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We show how the ro-translational motion of anisotropic particles is affected by the model of continuous sponta-
neous localization (CSL), the most prominent hypothetical modification of the Schrödinger equation restoring
realism on the macroscale. We derive the master equation describing collapse-induced spatio-orientational
decoherence and demonstrate how it leads to linear- and angular-momentum diffusion. Since the associated heat-
ing rates scale differently with the CSL parameters, the latter can be determined individually by measuring the
random motion of a single levitated nanorotor. © 2017 Optical Society of America
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1. INTRODUCTION

It is an open question whether the quantum superposition prin-
ciple holds at arbitrary length and mass scales. Its validity has
been confirmed for increasingly large particles and distances by
interference experiments involving single neutrons and atoms
[1–4], Bose–Einstein condensates [5–10], and massive mole-
cules [11–13]. By direct verification of quantum superpositions
[14], these experiments establish our perception of the
quantum-to-classical transition.

Spontaneous localization models [15,16] and the gravita-
tional localization discussed by Diósi and Penrose [17,18] pro-
vide a dynamical description of the wave function collapse
through an objective modification of the Schrödinger equation.
One of the most prominent collapse theories is the continuous
spontaneous localization (CSL) model [19–21]. By adding a
nonlinear and stochastic term to the Schrödinger equation,
it describes the random localization of the wave function of
a delocalized particle. The modification involves two parame-
ters: the rate λC and the localization length rC. The maximal
decay rate λCM 2∕m2

0 grows quadratically with particle mass M
(in units of the reference mass m0); it is met if the spatial delo-
calization well exceeds the CSL length rC, while spatial super-
positions much smaller than rC remain practically undisturbed.
In this way, the CSL model gives rise to the classical behavior of
massive particles, while the quantum dynamics of microscopic
particles is preserved.

A natural way to test objective collapse models is to observe
matter-wave interference and thus exclude all parameters λC
and rC that contradict the experiment [22]. However, the
CSL modification implies that even a localized particle isolated
from its environment experiences momentum diffusion and

heating, which can be measured in principle [23–28]. In fact,
the most stringent up-to-date restrictions on the CSL param-
eters result from the noise spectrum of the LISA pathfinder [29]
and from the x-ray emissions from a germanium surface [30].

Levitated nanoparticles offer a particularly promising
platform for testing collapse models because they can be well
isolated from their environment [31–42]. So far, studies and
tests of CSL involve only the center-of-mass degrees of free-
dom of the nanoparticle [27,28]. Motivated by recent advances
in optical trapping and controlling the orientation of aniso-
tropic nanoparticles [43–45] and the prospect to achieve ro-
translational ground-state cooling [46,47], we study the effect
of the CSL model on the orientational coherences of an arbi-
trarily shaped rigid object.

Specifically, we present the master equation describing the im-
pact of CSL on the ro-translational quantum dynamics of a rigid
nanoparticle. The associated localization rate for orientational
superpositions is then evaluated for bodies with cylindrical and
spheroidal shapes. We determine the resulting linear momentum
and angular momentum diffusion constants quantifying the rate
of motional heating. Their dependence on the CSL parameters
implies that the anisotropic shape of a nanoparticle can be ex-
ploited in future CSL tests. Finally, by solving the master equation
for planar rotations, we show how CSL leads to an enhanced
spread of the orientational wave packet dynamics.

2. SPATIO-ORIENTATIONAL LOCALIZATION

All observable effects of CSL are accounted for by considering
the modified time evolution of the state operator,
∂tρ � −i�H; ρ�∕ℏ� Lρ. The modification Lρ to the von
Neumann equation can be cast in the Lindblad form as [16]
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Lρ � −
λC

2r3Cπ
3∕2m2

0

Z
d3s�M�s�; �M�s�; ρ��: (1)

The mass operators M�s� depend on the position operators
rn and masses mn of the constituent atoms,

M�s� �
X
n

mne−�s−rn�
2∕2r2

C : (2)

A. Master Equation for a Rigid Body

The position of the individual atoms can be specified by the
center-of-mass position Rcm, the orientation Ω (parameterized,
e.g., with Euler angles), and the displacements Δrn from the
orientation-dependent equilibrium position R�Ω�r�0�n , i.e.,
rn � Rcm � R�Ω�r�0�n � Δrn. Here, the matrix R�Ω� rotates
from the body-fixed frame to the space-fixed frame fe1; e2; e3g.
If the displacements Δrn of the individual atoms around their
equilibrium position are small compared to rC, it is admissible
to describe the particle as a rigid body with position Rcm and
orientation Ω.

Denoting the mass density by ϱ�RT �Ω�r� �P
nmnδ�RT �Ω�r − r�0�n � and the position and orientation oper-

ators as Rcm and bΩ, one can rewrite the mass operator M�s� as

M�s� ≈
Z

d 3rϱ�RT �bΩ�r�e−�s−Rcm−r�2∕2r2C

� r3C
�2π�3∕2

Z
d 3ke−r

2
C k

2∕2�ik·�s−Rcm�ϱ̃�RT �bΩ�k�: (3)

The Fourier transform of the mass density ϱ̃�k�, often re-
ferred to as the form factor, is normalized to the total mass
of the particle, ϱ̃�0� � M .

The ro-translational master equation is obtained by
inserting the mass operators in Eq. (3) into Eq. (1). Its
incoherent part takes the form

Lρ � r3CλC
π3∕2m2

0

Z
d 3ke−r

2
C
k2

×
�
e−ik·Rcm ϱ̃�RT �bΩ�k�ρϱ̃��RT �bΩ�k�eik·Rcm

−
1

2
fjϱ̃�RT �bΩ�k�j2; ρg�: (4)

Being diagonal in position and orientation, it describes
spatio-orientational decoherence. Evaluating the matrix ele-
ments hRcmΩjLρjR 0

cmΩ 0i, one finds that the decay of the spa-
tial off-diagonal elements depends not only on the distance
jRcm − R 0

cmj, but also on the direction of displacement. We will
see next that the decay of orientational coherences depends
only on the relative orientation Ω̃�Ω;Ω 0�, defined by
R�Ω̃� � RT �Ω 0�R�Ω�.
B. Orientational Localization

Tracing out the center-of-mass degrees of freedom in Eq. (4)
shows how pure orientational superpositions decay under the
CSL modification. Specifically, the localization rate F �Ω;Ω 0�,
defined as

hΩjtrcm�Lρ�jΩ 0i � −F �Ω;Ω 0�hΩjtrcm�ρ�jΩ 0i; (5)

is given by

F �Ω;Ω 0� � r3CλC
2π3∕2m2

0

Z
d3ke−r

2
C
k2

× jϱ̃�RT �Ω�k� − ϱ̃�RT �Ω 0�k�j2: (6)

Its imaginary part vanishes even for complex form factors,
ϱ̃�k� � ϱ̃��−k�, due to the odd symmetry of the integrand. As
anticipated, the localization rate depends on the relative
orientation R�Ω̃�, as follows from rotating k.

For azimuthally symmetric bodies, the localization rate
[Eq. (6)] is only a function of the angle between the symmetry
axes m�Ω� and m�Ω 0�. It is depicted in Fig. 1 for the case of a
cylindrically and a spheroidally shaped homogeneous mass den-
sity of radius R and length L. The respective form factors
ϱ̃�k� are

ϱ̃cyl�k� �
2M

Rje3 × kj
J1�Rje3 × kj�sinc

�
L
2
e3 · k

�
; (7)

ϱ̃sph�k� � M

ffiffiffiffiffi
9π

2

r J3∕2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2je3 × kj2 � L2je3 · kj2∕4
p �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2je3 × kj2 � L2je3 · kj2∕4

p �
3∕2 ;

(8)

where we chose the symmetry axis along e3; Jn�·� are Bessel
functions.

If the maximum extension of the nanoparticle is well below
the localization length rC, Eq. (6) takes the form

F �Ω;Ω 0� ≈ λCM 2

8m2
0r

4
C

�
R2

a
−
L2

b

�
2

jm�Ω� ×m�Ω 0�j2; (9)

where a, b are numerical constants, acyl � 4, bcyl � 12 and
asph � 5, bsph � 20.

This rate increases with sin2 α � jm�Ω� ×m�Ω 0�j2, as
also observed for environmentally induced orientational
decoherence of small particles [48,49]. Note that Eq. (9)

Fig. 1. Orientational localization rate Eq. (6) for a cylinder (solid
lines) and a spheroid (dashed lines) as a function of the angle α �
arccos�m�Ω� ·m�Ω 0�� in units of the maximal localization rate of
the cylinder. For rC � L (red lines), the localization rate is propor-
tional to jm�Ω� ×m�Ω 0�j2. This simple sin2 α behavior is lost for
rC � L∕10 (black lines). Throughout the figure, we set L∕R � 20,
as motivated by [43,45].
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vanishes if the spheroid is deformed into a sphere, R � L∕2;
the same holds for cylinders with isotropic tensors of inertia,
i.e., R � L∕

ffiffiffi
3

p
. Remarkably, the localization rate [Eq. (9)]

scales with the tenth power of the particle size (at a fixed den-
sity). This holds for arbitrarily shaped small particles, as follows
from the dimensional analysis of Eq. (6).

3. LINEAR- AND ANGULAR-MOMENTUM
DIFFUSION

The exact master Eq. (4) of spatio-orientational decoherence
can be simplified for states that are sufficiently well localized
in position and orientation (around Ω0), implying that
hRcmΩjρjR 0

cmΩ 0i ≈ 0, unless jRcm − R 0
cm � R�Ω0��R�Ω̃� −

1�r�0�n j ≪ rC for all n. This requirement demands that the
relative orientation is small, R�Ω̃� ≈ 1� ϵijkdΩiek ⊗ ej, with
dΩi, the angle of rotation around the ei axis.

Expanding the CSL modification Lρ into the lowest order
of jRcm − R 0

cmj and dΩi shows that the total localization is
given by a sum of the pure center-of-mass and pure orienta-
tional localizations,

hRcmΩjLρjR 0
cmΩ 0i≈−hRcmΩjρjR 0

cmΩ 0i× �F cm�Rcm−R 0
cm;Ω0�

�F rot�Ω;Ω 0��: (10)

The respective rates can be expressed as

F cm�R;Ω0� �
λC
2r2C

R · R�Ω0�AcmRT �Ω0�R; (11a)

F rot�Ω;Ω 0� � λC
2
dΩ · ArotdΩ; (11b)

where dΩ � �dΩ1; dΩ2; dΩ3�. Here, the geometry tensors

Acm � r5C
π3∕2m2

0

Z
d 3ke−k

2r2
C jϱ̃�k�j2k ⊗ k; (12a)

Arot �
r3C

π3∕2m2
0

Z
d 3ke−k

2r2
C �k × ∇kϱ̃�k�� ⊗ �k × ∇kϱ̃�k��;

(12b)

account for the nonspherical shape of the matter density. They
naturally generalize the geometry factor for momentum
diffusion in a single spatial direction, as defined in Ref. [24].

A. Azimuthally Symmetric Bodies

The tensors Acm and Arot share the symmetries of the mass den-
sity ϱ�r�. In particular, for an azimuthally symmetric body also
invariant under spatial inversion, like a cylinder or a spheroid,
the geometry tensors have the general forms

Acm � 2r2C
λCℏ2 �D⊥1� �D∥ − D⊥�e3 ⊗ e3�; (13a)

Arot �
2Drot

λCℏ2 �e1 ⊗ e1 � e2 ⊗ e2�; (13b)

where we chose the symmetry axis to point in direction e3.
As demonstrated below, the constants D∥, D⊥, and Drot are

diffusion coefficients. For cylindrical bodies, they are specified
in Appendix A.

Plugging Eq. (12) into Eq. (11) leads to the localization rates

F cm�R;Ω0� �
D⊥

ℏ2 R2 � D∥ − D⊥

ℏ2 �R ·m�Ω0��2; (14a)

F rot�Ω;Ω 0� � Drot

ℏ2 jm�Ω� ×m�Ω 0�j2: (14b)

The corresponding master equation reads

∂tρ � −
i
ℏ
�H; ρ� − D⊥

ℏ2

X3
i�1

�Ri;cm; �Ri;cm; ρ��

−
D∥ − D⊥

ℏ2 �Rcm ·m�Ω0�; �Rcm ·m�Ω0�; ρ��

−
15Drot

4ℏ2

Z
S2

d2n
4π

��n ·m�bΩ��2; ��n ·m�bΩ��2; ρ��: (15)

It describes linear- and angular-momentum diffusion [48],
as discussed next.

B. Heating Rates

In order to demonstrate that the master Eq. (15) indeed de-
scribes linear- and angular-momentum diffusion, we note that
the expectation values of the linear momentum operator Pcm

and of the angular momentum operator J [48] are conserved,

∂thPcmi � 0; ∂thJi � 0; (16a)

while the second moments increase linearly with time,

∂thP2
cmi � 2D∥ � 4D⊥; ∂thJ2i � 4Drot: (16b)

This follows with the canonical commutation relations by
direct calculation. The linear- and angular-momentum heating
rates are thus fully determined by the diffusion coefficients.

In Fig. 2, we show the diffusion coefficients of the cylindri-
cal bodies as a function of the localization length rC.
Remarkably, the angular-momentum diffusion is stronger for
long rods than for flat discs of the same volume, since the dif-
fusion coefficient of disks is bounded, Drot � λCℏ2M 2∕4m2

0 as
R∕rC → ∞, while for long rods we find the asymptotic behav-
ior Drot ∼

ffiffiffi
π

p
λCLℏ2M 2∕24rCm2

0 as L∕rC → ∞. We note that
the diffusion constants of spheroidal particles agree qualitatively
with those of cylinders.

An important feature of the spatio-orientational localization,
as compared to pure center-of-mass localization, is that the lin-
ear- and the angular-momentum diffusion coefficients depend
differently on the CSL parameters λC and rC even for small
particles L∕rC ≪ 1. Specifically, for small nanoparticles, we
have Drot ∝ λC∕r4C, while Dcm ∝ λC∕r2C. Thus, simultaneously
measuring the linear- and angular-momentum diffusion coef-
ficients of a levitated nanorotor would allow one to determine
both the CSL parameters in a single experiment (provided that
environmental decoherence can be controlled). This is illus-
trated in Fig. 3, where we show how the CSL localization rate
λC and the CSL length rC would be extracted from a hypotheti-
cal measurement of the heating rates Γcm � 2D⊥∕M �
10−8 K∕s and Γrot � 2Drot∕I � 10−10 K∕s of a silicon
spheroid.
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4. PLANAR ROTATIONS

As a simple and exactly solvable application, we study the impact
of the CSL modification on the rotational dynamics of the planar
rotor with inversion symmetry and a single orientational degree
of freedom α ∈ �−π; π�. The respective master equation can be
obtained from Eq. (15) by tracing out the center-of-mass degrees
of freedom and restricting the rotations to the e1 − e2 plane,

∂tρ�−
i
ℏ

�
p2α
2I

;ρ
�
�2Drot

ℏ2π

Z
2π

0

dϕ�cos2�ϕ−bα�ρcos2�ϕ−bα�
−
1

2
fcos4�ϕ−bα�;ρg�: (17)

Here, I denotes the moment of inertia, and pα � J · e3.

The master Eq. (17) can be conveniently expressed in phase
space by defining the Wigner function for the orientation state
[50,51],

w�α; m� �
Z

π

−π

dα 0

2π
eimα 0 hα − α 0∕2jρjα� α 0∕2i; (18)

where the angular-momentum numbers m are restricted to dis-
crete values, m ∈ Z. This Wigner function, as a special case of
the Wigner function for general orientation states [52], is real,
normalized, and gives the correct marginals. The resulting
quantum Liouville equation takes on the form

∂tw�α; m� �
ℏm
I

∂αw�α; m�

� Drot

w�α; m − 2� − 2w�α; m� � w�α; m� 2�
�2ℏ�2 : (19)

The CSL modification thus enters in the discretized form of a
second-order angular-momentum derivative. The fact that only
the next-to-nearest angular-momentum quantum numbers m
are coupled is due to the inversion symmetry of the rotor.

The solution of Eq. (19) with the initial condition w0�α; m�
can be explicitly given as

w�α;m; t� �
X
l∈Z

Z
π

−π
dα 0w0

�
α − α 0 −

ℏmt
I

;m − 2l
�
T t�α 0;l�:

(20)

The kernel

T t�α 0;l� � e−Drott∕2ℏ2

2π

X
k∈Z

eik�α 0�lℏt∕I�Il

�
Drott
2ℏ2 sinc

�
ℏkt
I

��
;

(21)

which involves the modified Bessel functions Il�·�, preserves
the normalization of w�α; m; t�. In the limit of vanishing
diffusion, Drot ≈ 0, Eq. (20) describes the classical shearing
of the Wigner function, T t�α 0;l� ≈ δ�α 0�δl0.

Angular-momentum diffusion broadens the momentum distri-
bution since the energy increases linearly with time, ∂thp2α∕2Ii �
Drot∕I , which in turn enhances the orientational spread. This
is demonstrated in Fig. 4 for the initial superposition state
ψ0�α� ∝ exp�− cos2 α∕4σ2α� with the Wigner function,

Fig. 3. Measuring CSL parameters by simultaneous observation of
center-of-mass and angular-momentum diffusion: the red and black
line represents the lower bound on the CSL localization rate found
by a hypothetical measurement of the heating rates Γcm � 2D⊥∕M �
10−8 K∕s and Γrot � 2Drot∕I � 10−10 K∕s of a silicon spheroid with
length L � 100 nm and radius R � 5 nm. This would exclude all
CSL parameters from the blue hatched area. Provided all other sources
of environmental decoherence are accounted for, the unassigned dif-
fusion can be attributed to CSL. The light red and light gray shaded
areas indicate the measurement error associated with the inferred CSL
rate. The intersection of both lines allows one to extract the individual
values of rC and λC in a single experiment, as shown by the dark
red area.

(a) (b) (c)

Fig. 2. CSL-induced diffusion constants D⊥; D∥, and Drot for a rigid cylinder as a function of the localization length rC. The black solid curve
corresponds to a cylinder with minimal anisotropy, L∕R � ffiffiffi

3
p

, the blue dotted lines to a rod with L∕R � 8
ffiffiffi
3

p
, and the red dashed curves to a disc

with L∕R � ffiffiffi
3

p
∕8. The volume is kept constant to ensure comparability, V � ffiffiffi

3
p

πR3
0. (a) and (b) The linear momentum diffusion coefficients

depend strongly on the shape of the nanoparticle and are maximal for diffusion perpendicular to the main extension of the nanoparticle. (c) The
angular momentum diffusion coefficient is minimal for a cylinder with an isotropic tensor of inertia, L∕R � ffiffiffi

3
p

, and increases with the increasing
cylinder length L. In contrast, Drot is bounded from above for discs (horizontal red line), as discussed in the text.
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w0�α; m� �
�−1�m
N

Im

�
cos�2α�
4σ2α

�
; (22)

where the normalization is N � 2πI 0�1∕4σ2α�.
In order to quantify how the orientational spread increases

due to the CSL modification, we evaluate the variance
σ2C�t� � 1 − he�bα�i2t , with e�α� � �cos α; sin α� the unit
vector in the plane [53]. Equation (20) yields

σ2C�t� � 1 − �1 − σ20�t�� exp
	
−
Drott
2ℏ2

�
1 − sinc

�
2ℏt
I

��

:

(23)

The unperturbed variance

σ20�t� � 1 −

��
cos

�bα� ℏmt
I

��
2

0

�
�
sin

�bα� ℏmt
I

��
2

0

�
(24)

is here evaluated with respect to the initial state.
One observes from Eq. (24) that in the absence of CSL,

Drot � 0, the initial variance recurs at integer multiples of
the revival time πI∕ℏ. Equation (23) shows that the CSL modi-
fication suppresses these revivals on the time scale 2ℏ2∕Drot. As
evident from Eq. (23), the CSL modification enhances the
orientational spread at all times.

5. CONCLUSION

The master equation derived in this paper shows how the ori-
entational localization induced by the CSL model leads to a
heating of the center-of-mass and the rotational motion.
The associated diffusion of the linear and the angular
momentum can be conveniently expressed in terms of geom-
etry tensors involving the form factor. For the special case of

planar rotations, we illustrated how the CSL modification
can suppress quantum behavior and lead to an appreciable
enhancement of the orientational spread.

Our work clarifies the role of the nonspherical shape of a
nanoparticle and shows that strong anisotropies can contribute
substantially to the CSL-induced heating of its motion.
Remarkably, we find that the combined measurement of trans-
lational and rotational heating of a single particle would allow
one to determine the individual CSL parameters even if the
particle is small compared to the CSL localization length.

APPENDIX A: DIFFUSION COEFFICIENTS FOR
CYLINDERS

A calculation of the diffusion coefficients D⊥; D∥, and Drot as
defined in Eq. (23) for a cylinder of length L and radius R yields

D∥ �
λCℏ2

2r2C

M 2

m2
0R

2
CL

2
C

h1�LC�f1 − e−R2
C �I0�R2

C� � I 1�R2
C��g;

(A1a)

D⊥ � λCℏ2

2r2C

M 2

m2
0R

2
CL

2
C

h2�LC�e−R2
CI 1�R2

C�; (A1b)

Drot �
λCℏ2

2

M 2

m2
0R

2
CL

2
C

�
R2
C

2
h1�LC�

	
1 − 2e−R

2
C

�
I 0�R2

C�

�
�
1 −

5

3R2
C

�
I1�R2

C�
�


� L2C
3
e−R

2
CI1�R2

C��h2�LC� − 2�

�f1 − e−R2
C �I0�R2

C� � 2I 1�R2
C��g�h1�LC� − h2�LC��

�
;

(A1c)

Fig. 4. Time evolution [Eq. (16)] of the initial planar rotor state [Eq. (17)] with width σα � 0.1 and CSL angular-momentum diffusion constant
Drot � 103ℏ3∕I . We show theWigner functions (density plot), and their marginals p�α� � P

mw�α; m; t� and p�m� �
R
dαw�α; m; t� (black lines)

for the times t0 � 0, t1 � 2π × 10−2I∕ℏ, and t2 � 4π × 10−2I∕ℏ. For comparison, the blue lines depict the marginal distributions without CSL
modification.
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where I 0�·�; I1�·� denote modified Bessel functions. We
abbreviated RC � R∕

ffiffiffi
2

p
rC, LC � L∕2rC,

h1�LC� � 1 − e−L
2
C ; and

h2�LC� �
ffiffiffi
π

p
LC erf �LC� − h1�LC�; (A2)

with erf �·�, the error function. In the limit of thin disks,
R∕rC → ∞, at a constant volume πR2L, the rotational diffu-
sion coefficient approaches Drot → λCℏ2M 2∕4m2

0, while in the
case of long rods, we have Drot ∼

ffiffiffi
π

p
λCℏ2M 2L∕24m2

0rC as
L∕rC → ∞. Note that the spatial diffusion coefficient along
the cylinder’s symmetry axis [Eq. (A1a)] was already derived
in [24].
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