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1. INTERFEROMETRY WITH LARGE 
MOLECULES

In recent years, there has been an increasing amount
of interest in the coherent manipulation of molecules
[1–5], and there have been significant advances in
extending matter wave interferometry to larger cold
clusters [4] and hot macromolecules [5].

A major challenge in such experiments is finding
sufficiently intense sources, a scheme to prepare the
required coherence, and a detector that can resolve the
small effects related to the tiny size of the de Broglie
wavelength. Typical molecular beams have velocities
between 100 m/s and 2000 m/s with corresponding de
Broglie wavelengths of several picometers and longitu-
dinal and transverse coherence lengths of the same
order of magnitude.

Far-field diffraction therefore requires a tight colli-
mation of the beam, which imposes a severe limit on
the signal strength. It also requires the use of very tiny
diffraction structures. Current state of the art technol-
ogy allows the fabrication of gratings with periods
down to 100 nm and open slit widths of about 50 nm
[6]. But even though it can be expected that structures
that are five to ten times smaller may be manufactured
in the future, these nanoelements will probably be of
rather limited use, because they will then be as small as
the large diffracted objects themselves.

One way around the “size problem” is the three-
grating near-field interferometer, which can act as a len-
sless imaging device with high signal throughput [7]. In
a near-field setup, the required grating period only
scales with the square root of the de Broglie wave-
length, which is superior to far-field diffraction, in
which both the length of the apparatus and the grating

period scale linearly with the wavelength. Also, a near-
field interferometer of the Talbot–Lau type accepts
beams of rather poor initial transverse coherence. This
feature allows us to significantly increase the count
rates in the experiment in comparison to standard far-
field setups.

It was recently shown that a Talbot–Lau interferom-
eter works very efficiently for C

 

70

 

 molecules and that
the integration time for one interferogram could be
shortened by more than two orders of magnitude [8] as
compared to former far-field studies on the same
machine. The Talbot–Lau configuration was therefore
also a prerequisite for the successful demonstration of
the wave-particle duality of more massive and larger
objects such as fluorofullerenes and porphyrins [9],
since the typical beam intensities and detection effi-
ciencies for these species prohibited far-field experi-
ments.

Near-field interferometry based on gratings with a
large period has the additional property of being very
sensitive to inertial forces, such as those due to the rota-
tion and the gravitational acceleration of the earth. Of
course, this also implies a high sensitivity to perturbing
acoustic noise and floor vibrations. Our present study
therefore explores the influence of inertial forces and
vibrational dephasing to deduce stability requirements
for future experiments.

2. THE TALBOT–LAU EFFECT

The basic setup of our interferometer has been
described previously [8], and it will therefore only be
summarized (Fig. 1): Molecules from a thermal source
are evaporated into a vacuum chamber. The velocity
selection of the molecular beam is done using three nar-
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row slits, which select a well-defined free-flight parab-
ola and thus a narrow velocity class from the beam. The
base pressure is set to below 5 

 

×

 

 10

 

–8

 

 mbar in order to
avoid the influence of the collisional decoherence that
has been observed in earlier experiments [10]. The mol-
ecules pass a symmetric Talbot–Lau interferometer,
which consists of three identical gold gratings with a
grating constant of 990 nm that are separated from each
other by 

 

L

 

 = 0.38 m, i.e., by the Talbot length 

 

L

 

T

 

 =

 

d

 

2

 

/

 

λ

 

dB

 

 for a mean de Broglie wavelength of 

 

λ

 

dB

 

 =
2.58 pm. Those molecules that pass the third grating
enter the thermal ionization detector [11].

The first grating prepares molecular transverse
coherence out of the originally uncollimated and there-
fore spatially incoherent beam. Diffraction at the sec-
ond grating then produces a molecular density pattern
at the location of the third grating. Whenever the
molecular pattern and the third grating mask fall in line,
the transmission is high. When the third grating is
shifted by half a grating period, the total transmitted
signal reaches its minimum. Plotting the molecule
counts as a function of the displacement of the third
grating thus leads to the observation of a fringe pattern,
which is the signature of molecular interference. The
full circles in Fig. 2 clearly show that fringes of high
visibility can be obtained in this experiment.

The pure 

 

Talbot

 

 effect, which applies to the 

 

plane-
parallel

 

 illumination of a single grating, produces
coherent self-images of a diffraction grating, with peri-
odic recurrences in multiples of the Talbot length. In the
symmetric 

 

Talbot–Lau

 

 configuration, the first grating
illuminates the second one with 

 

cylindrical

 

 wavelets,
which leads to interference patterns in integer multiples

of the Talbot distance [12, 13]. If we include the attrac-
tive van der Waals interaction between the grating walls
and the molecules, the imaging distance is shifted, but
we still observe a recurrence of the molecular interfer-
ence pattern when the grating separation is varied.
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Fig. 1.

 

 Interferometer for large molecules. Three gratings of equal period are separated by approximately the Talbot length. The first
grating 

 

G

 

1

 

 acts as an incoherent array of slit sources. Each of them illuminates the second grating with a transverse coherence of a
few slit distances. Interference then leads to a self-image of the grating 

 

G

 

2

 

 at the position of 

 

G

 

3

 

. The molecular interferogram is
scanned by the third grating. Transmitted molecules are ionized and counted. Inertial forces due to the rotation of the earth, the grav-
itational acceleration, and acoustic vibrations of the apparatus may lead to a lateral displacement of the interference pattern that
depends on the molecular velocity.
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Fig. 2.

 

 High contrast C

 

70

 

 Talbot–Lau interferograms. The
high contrast curve (

 

V

 

 = 39.5%, full circles) was recorded
while the optical table was inflated. The low contrast curve
(

 

V

 

 = 10.5%, open circles) corresponds to the situation in
which the table was in direct contact with the floor. Both
curves were recorded for molecules at 190 m/s. The solid
lines represent a sine-fit with an offset to guide the eye. The
best possible interference contrast can even be increased to
50% when vibrations due to the laser-cooling circuit are
suitably decoupled.
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Figure 3 shows the formally equivalent case, in
which the molecular de Broglie wavelength, i.e., the
molecular velocity, is varied. We see a very good agree-
ment between the quantum expectation (solid line) and
experimental (full circles) values for short de Broglie
wavelengths (

 

λ

 

dB

 

 ~ 2.5 pm), but we also notice a clear
contrast reduction in the experiments for slow mole-
cules (

 

λ

 

dB

 

 ~ 5 pm).

Essentially all the fullerenes leave the oven in their
electronic ground state, which is diamagnetic, has no
electric dipole moment, and which is known to radiate
infrared quanta only at very low rates and at very long
wavelengths [14, 15]. It thus seems that there is no
mechanism that could lead to any irreversible coupling
to the environment. Therefore, we do not expect genu-
ine decoherence as described in [16] and the references
therein.

However, there are several mechanisms that may
lead to a velocity-dependent shift of the interference
pattern. The velocity distribution of real beams is
always finite. The observed interference contrast will
therefore be reduced if the detection does not resolve
the different velocities, because many interference pat-
terns will be shifted with respect to each other and will
tend to average.

3. INERTIAL FORCES 
IN THE TALBOT–LAU SETUP

The appearance of inertial phase shifts can be very
important in matter-wave interferometry. In fact, atom

interferometers are currently among the best devices
for measuring accelerations [17–19].

Inertial forces arise if the frame of reference, as
defined by the interference apparatus, is not an inertial
system. The two best known effects are the gravita-
tional and the Coriolis accelerations, which are due to
the mass and the rotation of the earth. In addition, the
coupled gratings may oscillate about their position at
rest. Here, we focus mainly on externally excited vibra-
tions that drive the gratings at equal frequencies but
with different amplitudes.

The effect of inertial forces on the interference
fringe pattern is calculated most conveniently by con-
sidering the dynamics in a comoving reference frame in
which the gratings are fixed. The prediction for the
interference pattern is then obtained by propagating the
Wigner function of the matter wave beam through the
apparatus [12] and taking into account that the canoni-
cal momentum differs from the kinetic momentum due
to the presence of the inertial forces. An advantage of
the Wigner formulation is that the corrections due to a
finite longitudinal coherence length and due to the grat-
ing interactions are automatically taken into account in
the calculation. As a result, we find in all the cases
below that the shape of the resulting fringe pattern is
unchanged, but the fringe pattern is shifted laterally by
a distance 

 

∆

 

x

 

 that depends on the velocity of the parti-
cle. It is worth noting that the same displacement is
found in the corresponding description of classical par-
ticles forming a Moiré pattern [20]. This can be related
to the fact that the inertial forces are at most linear in
position and momentum, so that the free evolutions of
the Wigner functions and of the classical phase space
density are equal. Therefore, it is sufficient to follow the
trajectory of classical particles to obtain the observed
shift of the interference fringes.

 

3.1. Rotation of the Earth

 

We start by considering the effect of the Coriolis
force, assuming that all gratings are vertically aligned
and that there are no vibrational perturbations. Let 

 

Ω

 

0

 

be the parallel component of the angular velocity vector
with respect to the grating bars. Then, the fringe pattern
shifts by

(1)

as compared to the case without acceleration. Here, 

 

L

 

 is
the distance between two gratings and 

 

v

 

z

 

 is the molec-
ular velocity. The fringe shift increases linearly with the
time of flight 

 

τ

 

 = 2

 

L

 

/

 

v

 

z

 

 in an apparatus of fixed length.
The displacement (1) depends neither on 

 

�

 

 nor on the
mass 

 

m

 

 of the particle. This is consistent with other for-
mulations of the Sagnac phase [21] 

 

Φ

 

Sagnac

 

 = 2

 

m

 

W

 

0

 

A

 

/

 

�

 

,
as it is often used in neutron [22] and atom interferom-
etry [18]. Indeed, if we set the interferometer to the first
Talbot order 

 

L

 

 = 

 

L

 

T

 

, we find that 

 

∆
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Fig. 3.

 

 Interference fringe visibility as a function of mean de
Broglie wavelength. The circles represent the experimental
data. The solid line is derived from a theoretical model that
includes all experimental parameters without any further fit.
The arrows indicate the Talbot wavelength for the chosen
grating separation of 

 

L

 

 = 38 cm. The good agreement
between theory and experiment at wavelengths near 2 pm
and the discrepancy near 5 pm is consistent with the
assumption of fixed pendulum oscillations of the interfer-
ometer (see text) with an amplitude of about 50 nm at a fre-
quency of around 100 Hz.
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A

 

 = 

 

dL

 

 is the area enclosed by neighboring interfering
paths. For the 

 

N

 

th Talbot order, 

 

L

 

 = 

 

NL

 

T

 

, and the corre-
sponding area is 

 

A

 

 = 

 

NdL

 

. A related argument holds in
a far-field Mach–Zehnder interferometer, as can be eas-
ily verified by noting that the interferometer surface
depends on the diffraction angle behind the first grat-
ing.

For our experiments, we calculate a Coriolis shift of

 

∆

 

x

 

 = 80 nm, with 

 

Ω

 

 = 5.55 

 

×

 

 10

 

–5

 

 rad/s (48

 

°

 

 northern
latitude), 

 

L

 

 = 0.38 m, and 

 

v

 

z

 

 =200 m/s. This shift is cer-
tainly larger than the detector resolution, but it only
effects the fringe visibility if the molecules have a
broad velocity spread. If we assume a Gaussian veloc-
ity distribution with standard deviation 

 

σ

 

v

 

, we find that
the visibility 

 

V of a sinusoidal fringe pattern is reduced
by a factor

(2)

For d = 990 nm and σv = 0.1vz, the visibility remains
almost unaffected: RC = 99.8% for 200 m/s, and RC =
99.5% for 100 m/s.

However, for larger masses considerably lower
velocities will be needed to keep the de Broglie length
and, therefore, also the interferometer length accept-
able. For example, if we replaced our fullerenes by an
object that is ten times more massive, such as a protein
or nanocrystal with a mass of 10000 amu, this object
would already have to be slowed or cooled to a velocity
of vz = 10 m/s. This corresponds to the most probable
velocity of a thermal cloud at T ~ 60 K. If we also kept
the same velocity spread as before (σv = 0.1vz), the vis-
ibility would already be reduced by a factor of RC =
59.6%.

In order to see how RC scales with the molecular
mass, we now fix the source properties vz and σv and
assume that the Talbot–Lau interferometer will always
be operated in the lowest Talbot order. If we require that
the visibility may not be reduced by more than a factor
of 1/e, we can distinguish three cases.

First, if the grating period d is kept constant, the
interferometer length increases linearly with the mass
m, since LT = d2/λdB = d2mv/h. In this case, the particle
mass is bounded by

(3)

Second, if the length of the interferometer is kept con-
stant, the grating period d scales with the inverse square
root. In that case, the particle mass is bounded by

(4)

RC 8 π
Ω0L

2σv

dv z
2

-------------------

2

–
 
 
 

.exp=

m �
2π

Ω0d
3σv

-------------------
 
 
  1/2

.<

m
�v z

3

4πΩ0
2
L

3σv
2

---------------------------.<

The mass limit can thus be pushed almost arbitrarily by
improving the velocity spread of the molecules. In the
near future, we will be bound by both d ≥ 100 nm and
L ≤ 1 m due to practical limitations. In this third case,
(2) yields a requirement for the velocity selection that
is independent of the mass:

Finally, we note that the Sagnac shift can be completely
avoided by orienting the interferometer such that its
surface vector is perpendicular to the rotation axis of
the earth. Generally, this would require a vertical align-
ment of the molecular beam and a specific orientation
of the gratings with respect to the north pole.

3.2. Gravitational Acceleration

The influence of gravity enters into our reasoning if
two interfering paths in the apparatus experience differ-
ent gravitational potentials, that is, if the grating bars
are not aligned perfectly parallel to the vertical direc-
tion. Let θG be the angle between the grating bars and
the direction of the gravitational centre. Then, the Tal-
bot–Lau fringes shift by

(5)

with respect to the case without acceleration. This is
half of the deflection that a classical particle experi-
ences due to the acceleration a = gsinθG, and it is again
equal to the displacement of the Moiré fringes in the
corresponding classical dynamics [19].

The Coriolis fringe shift (1) is formally equivalent to
(5) if we simply replace the gravitational acceleration
aG = gsinθG by the Coriolis acceleration aC = 2vzΩ0.

Therefore, Eqs. (2)–(4) also describe the effect of
earth’s gravity if Ω0 is replaced by gsinθG/(2vz). In par-
ticular,

(6)

We took care to prealign our gratings to better than
θG = 1 × 10–3 rad. With the parameters given above and
g = 9.81 m/s2, this implies that the fringe pattern may
shift up to 36 nm for molecules at 200 m/s, and already
by 144 nm at 100 m/s. For fast molecules, the visibility
reduction due to gravity is therefore of no concern.
However, molecules at 100 m/s require a grating align-
ment that is four times better. Although this can be done
by sequentially rotating the grating mounts to optimize
the fringe visibility, it can not be excluded that the opti-
cal table as a whole exhibits slow tilting drifts that are
on the order of 1 mrad.
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Again, however, the constant fringe shift itself does
not contribute to the loss of visibility, and with a veloc-
ity selection of σv /vz =10% gravity will only reduce the
contrast by less than one percent, even for molecules at
100 m/s. However, unlike the Coriolis force, the gravi-
tational acceleration is not reduced as the particle
velocity decreases. Therefore, it is bound to become
rather relevant for high masses at low velocities. This
can also be seen by comparing Eq. (4) and Eq. (6).

4. GRATING VIBRATIONS

Vibrational perturbations, which give rise to time-
dependent inertial forces, consitute another important
source of dephasing. If the oscillation periods are much
longer than the passage time through the interferome-
ter, the corresponding accelerations may be taken to be
constant during the time of flight, and Eqs. (1) and (5)
may still be used. However, the situation gets more
complicated if we consider oscillation frequencies that
are comparable to the inverse time of flight or even
larger. Typically, these frequencies are in the acoustic
regime between 50 and 1000 Hz and, in fact, dominate
the vibrational spectrum in the experiment due to the
presence of vacuum pumps, laser cooling circuits, and
other experimental equipment on the table.

One can classify the vibrations of single gratings
according to their direction of motion as (a) “transverse
shifting,” in which the gratings move along the grating
k vector; (b) “forward shifting,” which describes a
change in the grating separation; (c) “upward shifting,”
which lifts and lowers the gratings; (d) “rolling” oscil-
lations, which describe the rotation of the grating
around the molecular beam axis; (e) “downward tilt-
ing,” in which the tip of the grating tilts downwards;
and finally (f) “yawing,” in which the gratings are

rotated parallel to the grating lines around a vertical
axis.

Most of these motions can be immediately elimi-
nated again from the list of detrimental perturbations: it
can be shown that “forward-shifting oscillations” (b)
are only relevant for amplitudes larger than 50 µm,
which simply are not excited—even in the worst case.
“Upward shifting” (c) is irrelevant since the gratings
are vertically oriented and translation invariant over the
relevant distances. “Downward tilting” (e) and “yaw-
ing” (f) are actually variants of case (b), where the for-
ward shift depends on the height or on the lateral posi-
tion on the grating, respectively. They can therefore
also be neglected. “Rolling oscillations” (d) can be
reduced to height-dependent transverse shifts (a) and
enter only to higher order.

We are therefore left with “transverse shifts” (a),
which can, of course, be detrimental even on the submi-
crometer level. The transverse shifts segregate into cou-
pled-mode oscillations, most importantly the “fixed
pendulum” and the “torsion pendulum” modes, as well
as into independent grating oscillations. Since these
vibrations reduce the visibility even for monochromatic
beams, we disregard the width in the velocity distribu-
tion. Our results may then easily be extended by aver-
aging over the real velocity distribution.

4.1. Fixed Pendulum Oscillations 

The basic oscillation mode affecting the fringe visi-
bility is a common horizontal motion of the gratings
perpendicular to the particle beam. The corresponding
fringe shift is

(7)

where A is the oscillation amplitude, f is the frequency,
and ϕ0 is the initial phase position of the gratings.

To obtain the observed interference contrast, the
shifted patterns must be averaged over the phase posi-
tion ϕ0, which is distributed uniformly, since the time of
arrival is uncorrelated with the grating motion. In this
manner, one finds the reduction factor

(8)

where J0 is the zero-order Bessel function. Figure 4
shows the reduction factor (8) for the parameters of our
experiments (L = 0.38 m, vz = 200 m/s) and A/d = 0.5
as a function of the frequency f. As expected, the visi-
bility is not reduced if the grating performs an integer
number of sinusoidal motions during the travel of the
molecule between two gratings. Equally, the contrast
reduction is strongest for an odd number of half-sinuso-
idal motions.
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Fig. 4. The expected reduction of visibility in the Talbot–
Lau setup, assuming a common harmonic oscillation of the
gratings as a function of the oscillation amplitude and fre-
quency. We chose the parameters of our setup (L = 0.38 m,
vz = 200 m/s).
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4.2. Torsional Pendulum Oscillations

The second harmonic oscillation to be considered is
the general torsional pendulum motion about a fixed
point. In this case, the angular velocity oscillates with
frequency f, so that Ω(t) = Ω0sin(ϕ0 + 2πft). We take z0
to be the longitudinal position of the first grating with
respect to the axis of rotation, so that for z0 = 0, z0 = –L,
and z0 = –2L the rotation is about the first, the second,
and the third grating, respectively. We find

(9)

Note that the term of the kth grating (k = 1, 2, 3) van-
ishes if the axis of rotation lies in the plane of this grat-
ing. As above, one has to average over the initial phase
position ϕ0 in order to obtain the visibility reduction,
and we obtain the reduction factor

∆x
Ω0

2πf
--------- z0 ϕ0( )cos 2 z0 L+( ) ϕ0 2πfL/v z–( )cos–[=

+ z0 2L+( ) ϕ0 4πfL/v z–( )cos ] .
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Ω0L
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v z
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  1 1

z0

L
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2 z0

L
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z0
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  2π fL
v z
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In Fig. 5 we plot RT with our experimental parameters
as a function of the frequency f and as a function of the
pivot point position in units of L. For small frequencies,
RT is independent of z0 and approaches

  0) = 

4.3. Independent Grating Vibrations

Finally, we consider the case in which the three grat-
ings exhibit independent shifting oscillations without a
fixed phase relation. In this case, one has to average
over the fringe shifts, which correspond to the various
grating configurations, by taking into account the prob-
ability distribution of the grating positions.

We assume that the three gratings oscillate harmon-
ically with the amplitudes A1, A2, and A3. Then, the
average yields

(11)

This reduction is independent of the oscillation fre-
quencies because the probability distribution does not
depend on them. Note that the second factor in (11),
which belongs to the second grating, has an argument
that is twice as large. This also holds in the classical
case and can therefore be simply related to the theorem
of intersecting lines.

One may also consider position distributions of the
gratings that are not due to a harmonic oscillation. An
obvious choice is a Gaussian distribution, say, due to
the Brownian motion in a harmonic potential. In this

case, the visibility reduction reads R = exp(–2π2(  +

4  + )/d2), if the standard deviations are given by

, , and , respectively [23].
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5. EXPERIMENTAL EXPLORATION
OF VIBRATIONAL NOISE

In order to understand and quantify the influence of
acoustic noise in our experiment, we connected accel-
erometers rigidly (Bruel & Kjaer, Type 8318) both to
the outside of a horizontal and of a vertical flange of the
vacuum apparatus. The output of these sensors was
read and Fourier-analyzed by a fast oscilloscope
(LeCroy Waverunner LT374M). With the specified sen-
sor calibration factor k = 316 mV/(m/s2), we deter-
mined both the vibrational acceleration a and the
amplitude x from the frequency-dependent voltage U
and found that x = a/ω2 = U/kω2. We typically obtained
amplitudes of up to several hundred nanometers, where
the largest amplitudes are found at frequencies below
100 Hz, with a significant peak around 50 and 100 Hz,
where the surrounding roughing pumps have their larg-
est acoustic contribution.
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Fig. 5. The expected visibility reduction if the gratings per-
form harmonic torsional motion about a common rotation
axis. The parameter z0 is the longitudinal position of the first
grating with respect to the axis of rotation. We chose a max-
imum angular velocity of Ω0 = 10–3 rad/s and used the
parameters of our setup, L = 0.38 m, d = 1 µm, and vz =
200 m/s.
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A first and crucial step in the eliminatation of pertur-
bations was to inflate the pneumatically levitated opti-
cal table (Melles Griot, SuperDamp) to which the
whole vacuum machine was rigidly bolted. Inflating the
optical table reduces the characteristic vibrations at
50 Hz and 100 Hz by about 20 dB. The result is dra-
matic and can be seen by comparing the interference
curves in Fig. 2. Without the vibration isolation, the
interference visibility was reduced by at least a factor of
four. And on many days, the overall laboratory floor
noise was so influential that no interference could be
observed at all without the efficient decoupling pro-
vided by the air-damped table feet.

The closed-circle water cooling of the argon ion
laser represented a second serious low-frequency noise
source. It could be isolated from the experiment on the
same table by carefully selected pieces of rubber. It
turned out that standard erasers, as obtained from a sta-
tionery shop, out-performed other tested laboratory
materials (viton, teflon) in damping efficiency. The use
of the erasers was instrumental in increasing the best
observed overall interference fringe contrast from 39%
to 50%.

Although both noise-isolation methods were
required and successful in obtaining the theoretically
expected interference visibility for fast molecules
(200 m/s, λdB = 2.5 pm, Fig. 3), they still did not suffice
to fully restore the expected interference contrast at
100 m/s (λdB = 5 pm).

In order to better demonstrate the influence of
acoustic noise on the interference pattern, it was easier
to add than to suppress selected frequencies. This was
done by mounting a PC loudspeaker to a horizontal
flange on the vacuum chamber, which was laterally sep-
arated by approximately 30 cm from the horizontal
accelerometer. The loudspeaker was driven by a sine-
function generator. The accelerometers clearly identi-
fied this contribution, and higher harmonics of the cho-
sen frequency were only excited at high vibration
amplitudes. We then recorded interference patterns for
various acoustic frequencies and kept the absolute dis-
placement amplitude at the location of the accelerome-
ter constant to nominally 15 nm only. When we plotted
the observed fringe visibilities as a function of the
applied frequency, we found a multiply peaked curve
with a dramatic loss of interference contrast at several
frequencies, as is shown in Fig. 6. The overall rich peak
structure is not unexpected, given our insights in Sec-
tion 4. However, the peaks are not equidistant in fre-
quency, and a direct comparison between theory and
experiment is hampered by the unavoidable mechanical
resonances of both the vacuum chamber and the inter-
ferometer mounts. They enhance the detrimental
dephasing at some frequencies, in particular around
100 and 130 Hz, and suppress them at others. Although
a quantitative analysis is thus rendered difficult, the
experiments certainly show that even very small
mechanical perturbations in one part of the experiment
can cause a large effect on the overall performance of
the interferometer. And it will be a significant challenge
to identify and exclude all possible sources of acoustic
dephasing in future experiments with larger clusters
and molecules.

6. CONCLUSION

We have shown that a Talbot–Lau interferometer is
not only a suitable device for investigating the wave-
particle duality of large molecules, but that it is also
very sensitive to inertial accelerations, whether from
rotational, gravitational, or acoustic perturbations.

Our present study shows that the rotation of the
earth is not yet a limiting factor for interference with
particles in the 1000 amu range. But the Coriolis force
has to be taken into account in near-field interferometry
with large proteins, unless the molecular velocity
spread can be reduced to below σv /vz ≈ 1%.

The suppression of the gravitational phase shift is
already a major concern in the design of our current
Talbot interferometer, and it is compensated for by an
alignment of the grating bars with respect to the gravity
vector to better than 1 mrad.

The third source of dephasing in the present interfer-
ometer is acoustic noise. Extending previous studies of
these effects [23], we predict a contrast-reducing influ-
ence of the basic acoustically excited vibration modes
of the Talbot–Lau interferometer. Experimentally, we
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Fig. 6. Influence of acoustic noise on the fringe visibility:
frequency dependence. Interference fringe visibility for C70
at a most probable velocity of vmp = 190 m/s. The frequency
of the noise source was varied at a fixed nominal vibration
amplitude of 15 nm as measured on the outside of a flange
on the vacuum chamber. The solid line is a spline curve to
guide the eye. Note that a vibration amplitude of 15 nm in
one place can correspond to a much larger amplitude at a
different place, either outside or inside the vacuum cham-
ber, and that these places will move when the frequency is
varied.
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were able to fully compensate for all perturbations to
such a level that interferograms of “fast” molecules
(200 m/s) reached the theoretically expected visibili-
ties. In order to achieve that, it turned out to be crucial
to rigidly mount the whole vacuum machine on an air-
damped optical table and, in addition, to isolate noise
sources on the table. However, for slow molecules
(100 m/s), the observed contrast is still about 30%
lower than expected. Interferometers with multiple
gratings, and more massive and slower molecules will
therefore require additional care in avoiding mechani-
cal vibrations. This can, in principle, be provided by
both passive and active methods. Novel solid state
lasers require much less cooling water, and magneti-
cally levitating turbo molecular pumps or large ion-get-
ter pumps will significantly reduce the acoustic noise.
To minimize the influence of building vibrations, the
next generation of our experiments will be built in a
new laboratory on an isolated concrete basement three
floors below the current setup.

It is also worth noting that most of the perturbing
influences could be drastically reduced and compen-
sated for in a future satellite-based experiment—even
though the costs for such an effort would not be justi-
fied at present.

We conclude with an example for a proposed exper-
iment with insulin, which has a mass of about
5700 amu, and which would traverse a Talbot–Lau
interferometer with L = 0.4 m, d = 257 nm, v = 300 m/s,
and σ = 30 m/s, θ = 0.001 rad, and Ω = 5.55 × 10–5 rad/s,
as before. Assuming that the vibration amplitudes can
be controlled to within A = 10 nm, we predict the fol-
lowing contrast-reduction factors: RC = 0.99, RG =
0.999, RP > 0.75 for all frequencies, and RI = 0.91. An
estimation of RT would require a precise knowledge of
the pivot point, but it is reasonable to assume that the
perturbing influence of torsion pendulum oscillations
will generally not exceed that of the other modes. This
shows that vibrations will still be the most influential
limitation on our interference design. But a reduction of
all vibration amplitudes to below 5 nm will again ren-
der the interference contrast almost perfect.
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