0) as a function of the source radius R0 is plotted
in Fig. 2(c) for the cases of 2(a) (solid line) and 2(b) (dashed line). In the latter case,
where the wave length is five times smaller, the spot vanishes more rapidly because
it is narrower than in the former case. The spot starts to get lost in the background as
soon as it is averaged over more than its width Rs on the screen. Plugging this into (6)
we can estimate a condition for the source radius at which a pronounced Poisson spot
can still be observed [54],

R0 � 0.4
L1

L2

R

k
= 0.4

L1λdB

R
. (8)

The values given by this estimate are marked by full dots in Fig. 2(c). One notes
from (8) that a larger distance L1 between source and obstacle allows for larger source
extensions. However, the particle beam intensity decreases quadratically with L1,
which limits the possible source distance in practice. The distance to the screen L2,
on the other hand, determines the width of the ideal Poisson spot through k. In the
plotted examples we set L1 = L2 = 12.5 cm. For k = 0.2 (corresponding to λdB =
10 pm) one still obtains a pronounced central peak for a source pinhole radius of
R0 = R = 500 nm, as demonstrated by the solid line in Fig. 2(c). At the same time,
the spot is strongly smeared out for k = 2 (dashed line, corresponding to λdB = 1 pm).
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Although the condition (8) resembles the limit for the collimation slit aperture D

of a far-field interferometer, with the obstacle radius R playing the role of the grating
period d , the collimation requirements for a Poisson spot experiment are much less
stringent than in the far-field case. The diffraction pattern (6) is in fact independent
of the collimation angle �, provided that it lies within the range R/L1 � � � 1 rad.
The much stricter collimation requirement � < λdB/d of the far-field setup is there-
fore relaxed in practice, which is an advantage of the Poisson spot scheme, as has
been demonstrated in [34]. In case of a realistic particle beam with a finite longitudi-
nal coherence, one should keep in mind that the diffraction pattern (6) must also be
averaged over the distribution of de Broglie wavelengths λdB.

Ultimately, the admissible pinhole radius of the source is bounded by R0 <

R(L1 + L2)/L2 to ensure that there is a shadow region at all, where the Poisson
spot may emerge. This observation of particles in a classically forbidden area on the
screen would thus be a clear indication of matter wave diffraction, provided we could
neglect all particle-wall interactions.

3.2 Influence of the Particle-Obstacle Interaction

A complete discussion of the mass limitations of Poisson’s spot has to include the
effect of the dispersive interaction between the diffracted particles and the obstacle’s
surface. In fact, the ideal spot pattern discussed so far can only be observed with
light, fast and weakly polarizable particles such as atoms and D2 molecules [34].
The interaction potential V ((x2 + y2)1/2, z) between a highly polarizable nanoparti-
cle and the radially symmetric obstacle, however, is not negligible anymore. In our
case of a well collimated beam and a small obstacle dimension we can account for
it by introducing the eikonal phase term φ(r) = − ∫

dzV (r, z)/�vz [45], which mod-
ulates the diffraction pattern through the amplitude function (7). The interaction is
here approximated by a Casimir-Polder-type attractive potential which diverges at
the obstacle wall. As a consequence, the obstacle is effectively enlarged from R to
R(1 + η) because particles passing the obstacle at a distance smaller than ηR will
hit the wall and be adsorbed. A good estimate for η is obtained from the minimal
classical impact parameter that still yields an asymptotically outgoing trajectory of a
particle impinging upon the obstacle plane parallel to the z-axis [45, 57].

We start by considering the diffraction at a nanosphere since such obstacles can
be fabricated with a surface smoothness on the atomic level [58]. Taking a metallic
sphere of radius R in the range of a few hundred nanometers, positioned at z = L1,
we approximate the interaction by the asymptotic Casimir-Polder potential with an
infinite wall [59] spanned by the tangential plane on the surface of the sphere

V (x, y, z) = −C4/((x
2 + y2 + (z − L1)

2)1/2 − R)4. (9)

Here, the Casimir parameter C4 is the same as used in the far-field discussion of
Sect. 2. While the computation of the exact Casimir-Polder potential in this geome-
try requires advanced numerical treatments [60], our approximation (9) is conserva-
tive since it overestimates the interaction strength at distances ≥ R from the sphere
surface—as the sphere bends away from the particle trajectory.
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Fig. 3 (a) Radial profile of the Poisson diffraction pattern caused by a point source with the same geom-
etry parameters k = 0.2 and � = 2 as in Fig. 2(a). The interaction between Au100 gold clusters and the
sphere of size R = 500 nm is taken into account as described in the text. (b) Corresponding radial inten-
sity profile assuming a classical description of the particle motion. It diverges at the origin. The dashed
line represents the ideal shadow projection of the obstacle in both cases. (c) Plot of the height of the central
spot as a function of the finite source radius (in units of the obstacle radius). The quantum case (a) and
the classical case (b) are represented by the solid line and by the dashed line, respectively. The second
panel (d)–(f) shows the equivalent plots if the obstacle sphere is replaced by a disc of the same radius and
a thickness of b = 10 nm, which reduces the interaction strength significantly

Figure 3(a) depicts the Poisson spot of a point source if the dispersion interaction
is taken into account. The geometry parameters k = 0.2 and � = 2 are the same as
in the ideal case of Fig. 2(a), but we now apply our potential model for a spherical
obstacle attracting and diffracting a Au100 cluster with a mass of m = 19700 amu
and a polarizability of α = 500 Å3. The dashed line in the plot marks the shadow
projection of the obstacle. We note that the maximum of the Poisson spot clearly
increases with growing attraction, when compared to the ideal case. This is true for
all distances behind the obstacle. For symmetry reasons, the surface potential leads to
a signal enhancement on the centerline behind the sphere/disk both in a particle and
in a wave picture.

What might look like a benefit at first glance, is relativized by plot (b) where we
show the intensity distribution predicted by a classical deflection model. It was com-
puted using the classical analogue of the eikonal phase approximation [45, 56]. The
deflection is modeled by an instantaneous and radially inward directed momentum
kick q(r) = − ∫

dz∂rV (r, z)/vz = �∂rφ(r). The plots show that for highly polar-
izable particles a purely classical reasoning suffices to explain a spot-like intensity
accumulation in the center of the screen. In fact, the depicted classical intensity dis-
tribution caused by a point source exhibits a 1/u-like divergence, which is related to
the radial symmetry and is compensated by the area element udu in the course of any
integration over a finite area around the origin.
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The assessment of such a Poisson spot experiment therefore requires a careful
quantitative analysis of the measured intensity on the screen in order to rule out a
classical alternative for the expected experimental data. This problem is aggravated
with growing particle size and polarizability. In addition, the classical and the quan-
tum description become even less distinguishable with growing source radius. This
is demonstrated in part (c) of Fig. 3, where the height of the central spot in the quan-
tum (solid line) and in the classical (dashed line) case is shown as a function of the
source radius in units of the obstacle radius. In such a regime the observation of a cen-
tral spot can no longer be used as an indicator for the quantum wave nature. Instead
of restricting the analysis to the central spot, one could alternatively take the outer
intensity oscillations as a quantum signature in an experiment. These are, however,
less pronounced and more easily averaged out over both a finite velocity distribution
of the particles and an extended source. Even if the quantum and the classical case
coincide, the setup may still serve as a van-der-Waals lens for particle beams.

For the plots (d)–(f) in the lower panel of Fig. 3 the spherical obstacle has been
replaced by a metallic disc of thickness b = 10 nm. The interaction is now approxi-
mated by the Casimir-Polder potential V (r, z) = −C4/(r − R)4 of an infinite plane
acting on the particle during the time of flight b/vz past the disc. Since the accumu-
lated phase is now smaller than in the case of a spherical obstacle, a lower Poisson
spot is found in (d) compared to (a). With such a thin disc obstacle the quantum
interference effect is clearly distinguishable from the classical deflection model, as
demonstrated in (f). Even for a realistic source radius R0 = R = 500 nm the quantum
spot visibility exceeds its classical counterpart significantly.

For even heavier particles than the Au100 clusters discussed here, as well as for
larger k-values, the classical deflection of the particle trajectories may no longer be
approximated by an instantaneous momentum kick. Also in the quantum case the
eikonal approximation ceases to be valid and must be replaced by a more complicated
semiclassical scattering transformation [45].

Finally we note that, apart from being altered by the dispersion force close to a
surface, the quality of the Poisson spot is also influenced by the surface roughness
of the obstacle. In the deuterium diffraction experiment reported in [34] the surface
roughness of the disc dominated the influence of the interaction potential and led to
a significant diminution of the spot. However, modern microfabrication techniques
as well as the strong interaction of the large nanoparticles considered here allow us
to neglect the effects of surface corrugations. In the setting of Fig. 3, where Au100
clusters with a velocity of vz = 2.0 m/s are diffracted at a sphere (or disc) of radius
R = 500 nm, the effective enlargement of the obstacle radius by the cut-off (particle
capture) distance is as large as ηR = 39 nm, or 17 nm in case of the disc. This exceeds
by far the surface roughness of spheres or discs whose corrugations can nowadays be
kept on the Angstrom level [58].

4 Conclusions

In summary, our discussion shows that a straightforward extrapolation of concep-
tually simple ideas such as far-field diffraction at a grating or the observation of
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Poisson’s spot behind a spherical or disc-shaped obstacle leads to non-trivial exper-
imental challenges and may require a careful assessment of what can be observed.
A number of dephasing agents, such as gravity, the rotation of the earth and—more
than anything else—the influence of particle-wall interactions have a strong and usu-
ally contrast-limiting influence. Our analysis shows, however, also that present-day
experiments are still far from any fundamental limit. Although other experimental
arrangements may be better adapted for pushing the ultimate mass and complexity
limits of matter wave interferometry [11, 12], we still envisage many interesting ex-
periments in far-field diffraction and in observing Poisson’s spot with large clusters
and molecules, in particular also with the foreseeable advent of new nanofabrication
techniques for ultra-thin diffractive elements.
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