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Recently, several laser schemes have been proposed to separate racemic mixtures of enantiomers
by splitting a molecular beam into subbeams consisting of molecules of definite chirality [Y. Li, C.
Bruder, and C. P. Sun, Phys. Rev. Lett. 99, 130403 (2007); X. Li and M. Shapiro, J. Chem. Phys. 132,
194315 (2010)]. These ideas rely on laser-induced effective gauge potentials in an adiabatic basis
which lead to a chirality dependent force on the center-of-mass. However, the effect of molecular
rotation has been neglected in these studies. Accounting for the full molecular quantum state we find
that the potentials from the adiabatic dressed state approach cannot be recovered once the molecular
orientation dynamics is included, even in the rotational ground state. This affects substantially the
ability to perform enantioseparation in the above mentioned setups. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4738753]

I. INTRODUCTION

Many molecules can exist in different, non-
superimposable configurations, e.g., as left-handed (L)
or right-handed (R) enantiomers.1–8 Quantum mechanically,
the appearance of such chiral molecules may seem para-
doxical from the point of view of first principles,9 but it
can be explained by a dynamical stabilization effect due to
environmental decoherence, as effected by gas collisions.10–12

The purification of a racemic mixture is an important task in
chemistry,13–15 due to the different biological and chemical
properties of L and R enantiomers. This can be achieved by
interconversion16–20 or, as we study here, by separating the
left-handed molecules from their right-handed counterparts.

When a near-resonant laser field is applied to a chiral
molecule the sign of the complex Rabi frequency may depend
on the chiral state.21 In Refs. 22 and 23 a closed loop scheme
was suggested to make use of this phase difference. It yields
a chirality dependent effective potential for the molecules in
the laser field, which would allow one to separate enantiomers
by splitting a racemic molecular beam into subbeams of def-
inite chirality. However, the molecular orientation has been
neglected in these proposals. In this article, we study the ef-
fects of the rotational state, and we find that it affects sub-
stantially the ability to perform enantioseparation in the above
mentioned proposals.

The structure of the article is as follows. In Sec. II, we
discuss the topologies of transitions required for enantiosep-
aration. The existence of a closed loop with at least one
driven dipole transition21 is a crucial ingredient to the sepa-
ration schemes.22, 23 In Sec. III, we briefly review how effec-
tive gauge potentials for the molecular motion are obtained
by treating the molecular dynamics in the laser field in an
adiabatic basis. To incorporate rotation, we then introduce in
Sec. IV the corresponding wave functions and Hamiltonian
and evaluate the selection rules. In Sec. V, we show that the
adiabatic potentials cannot be recovered once molecular rota-
tions are included, even in the rotational ground state.

II. CHIRALITY DEPENDENT POTENTIALS

The laser-induced separation of stable chiral molecules
relies on the fact that the complex Rabi frequencies describing
the electric-dipole transition between two chiral states differ
in sign for enantiomers. The left-handed and the right-handed
molecular state, |�+〉 and |�−〉, can be described by a super-
position of a symmetric and an antisymmetric eigenstate of
the parity-invariant Hamiltonian,24 see Fig. 1,

|�±〉 = s|S〉 ± a|A〉. (1)

If an enantiomer is exposed to an electric laser field E,
the strength of the electric-dipole transition between chiral
molecular states is described by the Rabi frequency

�f i = 〈
�±

f

∣∣μ̂∣∣�±
i

〉 · E . (2)

Since the diagonal element vanishes for parity eigenstates, we
have

�f i = ±[s∗
f ai〈Sf |μ̂|Ai〉 + a∗

f si〈Af |μ̂|Si〉] · E . (3)

Hence, two enantiomers see the same electric field, but the
chiral sign difference is passed on to the Rabi frequency.

In the following, we discuss what topological structures
of the dipole transitions are required in order to ensure that
the spectrum of the effective Hamiltonian is sensitive to a sign
change of the Rabi frequency. The spectrum of the Hamilto-
nian then will give rise to the scalar potential V which might
be used to separate the enantiomers as discussed in Sec. III.

We consider a system of N levels connected by laser-
induced electric-dipole transitions. Starting with N = 3, the
internal Hamiltonian (consisting of bare states and the inter-
action) for a three-level system on resonance can in the inter-
action picture be written as

Hint =

⎛
⎜⎝

0 �∗
12 �∗

13

�12 0 �∗
23

�13 �23 0

⎞
⎟⎠ . (4)

0021-9606/2012/137(4)/044313/7/$30.00 © 2012 American Institute of Physics137, 044313-1

http://dx.doi.org/10.1063/1.4738753
http://dx.doi.org/10.1063/1.4738753


044313-2 A. Jacob and K. Hornberger J. Chem. Phys. 137, 044313 (2012)

. . . . . .

2π
γ

0

|2R

|1R

|nS
|nA

E

|2L

|1L

FIG. 1. Double well potential for the chiral configuration coordinate, such as
the dihedral angle of D2S2. The chiral molecular states, which are localized
in one of the wells, are described by superpositions of the symmetric and the
antisymmetric eigenstates of the Hamiltonian.

In this closed 3-loop setup, sketched in Fig. 2, the eigenval-
ues of the internal Hamiltonian Hint change only after a sign
change of an odd number of Rabi transitions. This is seen by
looking at the characteristic equation for a closed loop with
three levels,

−ε3 + ε(|�12|2 + |�23|2 + |�13|2) + 2Re[�12�23�
∗
13] = 0,

where ε are the eigenvalues. The sign dependence is given by
the last term. Similarly, for a 4-loop the characteristic equa-
tion

ε4 − ε2(|�34|2 + |�24|2 + |�12|2 + |�13|2)

Re[�∗
12�

∗
24�13�34] + |�12|2 |�34|2 + |�13|2 |�24|2 = 0 (5)

shows that the eigenvalues vary only under a sign change of
an odd number of Rabi frequencies �fi, because of the term
Re[�∗

12�
∗
24�13�34]. One can verify also for 5-loops, and 6-

loops that only an odd number of sign changes yields chi-
ral control. For a general statement one should consider the
Hamiltonian (4) as an adjacency matrix.25 A topological clas-
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FIG. 2. Simple closed loop structures in the absence of rotational sublevels.
Left: three-level system connected by dipole transitions forming a loop.
Right: simple 4-loop connecting four states. The dipole transition strength
is given by the complex Rabi frequencies �fi.

sification of possible terms appearing in a characteristic poly-
nomial has to our knowledge only been carried out recently
in Do et al.26 A closer look at the characteristic equation of
a system consisting of four levels with arbitrary transitions
shows that only closed loop structures yield sign dependent
energies. Possible double loops or subloops do not change
this statement. However, it is impossible to embed the 4-loop
shown in Fig. 2 with an odd number of sign changing tran-
sitions into the molecular level structure. For example, if we
consider four chiral states in a 4-loop we will have four sign
dependent transitions, which will not change the eigenvalues
obtained from Eq. (5). As one can check explicitly, this result
holds even if we include parity eigenstates in the loop or any
n-loop with even n.

The phase of the Rabi frequency � is irrelevant for most
quantum optics effects, such as level shifts. The reason is that
in systems with tree-like transition structures the phase of a
“leg” can be removed by a gauge transformation, and has
hence no physical meaning. If the link-structure contains a
closed loop, on the other hand, the total phase associated to a
loop can matter. In Sec. III, we review how this setup can lead
to chirality dependent dynamics.

III. SCHEME WITHOUT ROTATIONAL STATES

Let us consider the simplest closed-loop system consist-
ing of three molecular levels connected by three driven dipole
transitions as in Ref. 23. If one disregards the orientation de-
gree of freedom, the Hamiltonian of the molecule in the laser
field is

Ĥ
(χ)
tot = ĤCM + Ĥ

(χ)
int + V̂ , (6)

where ĤCM is the kinetic energy of the center-of-mass motion,
Ĥint is the internal Hamiltonian including the molecule-laser
interaction and the vibrational levels, V̂ is a possible trapping
potential, and χ ∈ {L, R} denotes the chirality. For a fixed
center-of-mass position r the internal Hamiltonian Ĥint(r),
which includes the space dependent interaction, can be di-
agonalized. This yields a set of dressed states |χn(r)〉 with
eigenvalues εn(r), where n = 1, 2, 3 since we focus on three
levels. The full quantum state of the molecule describing in-
ternal and motional degrees of freedom can then be expanded
in terms of the dressed states according to

|�(χ)(r)〉 =
3∑

n=1

ψ (χ)
n (r)

∣∣χ (χ)
n (r)

〉
. (7)

These dressed states obey an effective Schrödinger equation
for ψ = (ψ1, ψ2, ψ3)27–29

i¯
∂

∂t
ψ (χ) =

[
1

2m
(−i¯∇ − A(χ))2 + V (χ)

]
ψ (χ ), (8)

where the effective potentials are given by 3 × 3 potentials

A(χ)
nm = i¯

〈
χ (χ)

n (r)
∣∣∇χ (χ)

m (r)
〉
, (9)

V (χ)
nm = ε(χ)

n (r)δnm + 〈
χ (χ)

n (r)
∣∣V (r)

∣∣χ (χ)
m (r)

〉
. (10)
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The off-diagonal elements of the potentials can be neglected
if they are much smaller than the eigenvalue differences. The
equation then depends only on

A(χ)
n = i¯

〈
χ (χ)

n (r)
∣∣∇χ (χ)

n (r)
〉
, (11)

V (χ)
n = ε(χ)

n (r) + 〈
χ (χ)

n (r)
∣∣V (r)

∣∣χ (χ)
n (r)

〉
. (12)

In this way three decoupled equations of motion are obtained,
each describing a dressed state. To simplify the notation we
drop the chiral index χ in the following.

The explicit forms of the potentials are given in Ref. 23
for a setup of three resonant Gaussian beams. In this case the
effect of the vector potentials An is smaller than the effect
of the scalar potential Vn, which depends linearly on �. The
three scalar potentials Vn for the three dressed states can have
different properties. They may trap the molecule or acceler-
ate it, depending on the dressed state and the chirality of the
molecule. Based on this fact, it was suggested to use three
levels of the v5 vibrational mode of D2S2 in the electronic
ground state to achieve a spatial separation.23 However, the
real molecular state features also a rotational subspace which
must be considered and will be taken into account in Sec. IV.

IV. ACCOUNTING FOR THE ORIENTATIONAL STATE

To allow for the molecular rotation dynamics one must
include the rotational energy in the Hamiltonian and adapt the
molecule-laser interaction, which depends on the molecular
orientation. Using the helicity basis, the laser interaction with
the electric-dipole in the laboratory is given by ĤIA = μ̂ ·
E = ∑

σ∈{±1,0} μ̂S
σES

σ . The components of the electric dipole
in the space-fixed frame (S) are obtained by a rotation from
the molecular frame (M),

μ̂S
σ =

∑
σ ′∈{±1,0}

D1∗
σσ ′(α̂, β̂, γ̂ )μ̂M

σ ′ . (13)

Here D is the rotation matrix30 and α, β, γ are the Euler an-
gles, determining the orientation of the space-fixed (S) relative
to the molecule-fixed (M) coordinate system. This yields the
interaction Hamiltonian

ĤIA =
∑

σ,σ ′∈{±1,0}
D1∗

σσ ′(α̂, β̂, γ̂ )μ̂M
σ ′ E

S
σ , (14)

with σ ′ indicating the spherical components of the dipole μ̂M

in the molecular frame, and σ the helicity components of the
electric field.

Since we are interested in the Rabi frequencies �f i

= 〈�f |ĤIA|�i〉, we need as a second ingredient the molec-
ular wave functions. In the following, we focus on D2S2, one
of the simplest chiral molecules, which is frequently used
in studies of enantioseparation and interconversion.12, 20, 23, 31

It is an almost symmetric prolate top with an asymmetry
parameter30 κ = (2B − A − C)/(A − C) = −0.99994 close
to −1 (A = 76.15 GHz, B = 6.401 GHz, C = 6.399 GHz
(Ref. 20)). We can thus safely describe its rotation by the

Hamiltonian of a symmetric top

Ĥrot = hCĴ 2 + h (A − C) Ĵ 2
z , (15)

where Ĵz is the angular momentum along the symmetry axis
of the top and Ĵ the total angular momentum. Its eigenstates
|JKM〉 are determined by the total angular momentum J, and
by its projections on the molecule-fixed z-axis, −J ≤ K ≤ J,
and on the space-fixed z-axis −J ≤ M ≤ J, respectively. Using
the Euler angles they are given by

〈αβγ |JKM〉 =
√

2J + 1

8π2
DJ∗

MK (α, β, γ ) , (16)

where DJ
MK are the rotation matrices.30

Since the coupling between rotations and vibrations can
be neglected for the relevant vibrational excitations we take
the full wavefunction of the molecule to be a product of the ro-
tational state and the vibrational electronic wavefunction |vi〉,

|�i〉 = |vi〉|JiKiMi〉. (17)

We can now evaluate the non-zero Rabi frequencies �f i =
〈�f |μ̂ · E|�i〉 and discuss the corresponding selection rules

�f i = 〈vf |〈Jf Kf Mf |μ̂ · E|JiKiMi〉|vi〉
=

∑
σ ′

〈vf |μM
σ ′ |vi〉

∑
σ

〈Jf Kf Mf |D1∗
σσ ′ |JiKiMi〉ES

σ .

(18)

The vibrational matrix elements 〈vf |μM
σ ′ |vi〉 can be

calculated independently from the rotational matrix ele-
ments 〈Jf Kf Mf |D1∗

σσ ′ |JiKiMi〉; only the component σ ′ of
the molecular dipole couples the two. The rotational part of
Eq. (18) yields

I = 〈Jf Kf Mf |D1∗
σσ ′ |JiKiMi〉

=
∫

〈Jf Kf Mf |�〉D1∗
σσ ′ (�) 〈�|JiKiMi〉 d�

=
∫

D
Jf

Mf Kf
(�) D1∗

σσ ′ (�) D
Ji∗
MiKi

(�) d� , (19)

where � = (α, β, γ ) and d� = sin α dα dβ dγ . Using known
relations for the D-matrices30 we find that the integral is given
by a product of Wigner 3j-symbols,

I = (−)−Ki+Mi+σ ′−σ
√

(2Jf + 1)(2Ji + 1)

×
(

Jf 1 Ji

Mf −σ −Mi

) (
Jf 1 Ji

Kf −σ ′ −Ki.

)
. (20)

The 3j-symbols can be non-zero only if �J ≡ Jf − Ji = 0,
±1. Moreover, if the molecular dipole is aligned with the
molecular z-axis (σ ′ = 0 in Eq. (18)) it follows that �K
= 0. The selection rule for �M ≡ Mf − Mi depends on
the laser polarization. For z-polarized light �M = 0, while
�M = ±1 for circularly polarized light. It will be impor-
tant in the discussion below that the 3j-symbols appearing in
(20) vanish if there are only zeros in the lower row and Ji

= Jf, even when they fulfill the mentioned criteria for allowed
transitions.

It is easy to see that one is able to form closed 3-loops
with the above selection rules, i.e., it is possible to return to
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FIG. 3. Level scheme for a 3-loop setup with rotational substates. The di-
agonal lines indicate the three lasers connecting the vibrational levels, with
the vertical components describing the laser frequency. The endpoints do not
necessarily connect an allowed transition, and the laser can also drive nearby
transitions with detunings �.

the same quantum state |JKM〉 after three links of allowed
electronic dipole transitions. However, due to the small spac-
ing between the rotational levels there are many other non-
resonantly driven transitions besides the loop and it is not
clear a priori to what extent they affect the enantioseparation.
We will test this numerically in Sec V.

V. NUMERICAL ANALYSIS

We proceed to evaluate the time evolution produced by
the laser interactions. Since we must account also for non-
resonant transitions, see Fig. 3, we cannot use the effective Eq.
(8), but have to consider the full internal Hamiltonian given in
the interaction picture by21

Hint =
∑
A,B

�AB(r)e−i�ABt |A〉〈B| + h.c. (21)

It is determined by the Rabi frequencies discussed above in
Eq. (18). The summation runs over the multi-indices A ≡ (m,
JA, KA, MA), B ≡ (n, JB, KB, MB) with m, n the vibration states
(m < n). The quantity �AB = EA − EB + ¯ωAB is the detun-
ing of the laser with respect to the levels A and B in the sum-
mation (A < B). In contrast to systems without loops, where
the detuning can be gauged away, this is not possible for our
setup involving loops.

In the following we do not consider the detailed process
of switching on the lasers. Rather we take relevant limiting
cases for the initial state: the diabatic and the adiabatic prepa-
ration, as well as an important intermediate case.

Depending on the initial state we obtain different expec-
tation values 〈Hint(r, t)〉 of the internal Hamiltonian. If this
average dipole potential has different spatial dependencies for
left- and for right-handed molecules it can be employed for
the spatial separation of enantiomers.

The setup discussed in Ref. 23 consists of three laser
beams propagating in the z-direction, slightly shifted later-
ally (x-direction) with respect to each other. The optical dipole
force acts in the x-direction, i.e., perpendicular to the lasers,
and the resulting dipole force exerted on the molecules is pro-
portional to the time-averaged internal potential. Since the
energy peak in the beam center characterizes the strength
of the dipole force we can consider the time-averaged value
of 〈Hint(t)〉 as a measure of ones ability to perform enan-
tioseparation. In the setup of Ref. 23 〈Hint(t)〉 is approxi-
mately �max

12 , the maximal Rabi frequency at the center of
the Gaussian laser beam connecting vibrational levels |1〉 and
|2〉, and we will compare the obtained potentials with this
value.

A. Adiabatic preparation

As a first limiting case, let us assume that the laser fields
are switched on adiabatically. Initial eigenstates of the bare
internal Hamiltonian thus evolve into eigenstates of the full
internal Hamiltonian Hint(t = 0) including the molecule-laser
interactions.

Unfortunatly, one cannot use this natural choice of states
for enantioseparation. This is due to the fact that the spectra
of the left- and the right-handed full Hamiltonian are identi-
cal. Given an initial thermal population of states one is thus
lead to identical potential energies 〈Hint〉. The reason for the
isospectrality is that one can always find a unitary transforma-
tion T of the rotational state such that the left-handed Hamil-
tonian is transformed to the right-handed Hamiltonian via
T †HL

intT = HR
int. This transformation T assigns to each handed

eigenvector an eigenvector of the opposite handedness and
same energy.

For instance, for light with σ x, σ y, σ+1, or σ−1-
polarization one can use the transformation T |JiKiMi〉
= (−)Mi |JiKiMi〉. For light with σ y, or σ x-polarization the
transformation T |JiKiMi〉 = (−)Ji |JiKi −Mi〉 will do the
job. For setups with different polarizations of the three lasers
one can find composed transformations, e.g., for the setup
considered in Fig. 5 we find T |JiKiMi〉 = (−)Ji+Mi |JiKi

−Mi〉.

B. Diabatic preparation

Next we consider the opposite case that the lasers are
turned on very fast. In this diabatic limit the state has no time
to change and is still in a chiral eigenstate of the Hamilto-
nian Hrot + Hvib without the interaction term. In the presence
of a laser field such a state will be subject to different time
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|1 JKM

σz

|2 JKMσz

σz

|3 JKM

σz

σz

|3 J−1KM 3 JKM |3 J+1KM

|1 J−1KM |1 JKM 1 J+1KM

σz

|2 J+1KM|2 J−1KM 2 JKM

FIG. 4. Left: Example of a 3-loop with rotational substates. It is obtained if all lasers are z-polarized. Right: The dashed lines show the numerous other
transitions necessarily involved when the rotational sublevels are included. The solid line indicates the loop from the left side. Here the molecular dipole is
assumed to be aligned along the symmetry axis of the molecule (z-direction) which restricts the number of allowed transitions.

evolutions for the different enantiomers. However, by uti-
lizing the transformation T from Sec. V A one finds
easily that the obtained potential energies 〈HL

int(t)〉 =
〈�L(t)|HL

int(t)|�L(t)〉 and 〈HR
int(t)〉 are the same if �L(t = 0)

= �R(t = 0). Therefore, a diabatic choice of the initial state
is not useful for enantioseparation either.

C. Preparation of partially dressed states

In this section, we discuss a third class of initial states
that lies in between the ones just mentioned: vibrationally
dressed states with uncorrelated rotations. This is the clos-
est generalization of the dressed states considered in Ref. 23.
The vibrational states |D〉 are eigenstates of Hvib + HIA,
whereas the rotations are in a thermal state, such that ρtot

= |D〉〈D| ⊗ ρ therm
rot .

Now we consider the possible polarization configura-
tions. We take the molecular dipole to be aligned along
the z-axis of the molecular coordinate system. This implies
�K = 0, such that about one third of all transitions involved
in Eq. (18) do not contribute. The simplest loop structure can
be found using the z-polarization for all three lasers. As shown
in Fig. 4 (left), the loop then consists of levels with the same
rotational state (there are few exceptions where this is not pos-
sible, e.g., for |JKM〉 = |J00〉). However, at the same time
there are many more allowed transitions between the rota-
tional states, see Fig. 4 (right).

We note that, in the special setup chosen by Ref. 23 the
three laser beams cannot be polarized in the z-direction, since
this is their propagation direction. Choosing alternative non-
z-polarizations is not an option. It is not possible to form a
closed 3-loop by using just lasers of x, y, σ+ or σ− polariza-
tion, since the selection rule for M is then �M = ±1, which
cannot lead to the original state. However, using at least one
laser with z-polarization (�M = 0) we can obtain again closed

loops as shown in Fig. 5. We will use the latter setup in our
numerical simulations, noting that similar results are obtained
for other choices of the polarizations.

Time scales
The time scales involved in the setup are (a) the time

τ� associated with the Rabi frequency �max
12 describing the

vibrational population transfer (≈ 4.8 ns for �max
12 = √

Q

· 10−9 hartree with Q = 1000 as in Ref. 23), (b) the time scale
τ� of the rotational constants (for D2S2: 1/A = 0.013 ns and
1/B ≈ 1/C = 0.154 ns), (c) τ exp, the time scale of the whole
experiment (typically 10−40 μs), and (d) the tunneling time
τLR of the D2S2 molecule (33 ms). We have a clear separation
of time scales τ� < τ� � τexp � τLR.

Numerical observations
The time scales just discussed can be seen in our nu-

merical simulations. In Fig. 6, we plot the potential energy
for the center-of-mass motion in units of the Rabi frequency
�max

12 versus the time in units of 1/�max
12 . One observes that

|JKM

σx

σz

σx

|JKM

|J+1KM−1 J+1KM+1

|J−1KM−1 J−1KM+1

FIG. 5. For most rotational states (except for a few ones such as |JKM〉
= |000〉), it is possible to form several closed loops, e.g., with two x-polarized
and one z-polarized laser beams.
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FIG. 6. The interaction energy for right- and left-handed molecules oscillates due to the time-dependent Hamiltonian. The solid line depicts the effective
potential if the system is initially in the dressed states |χR

1 〉 and |χL
2 〉, the dashed lined is for |χR

2 〉 and |χL
1 〉, the dotted line for |χR

3 〉 and |χL
3 〉. Upper figure:

the lasers are resonant with respect to the rotational ground state of each vibrational state. Lower figure: the lasers are resonant with respect to the transitions
|1〉|JKM〉↔|2〉|J + 1KM〉↔|3〉|JKM〉. Parameters: T = 0.5 K, lasers polarized as in Fig. 5 (�13 z-polarized, �12 and �23 x-polarized).

the energy oscillates at the scale of the involved detunings
� = B(J 2

f − J 2
i + Jf − Ji) + (A − B)(K2

f − K2
i ), typically

one order of magnitude faster than the time scale associated
with �max

12 . It is difficult to identify each frequency in detail
due to the complex behaviour of the dynamics in a closed
loop network compared to a 2-level system.

The potentials experienced by right- and left-handed
molecules now differ, but we observe that the strength of the
potential is reduced by about to two orders of magnitude as
compared to the case where the rotations are neglected. Af-
ter the time average this remaining potential seems to be far
too small for the suggested separation scheme of Ref. 23, see
Fig. 6. The observed potentials are characteristic for similar
setups.

So far the lasers are taken to be resonant with respect to
the same rotational substates. Even if we change the laser fre-
quency slightly to make one of the loops resonant, the oscilla-
tions caused by the other transitions show a similar behaviour,
see the lower part of Fig. 6. Likewise, a different orientation
of the dipole in the molecular frame will not influence the
result.

We find that the chiral sensitivity survives, in contrast
to the adiabatic and diabatic case above, even though the
partially dressed state yields highly oscillatory potentials.
Whether this remaining effect could lead to a feasible experi-
mental setup is open to future studies.

Zero temperature case
Next we briefly discuss the special case of T = 0, where

the system is in the rotational groundstate |JKM〉 = |000〉.
This corresponds approximately to an assumed temperature
of 1 mK.23 However, the selection rules Eq. (20) forbid the
transition |JKM〉 → |JKM〉 for z-polarized light if |JKM〉
= |000〉. Therefore, one cannot form a closed 3-loop start-
ing from |000〉 with allowed transitions, see Fig. 7. Irrespec-
tive of that we can have a look at this case as well. In order

to facilitate the comparison with previous results we use in
our numerical simulations the same laser configuration as for
the finite temperature case in Fig. 5. The obtained potentials
reported in Fig. 8 are qualitatively similar to the finite temper-
ature case of Fig. 6. That is, the potentials oscillate on a time
scale of the detunings yielding averaged potentials of about
two orders of magnitudes below the �max

12 .
This result suggests that it is possible to obtain chiral sen-

sitive potentials without having a 3-loop in the Hamiltonian.
On the other hand, it seems difficult, if not practically im-
possible, to create the initial dressed state in the vibrational
manifold without having a closed loop.

Time-independent potentials
The time-independent potentials of Ref. 23 can be recov-

ered up to the factor Eq. (19) if we restrict the system arti-
ficially to only a single 3-loop with no connections to other
states, such as the loop indicated by the solid lines in Fig. 4
(right). The maxima of these potentials are only reduced by
the orientation factor Eq. (20) in the selection rules, which is
typically between ±0.1 and ±0.5. This way consistency with

|000

σx

|101|10−1

allowed
no transitions

σx

|101|10−1 100

no transitions
allowed

σz

|100

σz

|000

FIG. 7. For the zero temperature case we start our simulation in the rota-
tional ground state |JKM〉 = |000〉. Due to the selection rules it is not pos-
sible to form a closed loop in the rotational state manifold using any com-
bination of polarizations. The left diagram shows the allowed transitions for
x-polarization, the right one for z-polarization.
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FIG. 8. The interaction energy for right- and left-handed molecules oscillates due to the time-dependent Hamiltonian. The solid line depicts the potential if
the system is initially in the vibrationally dressed states |χR

1 〉 and |χL
2 〉, the dashed lined is for |χR

2 〉 and |χL
1 〉, the dotted line for |χR

3 〉 and |χL
3 〉, see Sec. III.

Upper figure: the lasers are resonant with respect to the rotational ground state of each vibrational state. Lower figure: the lasers are resonant with respect to the
transitions |1〉|JKM〉↔|2〉|J + 1KM〉↔|3〉|JKM〉. Parameters: T = 1 mK, lasers polarized as in Fig. 5 (�13 z-pol., �12 and �23 x-pol.).

the proposal in Ref. 23 is obtained at the expense of treating
an oversimplified and therefore unphysical situation.

VI. CONCLUSIONS

In this paper, we highlighted the importance of the ro-
tational state on enantioseparation. The studied enantiosep-
aration scheme is based on the sign difference of the Rabi
frequencies of two enantiomers. As compared to previous
studies,23 we consider a more realistic molecular descrip-
tion, including the orientation state. We find that the ability to
create chirality-dependent potentials depends strongly on the
preparation of the initial states. For a usual adiabatic and dia-
batic preparation we find no chiral dependence, whereas for a
partially dressed state chiral dependence can be found. How-
ever, due to the detunings, the time-dependent Hamiltonian
leads to a time-dependent potential. The oscillations occur on
the time scale of the molecular rotations. We observe that even
in the rotational ground state the time-average of the resulting
potentials is typically two orders of magnitude smaller than
the potentials for a molecule with fixed orientation, which is
the relevant quantity for enantioseparation.
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