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Abstract. We introduce a boundary integral method for two-dimensional quantum billiards
subjected to a constant magnetic field. It allows us to calculate spectra and wavefunctions,
in particular at strong fields and semiclassical values of the magnetic length. The method is
presented for interior and exterior problems with general boundary conditions. We explain why
the magnetic analogues of the field-free single- and double-layer equations exhibit an infinity of
spurious solutions and how these can be eliminated at the expense of dealing with (hyper-)singular
operators. The high efficiency of the method is demonstrated by numerical calculations in the
extreme semiclassical regime.

1. Introduction

Magnetic billiards are systems of a confined, charged particle in a constant magnetic field. In
mesoscopic physics they serve as models to explain shape-dependent features of nanoscale
devices [1, 2], such as quantum dots. In quantum chaos they are studied as natural extensions
of planar billiards [3–6]. These systems are particularly suited for the study of semiclassical
effects (both theoretically [7–9] and in experiments [10–12]) since the field strength which
essentially determines the scale of quantum effects is a free parameter.

The presence of a Lorentz force severely affects the classical, two-dimensional billiard
dynamics. The criteria for hyperbolicity are altered [5, 6]. For strong enough fields closed
cyclotron orbits occur, while other trajectories perform a skipping motion along the billiard
boundary. Most significantly, the exterior dynamics where the billiard boundary acts as an
obstacle from outside is not a scattering problem as in the field-free case but exhibits bounded
skipping motion around the billiard.

The magnetic quantum spectra and wavefunctions reflect these classical properties. For
strong fields a separation takes place in the spectrum. Close to the energies of the Landau
levels one finds bulk states which correspond to a free cyclotron motion of the particle. In
addition, edge states appear which are localized at the boundary, corresponding to a skipping
motion along it. Unlike the field-free case, the spectrum is also purely discrete in the exterior,
with accumulation points at the energies of the Landau levels.

From a technical point of view, calculations of spectra and wavefunctions are considerably
more difficult with a magnetic field present. So far, they have been mostly realized by
diagonalizing the Hamiltonian [13–16]. This requires the choice and truncation of a basis which
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is problematic in the general case when no natural basis exists. It explains why calculations
of exterior wavefunctions were not even attempted.

The spectra of field-free billiards are usually calculated by transforming the eigenvalue
problem into an integral equation of lower dimension. The corresponding integral operator is
defined in terms of the free Green function and depends only on the boundary. This boundary
integral method is known to be more efficient than diagonalization by an order of magnitude
and avoids the arbitrariness of choosing and truncating a basis.

It seems natural to extend these ideas to the magnetic problem. A step in this direction
was taken by Tiago et al [17] who essentially propose a null-field method [18] which involves
the irregular Green function in the angular momentum decomposition. A drawback of their
approach is that the latter function must be known for large angular momenta which is
practically inaccessible numerically.

In this paper we propose a boundary integral method for two-dimensional magnetic
billiards. It involves the regular Green function in the position space representation. We
derive the method for both the interior and the exterior problem and for general boundary
conditions which include the Dirichlet and Neumann choice as special cases. The method
allows us to calculate for the first time spectra and wavefunctions of magnetic billiards for
arbitrary fields and semiclassical values of the magnetic length. Thousands of consecutive
energy levels may be calculated to high precision with moderate numerical effort.

1.1. Outline

For field-free billiards two independent boundary integral equations are known. In section 2
we derive their magnetic analogues in a gauge-invariant formulation. It is shown that, unlike in
the field-free case, each of these equations yields only a necessary but not a sufficient condition
for the definition of the spectra. In other words, each equation admits spurious solutions. We
will identify the physical origin of the latter and propose a way to avoid them at the expense
of dealing with singular (and possibly even hypersingular [19]) operators.

The explicit form of the integral operators is presented in section 3 where we also discuss
the nature of the singularities. In section 4 it is shown how the integral equations may be solved
by treating the singular parts of the operators analytically. This leaves the remaining problem
in a form suitable for numerical treatment. Its implementation is sketched in section 5 together
with a discussion of the numerical convergence and the attainable accuracy.

Finally, we demonstrate the power of the proposed method in section 6 where we study
spectral statistics using several thousand levels and present interior and exterior wavefunctions
in the quasiclassical regime.

1.2. Preliminaries

We are interested in the spectrum of a charged particle constrained to a compact domain D ∈ R
2

which is subject to a constant, perpendicular magnetic field of strength B. Alternatively, one
may consider the complementary situation by constraining the particle to the exterior R

2 \ ◦◦◦D.
Unlike the nonmagnetic case the exterior spectrum is discrete, with accumulation points at the
Landau levels.

The stationary Schrödinger equation reads

1

2m
(−ih̄∇r − qA(r))2ψ(r) = Eψ(r). (1)

where m, q, and E are mass, charge, and energy of the particle, respectively. The vector
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potential may be written in terms of the symmetric gauge Asym,

A(r) = Asym(r) + ∇χ(r) := B

2
reϑ + ∇χ(r) (2)

where χ accounts for the gauge freedom which we shall limit to Coulomb-type ∇2χ(r) = 0.
We assume the domain boundary � = ∂D to be smooth and choose its normals n(r) to

point outwards (i.e. into R
2 \ D). Keeping their orientation fixed will allow us to distinguish

the interior and the exterior problem.
The number of parameters (E,B, h̄, q,m) in (2) can be reduced. Scaling time by the

Larmor frequency ω = qB/(2m), one is left with two length scales,

ρ2 = E

2mω2
and b2 = h̄

mω
(3)

as the only parameters describing the system. ρ is the classical cyclotron radius whereas the
magnetic length b has a pure quantum meaning. It gives the mean radius of a bulk ground
state. The scaled energy may be expressed in terms of the spacing between Landau levels

ν = E

2h̄ω
= ρ2

b2
. (4)

The expression for the (unscaled) wave number k = √
2mE/h̄ = 2ρ/b2 shows that there

are two distinct short-wave limits: The high-energy limit ρ → ∞ and the semiclassical limit
b → 0. The former corresponds to increasing the energy at fixed magnetic field while in the
semiclassical limit one increases both energy and field, keeping ρ fixed. It is important to
distinguish between these limits. The high-energy direction is the simpler one because the
dynamical effect of the magnetic field tends to vanish. However, for semiclassical studies the
latter direction is the proper choice because it leaves the classical dynamics unaffected.

For most of the numerical demonstrations in section 6 the magnetic length b is chosen
as the spectral variable in order to present the boundary integral method in the nontrivial
limit. Therefore, to show clearly the dependence of the equations on b we do not introduce
dimensionless variables for the scaled positions r/b. However, we facilitate the replacement by
dimensionless variables by stating all expressions (including the scaled gradient ∇r/b := b∇r )
in terms of that quotient.

2. Derivation of the boundary integral equations

In this section two magnetic boundary integral equations are derived. We show why they
have spurious solutions and how to avoid this by constructing a combined boundary integral
equation.

2.1. Single- and double-layer equations

The quantum wavefunction ψ ∈ L2(R
2) is defined by its differential equation

( 1
2 [−i∇r/b − Ã(r)]2 − 2ν)ψ(r) = 0 (5)

and a specification of boundary conditions. We shall employ general gauge-invariant boundary
conditions,

ψ = ±λ
b
(∂n/bψ − iÃnψ) r ∈ � (6)

with Ã = 2/(Bb)A(r), Ãn = n(r)Ã, ∂n/b := n(r)∇r/b := bn(r)∇r .
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Here, λ (which may be a function of the position on the boundary) interpolates between
Dirichlet boundary conditions (λ = 0) and the Neumann case (λ−1 = 0). Equation (6) is a
generalization of the mixed boundary conditions known for the Helmholtz problem [20–22]. It
implies that the normal component of the current density operator ̃n = Im(ψ∗∂n/bψ)−Ãn|ψ |2
vanishes for any λ. The lower sign in (6) corresponds to the exterior problem.

We mention in passing that another type of boundary condition for magnetic billiards was
proposed recently [23].

The Green function satisfies the inhomogeneous equation(
1

2
[−i∇r/b − Ã(r)]2 − 2ν

)
G(r; r0) = −1

2
δ

(
r − r0

b

)
. (7)

Its properties are described in appendix A. Note that it does not depend on the difference vector
(r − r0) alone but has a gauge-dependent phase,

G(r; r0) = exp

[
−i

(
r × r0

b2
− χ̃(r) + χ̃(r)

)]
G0
ν

(
(r − r0)

2

b2

)
. (8)

We take G to be the free regular Green function by demanding

lim
z→∞ G0

ν(z) = 0 (9)

which specifies G uniquely as the Fourier transform of the free time evolution operator. As
one expects, the regular Green function decays exponentially once the points are separated by
a distance, |(r − r0)| > 2ρ, which cannot be traversed classically. An independent solution
to (7) exists which grows exponentially beyond this classically allowed region. It may be
called an irregular free Green function and was used in the null-field method approach [17] for
reasons to be explained below. In the following only the regular Green function will be used.

We start by considering the interior problem. The treatment of the exterior case is sketched
afterwards. Equations (5) and (7) can be combined to yield a form suitable for the Green and
Gauss integral theorems,

ψ∇2
r/bG − G∇2

r/bψ + 2i∇r/b(ÃψG) = ψδ
(

r − r0

b

)
(10)

where the bar indicates complex conjugation. Choosing r0 ∈ R
2 \�, the integral of (10) over

the domain D may be transformed to a boundary integral,∫
�

[ψ∂n/bG − G∂n/bψ + 2iÃnψG]
d�

b
=
{
ψ(r0) if r0 ∈ ◦◦◦D
0 if r0 ∈ R

2 \ D (11)

corresponding to the interior problem. Next, the vector potential part of the integrand is split,∫
�

[ψ(∂n/bG + iÃnG)− G(∂n/bψ − iÃnψ)]
d�

b
=
{
ψ(r0) if r0 ∈ ◦◦◦D
0 if r0 ∈ R

2 \ D (12)

which will allow for a gauge-invariant formulation of the boundary integral equation. Taking
r0 ∈ �, r±

0 := r0 ± εn0 with ε > 0, we add the two equations above to obtain∫
�

[ψ(∂̂εn/bG + iÃnĜ
ε)− Ĝε(∂n/bψ − iÃnψ))]

d�

b
= 1

2ψ(r
−
0 ). (13)

Here we have introduced the abbreviations Ĝε = 1
2 G(r; r+

0 ) + 1
2 G(r; r−

0 ), ∂̂
ε
n/bG =

1
2∂n/bG(r; r+

0 ) + 1
2∂n/bG(r; r−

0 ). Equation (13) is true for all (sufficiently small) ε > 0 which
means that the limit ε → 0 exists. Moreover, it can be shown that one is allowed to exchange the
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integration with the limit (Ĝε → G, ∂̂εn/bG → ∂n/bG). Observing the boundary condition (6)

and renaming the unknown function, u = ∂n/bψ − iÃnψ , u0 := u(r0) we get∫
�

[
G − λ

b
(∂n/bG + iÃnG)

]
u

d�

b
= λ

b

(
−1

2
u0

)
(14)

which is an integral equation defined on the boundary �.
In order to obtain the corresponding equation for the exterior problem consider a large

disc Kp ⊃ D of radius p and integrate (10) over K ∩ ◦◦◦D. Once r0 is in the vicinity of �, the
contribution of ∂K to the boundary integral vanishes as p → ∞ due to the exponential decay
of G (since ψ ∈ L2). Similar to (13) one obtains an equation

−
∫
�

[ψ(∂̂εn/bG + iÃnĜ
ε)− Ĝε(∂n/bψ − iÃnψ)]

d�

b
= 1

2ψ(r
+
0 ) (15)

which allows for the limit ε → 0 to be taken before performing the integration. The resulting
boundary integral equation differs from (14) only by a sign. In the following, we treat both
cases simultaneously with the convention that the upper sign stands for the interior problem
and the lower sign for the exterior case:∫

�

[
G ∓ λ

b
(∂n/bG + iÃnG)

]
u

d�

b
= λ

b

(
−1

2
u0

)
. (16)

For historical reasons [24], we will refer to these equations as the single-layer equations for
the interior and the exterior domain.

A second kind of boundary integral equations can be derived by applying the differential
operator (∂n0/b − iÃn0) := n(r0)(∇r0/b − iÃ(r0)) on equations (13) and (15),∫
�

ψ(∂n0/b − iÃn0)(∂̂
ε
n/bG + iÃnĜ

ε)
d�

b
−
∫
�

(∂̂εn0/b
G − iÃn0 Ĝε)(∂n/bψ − iÃnψ)

d�

b

= ± 1
2 (∂n0/b − iÃn0)ψ(r

∓
 ). (17)

This equation is true for all ε > 0 which means that the limit ε → 0 exists. As for the
first integral, we are again allowed to permute the limit and the integration which yields a
proper integral. Consequently, the limit of the second integral is finite, too. However, in the
second integral we are not allowed to exchange the integration with taking the limit because
the limiting integrand has a 1/(r − r0)

2 singularity which is not integrable.
Integral operators of this kind are named hypersingular [19]. Similar to a Cauchy principal

value integral, they are defined by taking a special limit. However, in the present case the
singularity is stronger by one order. In the next section, we define which limit is to be taken.
It is denoted by =∫ and should be read ‘finite part of the integral’. With this concept and (6) we
obtain the double-layer equations,∫
�

(∂n0/bG − iÃn0 G)u
d�

b
∓ λ
b

=
∫
�

(∂n0/b − iÃn0)(∂n/bG + iÃnG)u
d�

b
= ∓ 1

2u0 (18)

which are again integral equations defined on the boundary �.
It is useful to introduce a set of integral operators, (whose labels D and N indicate

correspondence to pure Dirichlet or Neumann conditions)

QD
sl[u] =

∫
�

d�Gu

QN
sl [u] =

∫
�

d�

b
(∂n/bG + iÃnG)u

QD
dl[u] =

∫
�

d�

b
(∂n0/bG − iÃn0 G)u

QN
dl[u] ==

∫
�

d�

b2
(∂n0/b − iÃn0)(∂n/bG + iÃnG)u.

(19)
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In this way, the requirement of the existence of nontrivial solutions of equations (16) and (18)
is equivalent to demanding that the corresponding Fredholm determinants vanish,

det

[
QD

sl ∓ λQN
sl +
λ

2
id

]
= 0 (single layer) (20)

det

[
QD

dl ∓ λQN
dl ± 1

2
id

]
= 0 (double layer). (21)

These are secular equations although the explicit dependence on the spectral variable is not
shown in our abbreviated notation. If one chooses ρ as the spectral variable, only the energy
parameter ν = ρ2/b2 of the Green function is varied. Taking b as spectral variable will in
addition change the intrinsic length scale.

As mentioned already, each of the determinants (20) and (21) may have zeros which do
not correspond to solutions of the original eigenvalue problem given by (5) and (6). For finite
ε the equations (13), (15), and (17) are still equivalent to the latter. They acquire additional
spurious solutions only as they are transformed to boundary integral equations by the limit
ε → 0.

2.2. Spurious solutions and the combined operator

The physical origin of the redundant zeros is apparent in our gauge invariant formulation.
They are proper solutions for the domain complementary to the one considered. This is
obvious for the single-layer equation with Dirichlet boundary conditions (λ = 0) where the
spectral determinant does not depend on the orientation of the normals. The same is true for
the double-layer equation with Neumann boundary conditions (λ−1 = 0).

In general, the character of the spurious solutions may be summarized as follows:
independently of the boundary conditions, the single layer equation includes the Dirichlet
solutions of that domain which is complementary to the one considered. Likewise, the double
layer equation is polluted by the Neumann solutions of the complementary domain, irrespective
of the boundary conditions employed.

The statement is easily proved by observing that the single-layer Neumann operator and
the double-layer Dirichlet operator are adjoint to each other, QN

sl = (QD
dl)

†, while the operators
QD

sl and QN
dl are self-adjoint. This is shown explicitly in the next section. Now assume that u

is a complementary Dirichlet solution. In Dirac notation,

QD
sl |u〉 = 0 ∧ QD

dl|u〉 ∓ 1
2 |u〉 = 0

⇒ 〈u|QD
sl = 0 ∧ 〈u|QN

sl ∓ 1
2 〈u| = 0.

(22)

Applying the dual of u to the single-layer operator yields

〈u|QD
sl ∓ λ{〈u|QN

sl ∓ 1
2 〈u|} = 0 (23)

which implies that the Fredholm determinant of the single-layer operator vanishes. Similarly,
if u is a complementary Neumann solution,

±QN
sl |u〉 + 1

2 |u〉 = 0 ∧ QN
dl|u〉 = 0

⇒ ± 〈u|QD
dl + 1

2 〈u| = 0 ∧ 〈u|QN
dl = 0

(24)

then its dual satisfies the double-layer equation, again for any λ,

±{±〈u|QD
dl + 1

2 〈u|} ∓ λ〈u|QN
dl = 0. (25)

Since the spurious solutions are never of the same type it is possible to dispose of them by
requiring that both the single- and the double-layer equations should be satisfied by the same
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solution u. Therefore, one obtains a necessary and sufficient condition for the definition of the
spectrum by considering a combined operator

Q±
c :=

(
QD

dl ∓ λQN
dl ± 1

2
id

)
+ iα

(
QD

sl ∓ λQN
sl +
λ

2
id

)
(26)

with an arbitrary constant α. It has a zero eigenvalue only if both single- and double-layer
operators do so. The choice (26) works very well in practice as will be shown below.

It seems natural to require that both the single- and the double-layer equation must
be satisfied to determine a proper eigenvalue. The original equation (11) consists of two
independent conditions (r0 ∈ ◦◦◦D and r0 ∈ R

2 \ D). Only for special situations, such as the
field-free problem, are the two conditions equivalent so that each of them singly provides the
correct spectrum. For a discussion of the field-free case see, for example, [25, 26].

It is interesting to note that (for the interior problem) spurious solutions will not appear
if one uses the irregular Green function. The reason is that the gauge-independent part of this
function is complex which destroys the mutual adjointness of the operators. This is why the
irregular Green function had to be chosen for the null-field method employed in [17]. For
the boundary integral method the option to use this exponentially divergent solution of (7) is
excluded since the corresponding operator would get arbitrarily ill-conditioned once the size
of the boundary exceeds the cyclotron diameter.

Our last remark is concerned with the important case of Dirichlet boundary conditions.
Here, one could as well derive a pair of boundary integral equations that are not gauge invariant.
(Just set ψ = 0 in (11) and consider u = ∂n/bψ .) Of course, these equations would yield the
proper gauge-invariant eigenenergies of the problem. However, the energies of the additional
spurious solutions would depend on the chosen gauge and a characterization of the latter in
terms of solutions of a complementary problem would not be possible.

3. The boundary integral operators

In this section we give explicit expressions for the boundary integrals. This allows us to define
the ‘finite-part integral’ appearing in the double-layer equation.

3.1. Explicit expression for the integral kernels

The form of the Green function (8) leads to the following expressions for the integral
kernels Q(r; r0) of the operators (19), (Q[u])(r0) = ∫

�
d�Q(r; r0)u(r), with n = n(r),

n0 = n(r0), !r := (r − r0), and z := !r2/b2:

QD
sl(r; r0) = exp

[
i

(
r × r0

b2
− χ̃(r) + χ̃(r)

)]
G0
ν(z) (27)

QN
sl(r; r0) = exp

[
i

(
r × r0

b2
− χ̃(r) + χ̃(r)

)]{
i
!r × n

b2
G0
ν(z) + 2

!rn

!r2
z

d

dz
G0
ν(z)

}
(28)

QD
dl(r; r0) = exp

[
i

(
r × r0

b2
− χ̃(r) + χ̃(r)

)]{
i
!r × n

b2
G0
ν(z)− 2

!rn0

!r2
z

d

dz
G0
ν(z)

}
(29)

QN
dl(r; r0) = exp

[
i

(
r × r0

b2
−χ̃(r) + χ̃(r)

)]{(
− (!r × n0)(!r × n)

b4
+ i

n × n0

b2

)
G0
ν(z)

+

(
2i

n × n0

b2
− 2

nn0

!r2

)
z

d

dz
G0
ν(z)− 4

(!rn)(!rn0)

!r4
z2 d2

dz2
G0
ν(z)

}
. (30)

Note that the gauge freedom χ cancels in the prefactors and only appears in the phase. It can
be absorbed by the function u(r)→ exp(−iχ(r))u(r) proving the manifest gauge invariance
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of the boundary integral equations (16), (18). It can also be seen easily that expressions (28)
and (29) are related by a permutation of r and r0 with subsequent complex conjugation (since
G0
ν is real), i.e. the operators are the adjoints of each other. The self-adjoint nature of (27)

and (30) follows likewise.
The gauge-independent part of the Green function, G0

ν , has a logarithmic singularity at
r = r0. Its derivatives appearing in (28)–(30) can be expressed in terms of G0

ν itself, at different
energies ν, and may be found in (A.8), (A.9) of appendix A. They are bounded as r → r0. In
that limit most of the quotients vanish for a smooth boundary; others tend to the curvature κ0

at the boundary point r0 (defined to be positive for convex domains),

lim
r→r0

(r − r0)n

(r − r0)2
= κ0

2
lim
r→r0

(r − r0)n

(r − r0)2
= −κ0

2
. (31)

As a consequence, all the terms in (27)–(30) are integrable but for the one containing the
(nn0)/!r2 singularity. The latter gives rise to the need for a finite-part integral.

3.2. The hypersingular integral operator

For finite λ the double-layer equation contains a hypersingular integral defined as

QN
dl[u] ==

∫
�

d�

b2
(∂n0/b − iÃn0)(∂n/bG + iÃnG)u

:= lim
ε→0

∫
�

d�

b2
(∂n0/b − iÃn0)(∂̂

ε
n/bG + iÃnĜ

ε)u. (32)

We want to replace the integrand by its limiting form. To this end the boundary is split into
the part γcε within a (cε)-vicinity around r0 (with arbitrary constant c) and the remaining part
�cε,

= lim
ε→0

[ ∫
�cε

d�

b2
(∂n0/b − iÃn0)(∂̂

ε
n/bG + iÃnĜ

ε)u

+
∫
γcε

d�

b2
(∂n0/b − iÃn0)(∂̂

ε
n/bG + iÃnĜ

ε)(u− u0)

+u0

∫
γcε

d�

b2
(∂n0/b − iÃn0)(∂̂

ε
n/bG + iÃnĜ

ε)

]
(33)

with u0 := u(r0). For sufficiently small ε the boundary piece γcε may be replaced by its
tangent and the Green function by its asymptotic expression, see appendix A. In this way the
third integral in (33) may be evaluated to its contributing order:∫
γcε

d�

b2
(∂n0/b − iÃn0)(∂̂

ε
n/bG + iÃnĜ

ε)

= 1

4π

∫ cε

−cε
ds cos

(r0n0

b2
s
)

cos

(
ε

(
n0 × r0

b2
− s

))

×
[ −2

s2 + ε2
+ 4

ε2

(s2 + ε2)2

]
+ O(ε2 log ε)

= 1

2π

∫ cε

−cε
ds
ε2 − s2

(s2 + ε2)2
+ O(ε2 log ε) = 1

π

1

cε

c2

c2 + 1
+ O(ε2 log ε)

≈ 1

π

1

cε
+ O(ε2 log ε). (34)

Here, the explicit form of the integrand was obtained from (30) by the replacement r0 → r±
0 .

The last approximation in (34) holds because c may be chosen arbitrarily large. In a similar



Boundary integral method for magnetic billiards 2837

fashion it can be shown that the second integral in (33) is of order O(ε). In the first integral
we may replace (again for large c) the integrand by its limit because ε is small compared with
min(|r − r0|) = cε. Therefore, the limit in (32) may be expressed as

=
∫
�

d�

b2
(∂n0/b − iÃn0)(∂n/b + iÃn)Gu

= lim
ε→0

[ ∫
�ε

d�

b2
(∂n0/b − iÃn0)(∂n/bG + iÃnG)u + u0

1

πε

]
(35)

where we replaced cε by ε. This equation defines the finite-part integral. It completes the
derivation of the boundary integral equations and we may now turn to the question of how to
solve them.

4. Solving the integral equations

As shown above, the integral equations (16) and (18) may be used to compute spectra of
magnetic billiards. However, the corresponding integral kernels are not yet suitable for
numerical evaluation. In this section we show how their asymptotically singular behaviour
may be separated and be treated analytically.

In the following the combined integral equation as defined by (26) will be considered.
The corresponding expressions for the pure double-layer or single-layer case may be obtained
easily by setting α = 0 or α−1 = 0, respectively. We also take the opportunity to regularize
the integral equations. At the energies of the Landau levels, νn = n + 1

2 , n ∈ N0, they are
defined only by the limit ν → νn, so far. This is because the Green function is singular at the
energies νn. These simple poles are removed by multiplying the equations with cos(πν) and
taking the limiting values at νn.

For convenience we assumeλ to be constant on� and the domain D to be simply connected.
Let its boundary of length L = |�| be parametrized by the arc length s,

� : s ∈ [0; L] �→ r(s) with
dr(s)

ds
:= t(s) =

(−ny(s)
nx(s)

)
(36)

which allows us to write the (regularized) integral kernel

q(s, s0) := cos(πν)[QD
dl(rs; rs0) + iαQD

sl(rs; rs0)∓ λ(QN
dl(rs; rs0) + iαQN

sl(rs; rs0))] (37)

with rs := r(s). After an expansion of the boundary around r(s0),

r(s) = r0 + (s − s0)t0 − κ0

2
(s − s0)2n0 + O((s − s0)3) (38)

one obtains, observing (27)–(30), the asymptotic behaviour for small s ′ = s − s0:

q(s0 + s ′, s0) := ei rs×r0
b2

{
∓ λcos(πν)

2π

−1

s ′2

+

[
− i
s ′

b2
+ iα ∓ λ

(
2ν

b2
+ (α − iκ0)

s ′

b2

)]
Lν

(
s ′2

b2

)

+

[
κ0 ∓ λ

(
− 2

ν

b2
+ iακ0

)]
cos(πν)

4π
+ O(s ′2 log s ′2)

}
. (39)

The necessary asymptotic expansions for the gauge-independent part of the Green function and
its derivatives may be found in appendix A. Lν describes the asymptotically logarithmic form
of the Green function and is defined in (A.7). Note that due to the quotient 1/s ′2 the expansion
of z∂zG0 contributes up to and including order O(s ′2 log s ′2). Similarly, the second-order term
of nn0 = 1 − 1

2κ
2
0 s

′2 + O(s ′3) enters with the effect of cancelling another term.
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Figure 1. (a) Real and (c) imaginary part of the smooth combined integral kernel (42) for fixed
s0 and the case of Neumann boundary conditions. We choose ρ = 0.6 and an elliptic domain (of
eccentricity 0.8 and area A = π , centred on (0.5, 0.25)) at ν = 19 corresponding to the energy
of the ∼1000th interior eigenstate. The boundary point s0 = 0 is that of largest curvature. The
magnifications (b) and (d) around s′ = 0 include the original singular kernel (37) as a dashed curve.

As is apparent from (39), the singularities of the integral kernel are well described by the
functions

m(s, s0) := ∓λ exp

(
i
t0 × r0

b2
(s − s0)

)
cos(πν)

2π

−1

(s − s0)2 (40)

and, for the logarithmic part,

l(s, s0) := exp

(
i
t0 × r0

b2
(s − s0)

)
Lν

(
(s − s0)2
b2

)

×
[

iα − i
(s − s0)
b2

∓ λ
(

2ν

b2
+ (α − iκ0)

(s − s0)
b2

)]
. (41)

It is important to include the terms of order O(s log(s2)) to ensure that the smooth integral
kernel defined as

k(s, s0) := q(s, s0)− g(s − s0)[l(s, s0) + m(s, s0)] (42)

is differentiable at s = s0 (provided the curvature is continuous). Here, g(s ′) is a window
function (with g(0) = 1) which smoothly switches off the singular functions for |s ′| > 0 and
vanishes beyond some small, suitably chosen σ . Figure 1 shows the smooth as well as the
original kernel for a typical choice of the boundary and the energy.

The solution u(s) of the boundary integral equation is periodic and may therefore be
expanded in a Fourier series:

u(s)e−iχ̃(s) =
∞∑

+=−∞
u+e

2π i+s/L. (43)
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As mentioned above, we include the phase due to the gauge freedom χ̃ which amounts to the
choice of the symmetric gauge for the actual calculation. Within the Fourier representation
the Fredholm determinant may be written in the form

det[Kk+ + Lk+ + Mk+ − Lcδk+]k,+∈Z = 0 (44)

with c := (∓ 1
2 − i 1

2αλ) cos(πν). It consists of a double Fourier integral over the smooth
kernel,

Kk+ :=
∫ ∫

L2
ds0 ds e2π i(s+−s0k)/Lk(s, s0) (45)

and two single Fourier integrals,

Lk+ :=
∫

L
ds0 e2π is0(+−k)/LL+(s0) (46)

and

Mk+ :=
∫

L
ds0 e2π is0(+−k)/LM+(s0). (47)

Here, L+(s0) and M+(s0) are (finite part) Fourier integrals over the asymptotic singularities,

L+(s0) =
∫ σ

−σ
ds ′ e2π i+s ′/Lg(s ′)l(s0 + s ′; s0) (48)

and

M+(s0) ==
∫ σ

−σ
ds ′ e2π i+s ′/Lg(s ′)m(s0 + s ′, s0). (49)

They may be calculated analytically, for a suitable window g, yielding smooth functions of
s0. In appendix B the results can be found for

g(s ′) := cos2

(
π

2

s ′

σ

)
(,(s ′ − σ)−,(s ′ + σ)) (50)

where, is the Heaviside step function. With this choice of the window function they are given
in terms of elementary functions and may be evaluated easily.

Having treated the (hyper-)singular features of the boundary integrals analytically, the
remaining problem can be solved efficiently by numerical means.

5. Numerical analysis

In the following, we briefly describe some aspects of the numerical treatment and discuss the
question of numerical accuracy.

The evaluation of the remaining Fourier integrals (45)–(47) must be performed
numerically. Since the integrands are well behaved this may be done by dividing the boundary
into N equidistant pieces and approximating the integrand at each one by its value at the
midpoint. The summations may be performed by a fast-Fourier algorithm. For large enough
N this simple method is more effective than any attempt to evaluate the highly oscillatory
integrals (45)–(47) by more sophisticated schemes.

Due to the Fourier representation the resulting large N × N matrix has a partly diagonal
structure, see figure 2(a). There are off-diagonal elements of appreciable value only within a
sub-block, the size of which is independent ofN . Outside of the sub-block essentially only the
diagonal elements are occupied (the values decay rapidly as one leaves the diagonal). It is the
bulk wavefunctions which are given by the null vectors corresponding to the latter diagonal
Fourier components. These components do not contribute to the other states since they are not
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Figure 2. (a) Matrix Kk+ + Lk+ corresponding to the same choice of parameters as in figure 1
and Dirichlet boundary conditions. Shown are the absolute values of the matrix elements along its
diagonal and neighbouring diagonals. Apart from the diagonal, appreciable values of the matrix
Kk+ + Lk+−Lcδk+ are localized within a sub-block which allows safe truncation. The vertical lines
indicate the typical size after truncation. (b) The three smallest singular values of the matrix around
ν = 19 (at constant ρ = 0.6 corresponding to roughly the 1000th eigenvalue). The minima of the
smallest singular value (solid curve) determine the spectrum to a high accuracy.

coupled to them. As a consequence, the restriction of the matrix to the above-mentioned sub-
block at most removes bulk states, if they exist, out of the numerically calculated spectrum
without affecting other states. Generically, one is not particularly interested in these states
whose energies are exponentially close to the Landau levels. Since the spectrum is modified at
most in a well-controlled way, it is permissible to truncate the matrix to a smaller size Ntrunc.

A small complication arises in the case of finite λ. Due to the hypersingular part, the
diagonal Fourier elements increase linearly as |+| → ∞, see (B.5). The above statements
apply in this case after dividing the matrix (44) columnwise by the asymptotic factor[( 〈t0 × r0〉

b2
+ 2π

+

L

)2

+

(
Si(π)

σ

)2
]1/2

. (51)

Here, 〈t0 × r0〉 is the average (the zeroth Fourier component) of the function t(s0) × r(s0)

defined on the boundary.
The calculation of the spectrum amounts to finding (all) the zeros of the complex-valued

determinant (44) in a given energy range. Numerically, this is the most expensive task, scaling
as N3

trunc. Since the computation of the determinant tends to be unstable around its zeros it is
more advantageous to employ a singular-value decomposition of the matrix which is stable
in any case. The vanishing of a singular value indicates a defective rank of its matrix. Due
to roundoff errors these non-negative quantities are always greater than zero. However, the
spectral points are very well defined by the sharp minima of the lowest singular value as a
function of ν, see figure 2(b). The detection of near degeneracies is made appreciably easier
if one monitors the next smallest singular values too.

In order to calculate the wavefunction ψ0 = ψ(r0 /∈ �) away from the boundary
one may directly use equation (12). The gauge-invariant gradient of the wavefunction,
γ0 := ∇r/bψ0 − iÃ0ψ0, needed for the current density ̃0 = Im[ψ∗

0 γ0] is obtained from
the same equation after the application of the operator ∇r0/b − iÃ0:

ψ0 = ±
∫
�

d�

b

[
±λ
b
(∂n/bG + iÃnG)− G

]
u (52)
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Figure 3. Errors of the ∼1000th interior eigenvalue at ρ = 0.6 as a function of the boundary
discretizationN . (a) Approximate relative error for the elliptic domain of figure 2(b) (the Dirichlet
state closest to ν = 19). Here, the energy for N = 2600 was taken as reference. The numbers
indicate the matrix dimension after truncation which determines the numerical effort. They increase
only weakly with N . (b) Exact relative error of the exterior Neumann energies of a typical
edge state (�,�) and a typical bulk state (�,♦) as a function of N . Here, we use a circular
domain (of area A = π ) which allows us to determine the exact energies (νedge � 19.029 4509,
νbulk � 19.481 6851) independently. The centre of the domain is placed at the origin (�,�) and at
the point (3,0) (�,♦), respectively. One observes that the displacement does not affect the error of
the edge state but increases the error of the bulk state energy systematically. (Note that the graphs
do not have the same scale.)

γ0 = ±
∫
�

d�

b

[
±λ
b
(∇r0/b − iÃ0)(∂n/bG + iÃnG)− (∇r0/bG − iÃ0G)

]
u. (53)

Since the integrands are not singular for r0 /∈ � the integrals may be approximated by a discrete
sum over the N boundary elements without further ado. The densities of other observables
can be obtained by similar boundary integrals.

5.1. Convergence and accuracy

Careful numerical tests indicate that the precision of the calculated spectra and wavefunctions
is determined almost exclusively by the dimension N of the initial matrix. In figure 3(a) we
show how the energies converge exponentially asN increases. At the same time, the calculated
spectra are found to be numerically invariant with respect to other parameters such as α, σ ,
Ntrunc, and in particular the location of the origin.

Reasonable choices for α and σ are α = ν/(2ρ) and σ = b. The location and size of the
sub-block is best determined in terms of an averaged column norm. The resulting spectra are
independent of Ntrunc provided it exceeds a critical value. Here, the position of the origin is
relevant, because the calculation of the spectral determinant (44), in particular its analytical
parts, must be performed in a specific gauge. The choice in favour of the symmetric gauge is
made in (43) where the remaining gauge freedom χ is absorbed into the solution vector. As
a consequence of the resulting distinction of the origin, the spectral determinant is no longer
translationally invariant.

As a result, the size of the truncated matrix depends on the choice of the origin. For
example, the values in figure 3(a) belong to an ellipse centred at the origin. With an ellipse
displaced by (2,1) one obtains the same relative errors for N = 600 . . . 2400 (not shown, one
would not see a difference) with truncation sizes larger by 50%. In order to minimize the
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numerical effort it is therefore advantageous to choose the origin in the centre of the domain
considered.

The fact that bulk states are more strongly affected by the truncation is seen in figure 3(b)
where exterior Neumann states of a circular domain are compared after displacement by 3 radii.
Since the disc is a separable problem, we can check here against the exact energies (obtained
as the roots of an analytical function). Note that the calculation of the hypersingular integral
introduces no additional error.

The only precise published calculations for a nontrivial shape known to us are the results
of Tiago et al who give the first 20 Dirichlet levels for an ellipse of eccentricity 0.8 and area
A = π at constant b2 = 2

25 (missing one symmetry class). Our method is able to confirm their
results to all given seven digits (apart from occasional differences in the last digit by one). For
reference, we note the energy of the approximately 1000th state (the one closest to ν = 80)
which we calculate to be ν � 79.9362(6). The expected error is less than 0.1% of the mean
level spacing.

6. Numerical results

In the following we demonstrate the performance of the described method by exhibiting some
numerical results on magnetic billiards which have been inaccessible by other methods.

6.1. Spectral statistics

We start by considering spectral statistics based on large data sets of calculated spectral points.
As explained in the introduction, the spectra are defined in the semiclassical direction b → 0
keeping the cyclotron radius ρ constant. In this way the underlying classical dynamics is fixed.
For classically hyperbolic systems one expects random matrix theory (RMT) to reproduce the
spectral statistics.

We use the two domains described in figure 4. One is an asymmetric version of the
Bunimovich stadium billiard (r1 = 0.75, r2 = 0.25,A = 5.397 24). In the magnetic field
its dynamics is free of unitary symmetries but contains an anti-unitary one (time reversal
and reflection at y = 0). On the other hand, the skittle shape (made up of the arcs of
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Figure 4. Definition of the domain boundaries considered in section 6. In the asymmetric stadium
(left) the magnetic dynamics shows no unitary but one anti-unitary symmetry. In contrast, the
skittle-shaped domain (right) is free of any symmetry. It generates hyperbolic classical motion
even for strong magnetic fields ρ > 1.
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Figure 5. Fluctuating part of the spectral staircase, Nfluc := N(ν)− N for the asymmetric stadium
at ρ = 1.2. The displayed range contains the first 5000 points in the spectrum. The heavy curve is
a running average over 250 neighbouring points.

four symmetrically touching circles, r1 = 1.0, r2 = 0.5,A = 4.339 69) does not have any
symmetry. We choose it because it generates hyperbolic classical motion even for small
cyclotron radii ρ > 1, according to a recent theorem [6]. The asymmetric stadium could not
be proven to be hyperbolic although we find no numerical evidence for systematic deviations
from the RMT behaviour (see below).

We calculated 5300 and 7300 consecutive interior Dirichlet eigenvalues at ρ = 1.2 for the
asymmetric stadium and the skittle-shaped domain, respectively. It should be noted that states
of much higher ordinal number can be computed at little cost with the present method. The
time-consuming task is rather to find all energies νi = ρ2/b2

i , including the near-degenerate
ones, in a given interval.

A quantity which sensitively indicates whether spectral points were missed is the
fluctuating part, Nfluct, of the spectral staircase function

N(ν) :=
∑

i
,(ν − νi). (54)

As shown recently [27], its smooth part coincides with the nonmagnetic one in its leading
terms. In our units and for Dirichlet boundary conditions they read

N(ν) = A
ρ2π

ν2 − L
2πρ

ν +
1

6
(55)

where A is the domain area and L the boundary length. The constant, which contains an
integral over the boundary curvature, is the same for the shapes considered. Figure 5 displays
the fluctuating part of the number function Nfluc := N(ν)− N for the asymmetric stadium. It
proves that the spectrum is complete. A similar result is obtained for the skittle-shaped domain
(not shown).

The large spectral intervals at hand allow us to calculate directly some of the popular
spectral functions. Due to the underlying classical chaos and the symmetry properties
mentioned above one expects the statistics of the Gaussian orthogonal ensemble (GOE) for
the asymmetric stadium and the Gaussian unitary ensemble (GUE) for the skittle. Figure 6
shows the distributions of nearest neighbours P(s) of the unfolded spectra. Indeed, one
finds excellent agreement with RMT. The differences between the numerical and the RMT
cumulative functions I (s) = ∫ s

0 P(s
′)ds ′ stay below 2%.
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Figure 6. Nearest neighbour distributions of the asymmetric stadium (left) and the skittle-shaped
domain (right), at ρ = 1.2. The histograms should be compared with GOE and GUE predictions
of RMT, respectively (heavy curves). The monotonic lines give the corresponding cumulative
quantities. Their differences are reported in the insets.
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Figure 7. Spectral form factor of the asymmetric stadium (left) and the skittle-shaped domain
(right), based on 5300 and 7300 spectral points, respectively. The heavy curves display the same
data after stronger spectral averaging. The random matrix result for the GOE and the GUE,
respectively, is indicated by the dashed curves. The insets show the regions of small τ .

A function which characterizes the spectrum much more sensitively than P(s) is the form
factor K(τ), i.e. the (spectrally averaged) Fourier transform of the two-point autocorrelation
function of the spectral density [28, 29]. Figure 7 gives the spectral form factor together with
the RMT results. We find very good agreement. One would expect systematic deviations at
small τ due to the contributions of single short periodic orbits. These cannot be resolved with
the present size of the spectral interval, though. Since most other popular spectral measures
like Dyson’s!3 statistic are functions of the form factor there is no need to present them here.

The good agreement with RMT is not only a consequence of the large spectral intervals
the statistics are based on. It is equally important that the spectra are defined at fixed classical
dynamics. Had we calculated the spectra at fixed field, they would have been based on a
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classical phase space that transforms from a (partly elliptic) structure without time-reversal
invariance to a hyperbolic time-invariant one as ρ increases with energy. This transformation
of spectral statistics from GOE to GUE as the field is increased was studied in [13–15].

6.2. Wavefunctions

We proceed to present a selection of wavefunctions calculated in the semiclassical regime. We
start with those of the skittle-shaped domain, choosing again ρ = 1.2. This ensures that the
corresponding classical skipping motion is hyperbolic in the interior, as well as in the exterior.

Figure 8(a) shows the density plot of a typical interior wavefunction around the 1000th
eigenstate. As expected for a classically ergodic system, it spreads out throughout the whole
domain but is not completely featureless. Occasionally, one may also find bouncing-ball
modes, i.e. wavefunctions localized on a manifold of marginally stable periodic orbits. One
such wavefunction is given in figure 8(b). It belongs to a family of 2-orbits.

A typical exterior wavefunction with an energy close to that of figure 8(a) is displayed in
the middle row of figure 8, at the same scale (c) and a larger scale (d). One observes that in
the vicinity of the boundary it behaves similarly to an interior function. On a larger scale, the
wavefunction decays after a distance smaller than two cyclotron radii. In this region circular
structures are faintly visible with the radius of the classical cyclotron motion.

The bottom row of figure 8 shows a quite different exterior state with an energy close
to that of a Landau level. It is a bulk state. A typical feature is the fact there are no large
amplitudes close to the boundary. Rather, one finds a ring of increased amplitude encircling
the domain. Another ring surrounds the domain at a distance of 2ρ. This double-ring structure
moves outwards as one goes through the series of states with energies increasingly close to
the Landau levels. Semiclassically, it can be understood as being made up of a superposition
of cyclotron orbits. This becomes even clearer in the following where we consider a more
symmetric shape of the boundary.

For the second set of wavefunctions we choose an elliptic domain (of eccentricity 0.8
and area π ) at a small cyclotron radius ρ = 0.6. The classical dynamics is mixed chaotic in
this case [3]. Going to the extreme semiclassical limit—the 10 000th interior eigenstate—we
expect the wavefunctions to mimic the structures of the underlying classical phase space.

Indeed, figure 9(a) displays a wavefunction which is localized along a stable interior 6×6
orbit. Note that the wave nature of the eigenstate is still visible at points where the trajectory
crosses with itself, in particular at the shallow intersections close to the centre.

Since ρ is small enough to allow closed cyclotron orbits within the ellipse, we find bulk
states also in the interior, see figure 9(b) for an example. Again it is semiclassically described
by a superposition of closed cyclotron orbits. This can be seen clearly from the current
distributions which are given in the bottom row of figure 9 for the edge state (c) and the bulk
state (d), respectively. Here, the length of the arrows is proportional to the amplitude of the
current density.

Similar semiclassical states can also be found in the exterior, as displayed in Figure 10.
The edge state, figure 10(a), obviously belongs to an 8 × 6 orbit. Like all edge states it is
distinguished from a typical bulk state, see figure 10(b), by the finite current it carries around
the domain. In contrast, the bulk state with its counter-running current densities has no net
current along the boundary, see figure 10(c) and (d).

We emphasize that all the wavefunctions and current distributions shown above are
calculated throughout the entire displayed area. They turn out to be numerically zero in
the complementary domains as expected from the theory. Consequently, the type of a solution
of a single integral equation can be inferred by calculating the wavefunction.
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Figure 8. Interior and exterior wavefunctions of the skittle shape at ρ = 1.2 around the 1000th
interior eigenstate. The plotted shade is proportional to |ψ |, the thin curves indicate the boundary
�. Energies: (a) ν � 32.988 04, (b) ν � 33.120 33, (c), (d) ν � 32.847 40, (e), (f ) ν � 32.500 73.
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Figure 9. Wavefunctions (a), (b) and current distributions (c), (d) in an elliptic domain at ρ = 0.6,
around the 10 000th interior eigenstate, with energies ν � 60.060 26 (a), (c) and ν � 60.500 30
(b), (d).
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Figure 10. Exterior wavefunctions (a), (b) and current distributions (c), (d) at ρ = 0.6 and at
similar energies as in figure 9, ν � 60.136 34 (a), (c) and ν � 60.500 49 (b), (d). (The image
in part (b) has been blurred to reduce Moiré patterns when viewed on-screen or printed from the
online edition. It should show only concentric elliptic strips.)
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Figure 11. Parametric dependence of the exterior spectrum on the boundary condition (for the
asymmetric stadium at fixed b = 0.25). The parameter 3 interpolates between Dirichlet (3 = 0)
and Neumann (3 = 1) boundary conditions. The right graph shows details around the fourth
Landau level.

6.3. General boundary conditions

So far, only Dirichlet boundary conditions have been considered. As a final point we show the
parametric dependence of a spectrum on the type of boundary conditions. Figure 11 presents
the exterior spectrum of the asymmetric stadium, calculated at fixed b = 0.25. The value λ is
taken constant along the boundary and parametrized by a number 3 ∈ [0; 1],

λ = − ρ
2ν

tan
(π

2
3
)
. (56)

Here λ is chosen negative to ensure that the transformation from Dirichlet (3 = 0) to Neumann
(3 = 1) boundary conditions is continuous. For positive λ this would not be the case, which
is a restriction similar to the one for the field-free case [22].

The energies clustering around the Landau levels νn = n + 1
2 , n ∈ N0 belong to bulk

states. One observes that they are lifted from the Landau levels into higher energies at Dirichlet
boundary conditions, whereas in the Neumann case they are shifted to smaller energies. A
semiclassical theory which describes the exponential approach of the bulk states to the Landau
levels and its transition as a function of 3 will be published elsewhere.
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7. Conclusions

The main theoretical result presented here is the finding that the two boundary integral equations
of the billiard problem admit spurious solutions in the magnetic case, and how those are
identified and removed.

An important implication concerns the semiclassical theory of magnetic billiards. The
trace formula for the semiclassical quantization of the field-free case is based on a (double-
layer) boundary integral equation [30]. If one tries to repeat the derivation for the magnetic
case, problems should arise since the equation does not give a sufficient condition. Indeed, a
(Balian–Bloch-like) derivation of the trace formula for magnetic billiards does not exist. We
emphasize that the starting point should be the gauge-invariant formulation of the boundary
integral equation, as presented above. Only then are the spurious solutions gauge invariant,
have a physical interpretation, and can be taken into account systematically.

We have shown how a precise and efficient computational method for the calculation of
spectra and wavefunctions can be based on a combination of boundary integral equations.
This allows us to obtain the exact spectra and wavefunctions at energies and fields inaccessible
hitherto.

The possibility of calculating the exterior spectra as well raises the question of how interior
and exterior spectra are related. Here, a problem is the existence of an infinity of bulk states
which do not have much physical relevance but prevent the spectral number function from
being well defined. Our calculation of the exterior level dynamics as a function of the boundary
condition shows that the edge states and bulk states differ in their sensitivity to the boundary
condition. In a forthcoming communication we will propose a definition of the spectral edge
state density based on this observation.
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Appendix A. The free magnetic Green function

The free magnetic Green function was derived in [17,31] by angular momentum decomposition.
Here we show how it is obtained by directly performing the Fourier transform of the time
evolution operator [32]

U(r, r0; t) = 1

2π i

1

b2

1

sin(ωt)
ei( (r−r0)

2

2b2
cot(ωt)− r×r0

b2
+χ̃(r)−χ̃(r)) (A.1)

which yields both the gauge-dependent and the gauge-independent part in a straightforward
manner. We have to evaluate

G(r; r0) = b2

2i

∫ ∞

0
d(ωt) eiEt/h̄U(r, r0; t)

= e−i( r×r0
b2

−χ̃(r)+χ̃(r))G0
ν

(
(r − r0)

2

b2

)
(A.2)

assuming that the energy ν has a small imaginary part to ensure convergence. For the gauge-
independent part one obtains

G0
ν(z) = −1

4π

∫ ∞

0

dτ

sin(τ )
ei(z cot(τ )/2+2ντ)
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= −1

4π

∞∑
n=0

e2π iνn
∫ π

0

dτ

sin(nπ + τ)
ei(z cot(nπ+τ)/2+2ντ)

= −1

4π

1

1 + e2π iν

{∫ ∞

0

du√
1 + u2

(
u + i

u− i

)ν
eizu/2

+e2π iν
∫ 0

−∞

du√
1 + u2

(
u + i

u− i

)ν
eizu/2

}

= −1

4π
�

(
1

2
− ν

)[
e−iπ(ν− 1

2 )
�( 1

2 + ν)

2π i

{∫ −i∞

0
dt (t + 1)ν−

1
2 (t − 1)−ν−

1
2 e−zt/2

+e2π iν
∫ 0

+i∞
dt (t + 1)ν−

1
2 (t − 1)−ν−

1
2 e−zt/2

}]

= −1

4π
�

(
1

2
− ν

)
z−

1
2Wν,0(z) (A.3)

where we have used a logarithmic representation of the inverse cotangent and the reflection
relation �( 1

2 − ν)�( 1
2 + ν) cos(πν) = π . The last equality in (A.3) holds since the expression

in square brackets may be deformed to the (complex conjugate of the) contour integral found
in [33, equation (5.1.6)]. It gives the (real-valued) irregular Whittaker function W [34]
(multiplied by z−

1
2 ) in an integral representation that is valid even for positive ν. The regularized

version of G0,

G̃0
ν(z) := lim

µ→ν cos(πµ)G0
µ(z) (A.4)

reads in terms of the more common irregular confluent hypergeometric function U [34],

G̃0
ν(z) = −1

4π

π

�(ν + 1
2 )

e−z/2U

(
1

2
− ν, 1; z

)
. (A.5)

At small distances, it has the logarithmic form,

G̃0
ν(z) = Lν(z) + O(z log z) as z→ 0 (A.6)

Lν(z) := cos(πν)

4π

(
log(z) +7

(
1

2
+ ν

)
− 27(1)

)
− sin(πν)

4
(A.7)

where 7 is the Digamma function.

Appendix A.1. The derivatives and their asymptotic behaviour

Employing the differential properties of the confluent hypergeometric function [34] we can
express the derivatives of G̃0

ν by the function G̃0
ν itself:

z
d

dz
G̃0
ν(z) = −

(
1

2
− ν

)
(G̃0
ν + G̃0

ν−1)−
z

2
G̃0
ν (A.8)

z2 d2

dz2
G̃0
ν(z) =

(
3

2
− ν

)(
1

2
− ν

)
(G̃0
ν + 2G̃0

ν−1 + G̃0
ν−2) + z

(
1

2
− ν

)
(G̃0
ν + G̃0

ν−1) +
z2

4
G̃0
ν .

(A.9)

In section 4 we need their asymptotic expansions,

z
d

dz
G̃0
ν(z) = cos(πν)

4π

[
1 − zν

(
log(z) +7

(
1

2
− ν

)
− 27(1)− 1

)]
+ O(z2 log z) (A.10)

z2 d2

dz2
G̃0
ν(z) = −cos(πν)

4π
+ O(z log z) as z→ 0. (A.11)
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These were deduced from the logarithmic representation of U in terms of the regular Kummer
function [34, equation (13.6.1)].

Appendix B. Analytical calculation of the singular integrals

The Fourier integrals (48), (49) depend on the the window function g. Our choice is (50)
which switches off the asymptotically singular functions m and l sufficiently smoothly. For
the logarithmic integrals one obtains

L+(s0) =
∫ σ

−σ
ds ′ ei(2π+/L+ t0×r0

b2
)s ′
(

i

[
α − s ′

b2

]
∓ λ

[
2ν

b2
+ (α − iκ0)

s ′

b2

])
Lν

(
s ′2

b2

)
g(s ′)

=
(

iα ∓ λ2ν

b2

)
Icos + (1 ∓ λ(κ0 + iα))Isin (B.1)

with

Icos := cos(πν)

4π

−1

8lϕ+ϕ−

{
π2 sin(ϕ)

[
log

(
σ 2

b2

)
+7

(
1

2
− ν

)
− 27(1)

]

+2ϕ+ϕ−Si(ϕ) + ϕϕ+Si(ϕ−) + ϕϕ−Si(ϕ+)

}
(B.2)

Isin := cos(πν)

4π

1

82
l b

2(ϕ+)2(ϕ−)2

{
π2ϕϕ+ϕ− cos(ϕ)

[
log

(
σ 2

b2

)
+7

(
1

2
− ν

)
− 27(1)

]

−π2(3ϕ2 − π2) sin(ϕ)

[
log

(
σ 2

b2

)
+ 2 +7

(
1

2
− ν

)
− 27(1)

]

−2(ϕ+)2(ϕ−)2Si(ϕ)− ϕ2(ϕ−)2Si(ϕ+)− ϕ2(ϕ+)2Si(ϕ−)
}

(B.3)

where 8l(s0) = 2π+/L + t0×r0
b2 , ϕ = 8l(s0)σ , ϕ± = ϕ ± π , and Si is the Sine integral. The

finite-part integral reads

M+(s0) = ∓λcos(πν)

2π
=
∫ σ

−σ
ds ′ ei(2π+/L+ t0×r0

b2
)s ′ −1

s ′2
cos2

(
π

2

s ′

σ

)

= ∓ λcos(πν)

2π
lim
ε→0

[
2
∫ σ

ε

cos(8ls)
−1

s2
cos2

(π
2

s

σ

)
ds +

2

ε

]

= ∓ λcos(πν)

2π

(
1

2σ
{2(cos(ϕ) + ϕSi(ϕ)) + cos(ϕ+) + ϕ+Si(ϕ+)

+ cos(ϕ−) + ϕ−Si(ϕ−)} + lim
ε→0

[
− 1

2ε
{4 + O(ε)} +

2

ε

])

= ∓ λcos(πν)

4πσ
{2ϕSi(ϕ) + ϕ+Si(ϕ+) + ϕ−Si(ϕ−)}. (B.4)

Asymptotically,

M+(s0) ∼ ∓λcos(πν)

2
8l(s0)sgn(+) as |+| → ∞. (B.5)

Note that with choice (50) the limit of the remaining kernel is

lim
s→s0

[q(s, s0)− g(s − s0)(l(s, s0) + m(s, s0))]

= cos(πν)

4π

[
κ0(1 ∓ λiα)∓ λ

(
−2ν

b2
− π2

2σ 2

)]
(B.6)

which is not just the constant part of (39) but contains a term which depends on σ .
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Appendix C. Numerical evaluation of the Green function

We are not aware of any published numerical procedure to evaluate the irregular confluent
hypergeometric function U if both the (energy) parameter and the variable are large. It seems
that presently only the Mathematica software (Wolfram Research Inc) is able to compute the
function, at least for moderately large ν. Even this sophisticated system fails for ν > 75.
Anyhow, it is not an option to use it for serious numerical calculations since the evaluation
takes a prohibitively long time.

Therefore, we describe our method to compute the gauge-independent part of the regular
Green function in more detail. For low energies ν < 12, the function U(1/2 − ν, 1; z)may be
easily calculated by its series representation [34, equation (13.1.6)], i.e. in terms of the regular
confluent hypergeometric function 1F1. For very large z an asymptotic expansion in terms of
2F0 may be employed [35, equation (6.7.1)].

For energies ν > 12 the numerical convergence of the series expression deteriorates
strongly in some intervals of the z range (starting at z ≈ 2ν). Here, one may employ the stable
recurrence relation†

(ν − 1
2 )G̃

0
ν(z) = (z− 2ν + 2)G̃0

ν−1(z)− (ν − 3
2 )G̃

0
ν−2(z) (C.1)

which is straightforward, but time consuming. Alternatively, asymptotic expansions for the
irregular Whittaker function can be used [33, equations (8.1.5), (8.1.10), (8.1.18a)] which are
to third order in the large parameter ν. Together with [34, equations (13.5.15)] they correspond
to the changing logarithmic, oscillatory, transient and exponentially decaying behaviour of the
Green function as the distance z increases. For most values of z they allow us to calculate the
Green function to a reasonably high precision and with acceptable numerical effort. However,
between the ranges of validity of the different asymptotic expressions there are small gaps
where no formula is appropriate, see figure B.1. In the gap between the logarithmic and
the oscillatory domains, which is at small z, one may employ the series summation even for
large ν � 12. For the two gaps between the oscillatory, the transient and the exponential
regimes, which are around z ≈ 4ν this is possible only up to, say ν = 16. For larger ν we
interpolate between adjacent regions of validity employing the uniform approximation of the
irregular Whittaker function around the classical turning point. Neglecting higher orders in ν,
the resulting expression for the Green function reads

G̃0
ν(z) ≈ C ( 3

2q)
1
6

|z2 − 4νz− 1| 1
4

Ai

(
sgn(z− z0)

(
3

2
q

)2
3

)
(C.2)

where Ai is the regular Airy function and

q =



ν

(
π

2
− atan

(
z− 2ν

w

))
+

1

2
log

(
z0

z

1 + 2νz + w

1 + 2νz0

)
− 1

2
w if z < z0

1

2
w +

1

2
atan

(
2νz + 1

w

)
− π

4
− ν log

(
z− 2ν + w

z0 − 2ν

)
if z > z0

(C.3)

with z0 = 4ν

(
1

2
+

1

2

√
1 +

1

4ν2

)
and w =

√
|z2 − 4νz− 1|. (C.4)

The constant C may be calculated for values of z where the saddle point expressions are valid
and is interpolated linearly within the gaps.

The thresholds mentioned above are a reasonable compromise between cost and precision.
We observe a peak numerical error (minimum of relative and absolute) of 6.5×10−5 at ν = 22

† We thank the referee for pointing out the possible stability of (C.1).
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Figure B.1. (a) Gauge-independent part of the regularized Green function at ν = 57.75. It has a
logarithmic singularity at r = 0 and decays exponentially for r > 2ρ. (b) In the transition regions
between oscillatory, transient and decaying regimes the asymptotic expressions to third order are
not valid (chain, dotted, dashed curve respectively). (c) Here, one may interpolate using a uniform
approximation to the irregular Whittaker function (solid curve).

in comparison with the results of Mathematica which are assumed to be exact for ν < 70.
For increasing ν the numerical error decreases monotonically which allows us to estimate it
to smaller than 3.7 × 10−5 for ν > 70. It was checked that numerical errors of that order do
not affect the results shown in section 6.
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