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Abstract. Kapitza–Dirac–Talbot–Lau interferometry (KDTLI) has recently
been established for demonstrating the quantum wave nature of large molecules.
A phase space treatment permits us to derive closed equations for the near-
field interference pattern, as well as for the moiré-type pattern that would arise
if the molecules were to be treated as classical particles. The model provides
a simple and elegant way to account for the molecular phase shifts related
to the optical dipole potential as well as for the incoherent effect of photon
absorption at the second grating. We present experimental results for different
molecular masses, polarizabilities and absorption cross sections using fullerenes
and fluorofullerenes and discuss the alignment requirements. Our results with
C60 and C70, C60F36 and C60F48 verify the theoretical description to a high degree
of precision.
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1. Introduction

The quantum wave nature of matter has become a corner stone of physics over many
decades, and current interest in de Broglie interferometry with electrons [1]–[3], neutrons [4],
atoms [5, 6] and molecules [7, 8] ranges from demonstrating fundamental quantum phenomena
to advanced applications in the materials sciences and in quantum metrology. All these
experiments require optical elements for the coherent manipulation of matter waves. While
clean solid surfaces and bulk crystal structures are well adapted to the diffraction of electrons
and neutrons with de Broglie wavelengths in the range of 1–1000 pm, it is often necessary to
tailor the beam splitters, lenses and wave guides to the specific particle properties in atomic and
molecular applications.

For complex molecules, nanofabricated gratings were demonstrated to act as beam splitters
for far-field diffraction [7, 9] and near-field interferometry [10]. However, these experiments
pointed already to the importance of van der Waals interactions between the molecules and
the diffraction grating, which largely exceeds the effect observed with atoms [11] because of
the high molecular polarizability and their comparatively low velocity. The interaction time
with a 500 nm thick grating amounts to only 5 ns at a beam velocity of 100 m s−1, and yet the
matter-wave phase shift can attain the value of several radians in the center of the slit opening.
The interaction effect gets even stronger close to the slit walls, to a degree that the wave front
distortion can no longer be described by a phase shift alone [12]. For particles with increasing
polarizability this strong influence of the grating interaction leads to prohibitive requirements
on the velocity, as discussed in [13]. It is therefore appealing to replace material gratings by
structures made of light, which offer the additional advantage of being indestructible, highly
transparent and easy to tune and modulate.
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Figure 1. Setup of the KDTLI: it consists of two material nanostructures (G1,
G3) and a standing light wave (G2). The latter is realized by a cylindrical lens
focusing a 532 nm laser beam onto a mirror. The three structures (G1, G2, G3)
have the same period of 266 nm and are separated equidistantly by 105 mm. For
detection, the third grating (G3) is shifted in small steps over the molecular
interference pattern. The transmitted molecules are detected in a quadrupole
mass spectrometer.

Bragg diffraction of free electrons at a standing light field was already proposed by Kapitza
and Dirac in 1933 [14], but nearly seventy years passed before the idea was experimentally
implemented [15]. In contrast to that, the first optical phase grating for atoms was already
realized in 1983 [16, 17] when a standing laser light field was tuned near to an atomic
resonance in order to perform Raman–Nath (‘thin grating’) diffraction of a supersonic sodium
beam. A related investigation [18] then focused on atomic diffraction in the Bragg regime
(‘thick grating’). These ideas were later extended to atom diffraction [19] and interferometry
[20, 21], also to the time domain [22]–[24], and to the manipulation of Bose–Einstein
condensates [25, 26].

The working principle of all phase grating examples is the same: a coherent laser beam
creates a periodic pattern of the electrical field amplitude. This couples to the particle’s
polarizability, shifts the energy and thus imprints a phase pattern on the transmitted matter-
wave beam. Its evolution into a modulated particle density distribution can then be observed
further downstream.

Large, hot molecules in thermal beams often exhibit broad absorption lines. Light will
therefore mainly couple in a non-resonant fashion. However, for most molecules one can still
find a suitable range of wavelengths where the light–molecule coupling allows one to imprint a
local matter-wave phase shift of the order of 18= π .

The first application of optical phase gratings to large, hot molecules was demonstrated
with C60 in a far-field diffraction experiment [27]. The combination with near-field diffraction
was suggested in [28] and recently implemented in a Kapitza–Dirac–Talbot–Lau interferometer
(KDTLI) [13], as shown in figure 1.

The general idea behind the KDTLI design has been described elsewhere [13, 28]: A
first absorptive mechanical structure, G1, (in the present experiment d = 266 nm) prepares the
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required spatial coherence for illuminating the optical phase grating, G2. Quantum interference
then explains the appearance of an approximate self-image of G2 at the position of the third
mask G3. This molecular density pattern is scanned by shifting G3 across the beam, while
counting the transmitted molecules as a function of the mask position. This scheme was
exploited to perform quantum interference experiments up to extended polyatomic molecular
chains [13] and to determine electrical molecular properties [29, 30].

In the present paper, we now provide a refined theoretical description of KDTL
interference, putting special emphasis on the proper incorporation of the influence of photon
absorption in the second grating. We give a closed expression for both the quantum interference
visibility and the fringe contrast one would expect if a classical moiré description were correct.
We then compare this to the measured interference curves of C60 and C70, which are in nearly
perfect agreement with the quantum result. We also apply the KDTL concept to studying the
fluorofullerenes C60F36 and C60F48. This allows us to assess the influence of mass, absorption
cross section and optical polarizability on the interference of large particles. In comparison
to earlier Talbot–Lau experiments [31], the new KDTLI now also allows us to establish a
significantly improved fringe contrast.

2. Theory of the KDTLI

The KDTLI is a derivative of the standard Talbot–Lau interferometer [5, 10, 32, 33], obtained by
substituting the central grating mask with the optical phase grating created by a standing laser
beam. In the simplest configuration all gratings, material and optical, have the same grating
period d, given by one half of the laser wavelength, d = λL/2. The passage of the matter-
wave beam through each grating may thus transfer integer multiples of the grating momentum
pd = h/d = 2h/λL to the transverse motion in the beam. These different diffraction orders
interfere further downstream, leading to a resonant enhancement at integer multiples of the
Talbot length LT = d2/λdB, which is determined by the de Broglie wave length λdB of the
molecules (which ranges between 1 and 5 pm in our experiment). The emerging interference
pattern at the position of the third grating thus displays a strong dependence of the interference
fringe visibility on λdB, as determined by the longitudinal velocity vz of the beam.

Unlike with material gratings, in the KDTLI we must also consider the possibility that
one or more laser photons are scattered or absorbed, while the molecule traverses the standing
light wave. The associated incoherent transfer of transverse momentum may strongly blur the
fringe pattern. If the absorption is followed by an immediate isotropic reemission process, this
causes an additional transverse momentum shift of up to the photon momentum h/λL. However,
in many large molecules the absorbed photon energy gets stored for a rather long time, either
in metastable excited states or, after rapid internal conversion, in the vibrational degrees of
freedom, which do not decay over the time scale of the experiment. The associated transverse
momentum transfer is then an integer multiple of the photon momentum h/λL, corresponding to
one half of the grating momentum pd . An odd number of net photon momenta will thus kick the
molecular wave such that the fringes get blurred maximally, whereas an even number will have
a much weaker effect. We note that related physics has already been described in the context of
far-field diffraction [34] and Mach–Zehnder interferometry [35] with atoms before.

In order to describe the interplay of coherent diffraction and the incoherent effect of photon
absorption, we follow the phase space formulation of Talbot–Lau interference based on the
Wigner function, as presented in [36]. It provides a transparent representation of all relevant
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coherent and incoherent phenomena, and it permits us to calculate the quantum interference
pattern on an equal footing with the possible moiré-type structures, which might arise already
due to classical mechanics in this setup. This comparison with the classical description is
required if one wants to establish that the observed fringe pattern in a molecule interference
experiment is caused by a genuine quantum interference effect.

2.1. The light-grating interaction

We start by collecting the necessary ingredients for describing the effects of a light grating on
the motion of a beam of polarizable particles. Taking the direction of the particle beam as the
z-axis, we set the retro-reflected, basic Gaussian laser mode in the perpendicular x-direction.
The time-averaged intensity of the standing light wave is then given by

I (x, y, z)=
8P

πwywz
exp

(
−

2y2

w2
y

−
2z2

w2
z

)
sin2

(
π

x

d

)
, (1)

where wy and wz denote the laser beam waists in the vertical and the longitudinal direction, and
P is the laser power. In the following, we assume the particle beam height to be sufficiently small
compared to wy , such that the dependence on the vertical y-direction can be safely neglected.
This is approximately the case in our experiment, see below.

The standing light field will in general induce dispersive and absorptive forces on a
molecule. The first type, due to the conservative optical dipole force, is described by the
potential

V (x, z)= −
2παω

c
I (x, 0, z), (2)

where αω is the real part of the polarizability of the particle at the laser frequency ω = 2πc/λL

(related to the polarizability in SI units by αSI(ω)= 4πε0αω).
Treating the effect of the grating potential in the eikonal approximation, a traversing

quantum wave acquires a position-dependent phase shift, which is calculated by integrating
the potential along a straight line,

φ(x)= −
1

h̄

∫
∞

−∞

V (x, vzt)dt = φ0 sin2
(
π

x

d

)
. (3)

The maximal shift

φ0 = 8
√

2π
αω

h̄c

P

wyvz
, (4)

thus increases linearly with the optical polarizability and laser power, and it is inversely
proportional to the molecule velocity vz. The justification of this eikonal approximation and
its range of applicability are discussed in some detail in [12]. As shown there, it is well justified
for the molecular masses and polarizabilities accessible with the current experimental setup.

The second type of momentum exchange between the light and the molecules is the
radiation pressure force due to photon absorption. The molecules used in the present experiment
are sufficiently large and internally complex that it is justified to both ignore any reemission and
to take the absorption cross section constant even after the absorption of several photons. In this
case, all absorption events can be described as being independent and as only determined by
the absorption cross section σabs at the laser frequency ω = 2πν. This cross section can often be
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related to the imaginary part of the polarizability using Mie theory, σabs = 4πω/c × Im(α(ω)),
but we will treat σabs as an independent parameter in the following.

The photon absorption rate is determined by the incident photon flux I (x, z)/hν and σabs,

0(x, z)=
σabs

hν
I (x, z). (5)

Below, the radiation pressure effect on the molecular beam will be described by the position-
dependent mean number of absorbed photons. The latter is obtained from the photon absorption
rate, in analogy to the eikonal approximation, by a straight integration along the longitudinal
motion of the molecule,

n̄(x)=

∫
∞

−∞

0 (x, vzt) dt = n0 sin2
(
π

x

d

)
. (6)

The maximum mean number of absorbed photons n0 is found in the antinodes of the standing
light wave, and it is given by

n0 =
8

√
2π

σabsλL

hc

P

wyvz
. (7)

The values of φ0 and n0 defined in (4) and (7) are the two key parameters describing
the molecule–light interaction, and they will appear in the closed formula for the quantum
interference visibility below.

Classical description. We note that the momentum-changing effect of photon absorptions does
not differ in the quantum and the classical description of the molecular motion. On the other
hand, the classical effect of the optical dipole force due to the potential (2) should be treated
in analogy to the eikonal approximation of the quantum case. This is done in terms of the
momentum kick Q(x) obtained by integrating the dipole force along the same straight line as
in the eikonal treatment [36],

Q(x)= −

∫
∞

−∞

∂V

∂x
(x, vzt) dt =

π h̄

d
φ0 sin

(
2π

x

d

)
, (8)

with φ0 from (4). (The h̄ in the prefactor cancels Planck’s constant in φ0 rendering the equation
classical.)

As we will see below, the spatially periodic focusing of classical particles due to the
dipole potential (8) may result in a regular molecule pattern behind the light grating, though
distinctly different from the quantum prediction. To perform the quantum and the classical
calculations it is useful to formulate the effect of the grating passage in a common framework,
the Wigner–Weyl phase space representation.

2.2. Phase space formulation of the light-grating transformation

The most important part in describing the KDTL interference is the transformation of the
particle beam state as it passes the second grating. We consider the Wigner function

w(x, p)=
1

2π h̄

∫
ds e2π isp/h̄

〈x −
s

2
|ρ|x +

s

2
〉 (9)

of the transverse quantum state of motion ρ of the molecular beam [36]–[38], where x and
p denote the position and momentum coordinates in phase space, and we first assume the
longitudinal velocity of the molecules to be given by a definite value vz.
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After passing an arbitrary grating in eikonal approximation, the transformed beam state
can always be written as [36]

w′(x, p)=

∫
dp0 T (x, p − p0) w(x, p0). (10)

That is, the momentum dependence of the quasi-probability distribution gets modified by a
convolution, while its position dependence is at most affected by a multiplication.

Let us now discuss the grating transformation for an arbitrary, d-periodic distribution of
the light intensity. We first assume that there is no absorption, σabs = 0, so that the grating
transformation is entirely coherent. The phase shift φ(x) then relates the wave function ψ in
front of the grating to the one behind, ψ ′(x)= exp(iφ(x))ψ(x). In phase space representation,
this coherent transformation is described by the convolution kernel [36]

Tcoh(x, p)=
1

2π h̄

∫
ds eips/h̄ exp

[
iφ
(

x −
s

2

)
− iφ

(
x +

s

2

)]
. (11)

Noting the periodicity of φ(x) we define the Fourier coefficients

b j =
1

d

∫ d/2

−d/2
exp(iφ(x))e−2π i j x/ddx, (12)

so that the coherent kernel takes the form

Tcoh(x, p)=

∑
j,m∈Z

b j b
∗

j−m exp
(

2π im
x

d

)
δ
(

p −

(
j −

m

2

)
pd

)
. (13)

This is a periodic comb of delta-functions separated by integer multiples of the grating
momentum pd = h/d. It serves to populate the different diffraction orders in (10) as the quantum
wave passes the grating.

In a second limiting case, we now consider the grating transformation for a vanishing
dipole force, αω = 0, but maintain a finite absorption cross section. It is reasonable to assume
that the final detection efficiency of the beam particles is practically independent of the number
of absorbed photons. In this case, their motional state gets effectively replaced by a statistical
mixture whose components differ by momentum translations of integer multiples of the photon
momentum h/λL = pd/2. These multiples correspond to the difference in the number of photons
absorbed from the left and from the right side. We denote as Prob(k; x) the position-dependent
probability distribution for the exchange of k ∈ Z net photon momenta. The mixture can then be
written in phase space representation asw′(x, p)=

∑
k Prob(k; x)w(x, p − kpd/2). That is, the

statistical redistribution of the momenta due to photon absorption is described by the incoherent
kernel

Tabs(x, p)=

∑
k∈Z

Prob(k; x)δ
(

p − k
pd

2

)
. (14)

Expanding the periodic position dependence of Prob(k; x) in a Fourier series,

Prob(k; x)=

∑
j∈Z

P (k)
j e2π i j x/d, (15)

it takes the form

Tabs(x, p)=

∑
k, j∈Z

e2π i j x/d P (k)
j δ

(
p − k

pd

2

)
. (16)
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Let us now specify the probability distribution (15) in terms of the mean number of absorbed
photons n̄(x). Since the absorption events are taken to be statistically independent the
probability Prob(k; x) for the net gain of k photon momenta is given by

Prob(k; x)=

∞∑
n=0

Prob(k|n)
n̄n(x)

n!
e−n̄(x). (17)

Here, n̄(x) is the position-dependent mean number of photon absorptions characterizing the
Poissonian distribution and Prob(k|n) is the probability for the net transfer of k photon momenta
towards one side, conditioned on the absorption of exactly n photons. Since absorptions from
the left and from the right occur with the same probability in a standing light wave, the latter is
given by the distribution of a one-dimensional, balanced random walk with n steps,

Prob(k|n)=
1

2n


(

n
(k + n)/2

)
, if n + k even,

0, otherwise.
(18)

In order to perform the average over the Poissonian photon distribution in (17) we first calculate
the characteristic function of (18) by means of the binomial theorem

X (ξ |n)=

∑
k∈Z

exp (−2π ikξ)Prob (k|n)= [cos(2πξ)]n . (19)

The characteristic function of the averaged distribution (17) thus takes the simple form

X(ξ ; x)=

∞∑
n=0

[n̄(x) cos (2πξ)]n

n!
exp (−n̄(x))

= exp {−n̄(x) [1 − cos (2πξ)]} . (20)

The inverse Fourier transform of (20) yields the required probability (17) in terms of the mean
number of absorbed photons,

Prob(k; x)= exp (−n̄(x)) Ik (n̄(x)) , (21)

where the In(x) are modified Bessel functions of the first kind.
So far, the integral kernels Tcoh and Tabs, which describe the coherent and the incoherent

part of the light-grating interaction, were discussed separately, see equations (13) and (16). For
realistic molecules the dispersive and the dissipative light forces coexist, and their combined
contribution is described in the eikonal approximation by a single transformation (10), whose
kernel is given by the convolution of Tcoh and Tabs,

T (x, p)=

∫
dq Tcoh(x, p − q)Tabs(x, q). (22)

Classical description. As an advantage of the phase space formulation, it is easy to describe
in the same framework how the molecules would move if they were classical particles. One
merely replaces the Wigner function by the classical phase space distribution, which is a proper
probability density. Both the quantum Wigner function and the classical phase space distribution
experience the same shearing transformation as they evolve freely between the optical elements,
see the discussion in [36]. Also the passage through a grating can be expressed in the same
form (10) in both cases, though the integral kernels differ of course. The classical kernel due to
the dipole force takes the form (10)

Tcl(x, p)= δ(p − Q(x)), (23)
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where Q(x) is the classical momentum kick of equation (8). The effect of a photon absorption,
on the other hand, is described by the same kernel (14) as in the quantum case, since it effects the
same momentum change on the motional state, irrespective whether the center-of-mass motion
is described by classical or quantum dynamics. To obtain the combined effect of dispersive and
absorptive light forces, one can again concatenate the two transformations.

2.3. Evaluating the KDTL effect

We are now in the position to calculate the interference pattern expected for the KDTLI in the
same spirit as it was done for purely coherent grating interactions in [36]. The final beam state
is obtained by applying the appropriate sequence of free evolution and grating transformations
to its Wigner function. Starting with a spatially completely incoherent but monochromatic beam
in front of the first grating one thus obtains the spatial density distribution in front of the third
grating by a final integration over the momentum variable,

w3(x)∝

∑
k∈Z

∫
dx0 dp T1(x0)Tcoh

(
x −

p

pz
L , 2p −

x − x0

L
pz − k

pd

2

)
Prob

(
k, x −

p

pz
L

)
.

(24)

Here L is the distance between the gratings and T1(x0) ∈ {0, 1} denotes the binary function,
which specifies the transmission of the first material grating. The latter serves to imprint a
density modulation onto the beam, thus creating the required spatial coherence downstream
at the light grating. We characterize the material grating mask by the Fourier coefficients

A j :=
1

d

∫ d/2

−d/2
T1(x)e−2π i j x/ddx, (25)

where d is the common period of all gratings.
In order to evaluate the interference pattern (24) it is now convenient to define the coherent

Talbot–Lau coefficients in terms of the Fourier coefficients (12), which describe the phase shift
due to the optical dipole potential,

Bm(ξ) :=
∑
j∈Z

b j b
∗

j−m exp
(
−2π i

[
j −

m

2

]
ξ
)
. (26)

The incoherent effect of the light grating is best accounted for through the characteristic
coefficients associated with the Fourier coefficients of the periodic probability distribution (15).
They are given by

χ j(ξ) :=
∑
k∈Z

P (k)
j exp(−2π ikξ) (27)

and they serve to define the general Talbot–Lau coefficients, which include the effect of
absorption,

B̂m(ξ) :=
∑
n∈Z

Bn(ξ)χm−n

(
1

2
ξ

)
. (28)

The factor 1/2 in (28) reflects the fact a single photon has a momentum that equals one half
of the grating momentum pd . As one expects, the convolution (28) reduces to the coherent
expression (26) if absorption can be neglected, i.e. for χm(ξ)= δm,0.

New Journal of Physics 11 (2009) 043032 (http://www.njp.org/)

http://www.njp.org/


10

Inserting the Fourier expressions (13) and (15) into (24) the integrations can now be carried
out by retaining the resonant contributions. This yields the interference pattern in terms of the
coefficients (25) and (28),

w3(x)=

∑
`∈Z

A∗

` B̂2`

(
`

L

LT

)
exp

(
2π i`

x

d

)
. (29)

Here LT = d2/λdb denotes the Talbot length, which gives the characteristic length scale for
near-field interference.

One records the beam intensity behind the third gratings as a function of the lateral
position xs , S(xs)∝

∫
dxT 3(x − xs)w3(x). Since the first and third gratings are identical in our

experiments, T1(x)= T3(x), the expected interference signal reads

S(xs)=

∑
`∈Z

(
A∗

`

)2
B̂2`

(
`

L

LT

)
exp

(
2π i`

xs

d

)
. (30)

Classical description. Using the same general formalism as above the classical result is obtained
by replacing the Wigner function by the classical phase space density and the kernel Tcoh(x, p)
in (24) by its classical counterpart (23). The evaluation of the corresponding moiré-type density
distribution suggests to introduce the classical coefficients

Cm(ξ)=
1

d

∫ d/2

−d/2
d x exp

(
−2π im

x

d

)
exp

(
−2π i

Q(x)

pd
ξ

)
. (31)

They are the classical analogue of the Talbot–Lau coefficients (26), but clearly lacking an
interference phase factor. Performing the same steps as above, the classical prediction for the
signal behind the third grating thus assumes a form analogous to (30),

Scl (xs)=

∑
`∈Z

(
A∗

`

)2
Ĉ2`

(
`

L

LT

)
exp

(
2π i`

xs

d

)
, (32)

where LT = d2mvz/h, with m the molecular mass and vz their longitudinal velocity.
Note that Planck’s constant appearing in LT cancels against the one from pd = h/d showing
up in (31); it is kept here to maintain the close analogy with the quantum result. Like in (28), the
possibility of photon absorption is accounted for in (32) by a convolution with the characteristic
coefficients (27),

Ĉm(ξ)=

∑
n

Cn(ξ)χm−n

(
1

2
ξ

)
. (33)

2.4. Closed expressions for the sinusoidal light grating

The results obtained so far are valid for gratings with arbitrary eikonal phase shifts and
momentum kick distributions. We now focus on the complex light grating of our experiment, as
defined by the intensity distribution (1). Their special form will yield closed formulae for the
Talbot–Lau coefficients (28) and their classical analogues (33).

The sinusoidal x dependence of the phase shift (3) implies that the Fourier coefficients are
determined by the integer Bessel functions,

bm = (−i)m eiφ0/2 Jm

(
φ0

2

)
. (34)
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The summation for the coherent Talbot–Lau coefficient (26) can be carried out by means of
Graf’s addition theorem for Bessel functions [39]. This leads to

Bm(ξ)= Jm (−φ0 sin(πξ)) (35)

indicating that all the Talbot–Lau coefficients are real.
It is instructive to compare this to the corresponding coefficients (31) of the classical

formulation. It follows immediately from (8) that they are given by

Cm(ξ)= Jm(−πφ0ξ). (36)

Comparing the quantum expression (35) and the classical one (36), we see that both coefficients
assume the same limiting form if the Talbot parameter ξ is much smaller than unity. They do,
however, strongly deviate for ξ > 1. The distinguishing quality of the quantum wave coefficients
(35) is their periodicity in ξ , which gives rise to the characteristic Talbot–Lau recurrences.
Classical particles show no such recurrences since their coefficients (36) exhibit no periodicity
in ξ .

We move on to evaluate the characteristic coefficients (27). There is no obvious way to
express the Fourier coefficients Pk

n from equation (15) in closed form. However, the coefficients
χm(ξ) can be expressed as the Fourier transform of the characteristic function (20) with respect
to position,

χm(ξ)=

∫ 1/2

−1/2
dτ exp (−2π imτ)X(ξ, τd). (37)

Due to the sinusoidal position dependence of the mean photon number (6) the integration can
be carried out, yielding a modified Bessel function,

χm(ξ)= exp
(
−n0 sin2 (πξ)

)
Im

(
n0 sin2(πξ)

)
. (38)

The Talbot–Lau coefficients in the presence of absorption can now be obtained by
performing the summation in (28). This can be done using an addition theorem for mixtures
of regular and modified Bessel functions, which can be derived from Graf’s addition theorem.
It reads, for u, v ∈ R, u 6= v,(

v− u

v + u

)n/2

Jn

(
−sgn (u + v)

√
v2 − u2

)
=

∑
k∈Z

Ik+n (u) Jk (v) (39)

and yields a real number also for |v|< |u| since Jn(iu)= in In(u).
Using (35) and (37), and noting J−n(z)= Jn(−z), we thus obtain the general coefficients

of the KDTLI, which incorporate the effect of photon absorption. They are given by

B̂m(ξ)= exp (−ζabs(ξ))

(
ζcoh(ξ)− ζabs(ξ)

ζcoh(ξ)+ ζabs(ξ)

)m/2

Jm

(
−sgn [ζabs(ξ)+ ζcoh(ξ)]

√
ζ 2

coh(ξ)− ζ
2
abs(ξ)

)
.

(40)

Here, the coherent diffraction effect of the dipole force is described by the function

ζcoh(ξ)= φ0 sin(πξ) (41)

and the incoherent effect of absorption is accounted for by

ζabs(ξ)= n0 sin2
(π

2
ξ
)
. (42)
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Classical description. The coefficients for the classical motion (33) can be obtained the same
way starting from (36) and (37). Given the relation between the classical and the quantum
coefficients (36) and (35), it is not surprising that the Ĉm(ξ) assume a similar form as the B̂m(ξ)

in (40). The only difference is that ζcoh(ξ) is replaced by

ζcl(ξ)= φ0πξ, (43)

which lacks the periodicity in the Talbot parameter ξ shown by (41).

2.5. Discussion of the theoretical results

2.5.1. The fringe visibility. Using the above results it is now easy to calculate the expected
quantum interference pattern (30) and the corresponding classical prediction (32). However, for
the parameters of our experiment the patterns are well described by a sine curve so that it is
sufficient to characterize the experimentally observed pattern by the contrast of a sinusoidal fit.
This sinusoidal fringe visibility can be calculated as the ratio of the first two Fourier coefficients
of the fringe pattern, V = 2|S1/S0|.

We denote by f the open fraction (i.e. the ratio between the single slit width and the
grating period) of the first and the third grating, so that the grating coefficients (25) are given by
A` = f sinc(`π f ). The quantum fringe visibility then takes the form

Vqm = 2 sinc2(π f )

∣∣∣∣B̂2

(
L

LT

)∣∣∣∣ (44)

with the coefficient B̂2 given by (40).
Similarly, the fringe pattern expected form classically moving molecules has a visibility

Vcl = 2 sinc2(π f )|Ĉ2(L/LT)| which is obtained from (44), if we replace the function of coherent
diffraction ζcoh(ξ) by the classical function ζcl(ξ) defined in equation (43).

2.5.2. Comparing the classical and quantum predictions. Let us now see how the quantum
interference pattern differs from the fringe pattern expected from classically evolving particles.
Figure 2 compares the corresponding visibilities Vqm and Vcl as one varies the de Broglie wave
length or velocity. The latter is specified by L/LT = L/d2

× λdB both in the quantum and the
classical case. For the material gratings we assume an open fraction of f = 0.42, like in our
experiment.

The most important feature of the quantum result (top row in figure 2) is that the visibilities
are generally much greater than the classical calculation (bottom row). They also display more
structure if the strength of the dipole potential increases (from left column to right column), a
consequence of the intricate near-field interference process. At first sight, it may seem surprising
that a fringe visibility would be observed at all in this setup if the molecules were moving as
classical particles. This is due to a moiré-type effect, where the light grating acts as a periodic
structure of lenses focusing the classical trajectories. Note that these classical visibilities are
systematically suppressed in the ‘quantum regime’ L/LT � 1. They coincide with the quantum
result only in the ‘classical limit’ L/LT → 0 of a vanishing de Broglie wavelength.

One also observes in figure 2 that the visibility peaks are affected rather differently by the
possibility of photon absorption. Close to even multiples of L/LT the classical contrast remains
essentially unaffected by absorption, while the quantum visibility vanishes identically at all
integer multiples of L/LT in the absence of absorption. It is a curious result of our theory that a
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Figure 2. Fringe visibilities as obtained from the quantum (top) and classical
(bottom) description of the molecular motion in a KDTLI. The abscissa value
L/LT is proportional to the molecular de Broglie wave length; it scales as v−1

z ,
also in the classical case. The material gratings are chosen to have an open
fraction of f = 0.42 [13]. The maximal optical phase shift increases from φ0 = 3
(left panel), φ0 = 5 (middle) to φ0 = 7 (right). Each line in each panel describes
the fringe visibility for a specific maximal mean number of absorbed photons n0,
which is given, from the top to the bottom lines, by n0/φ0 = 0, 10, 25 and 50%.
The quantum and the classical fringe visibilities differ markedly both in their
value and in their functional dependence, except for the limit of high velocities,
i.e. small de Broglie wave lengths L/LT → 0. The visibility peaks are strongly
affected by photon absorption.

certain fringe pattern can be observed even if the dipole force can be neglected compared with
photon absorption, φ0 → 0. The quantum and the classical predictions coincide in this case, and
one expects a sinusoidal visibility given by

Vabs = 2 sinc2(π f ) exp
[
−ζabs

(
L

LT

)]
I2

[
ζabs

(
L

LT

)]
. (45)

It is greatest if the maximum mean number of absorbed photons equals n0 = 4.65. The visibility
then amounts to max(Vabs)= 0.236 × sinc2(π f ), i.e. a value of 24% cannot be exceeded by this
effect.
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Figure 3. Interference visibility for a fixed value of L/LT = 8.5 and f = 0.42 for
C60, which corresponds to a velocity of 97 m s−1. Panel (a) shows the quantum
interference visibility as a function of 80 and n0. Panels (b)–(d) display cuts
through this figure, along with the smaller classical fringe visibility (solid lines).
(b) is the cut along n0 = 0.5, (c) shows the cut for fixed 80 = 2.7 and (d) is a
cut along the surface shown in (a), which corresponds to a linear increase in the
power of the light grating according to equations (4) and (7). Also shown in (d) is
the effect of a velocity distribution 1v/v = 10% on the quantum (dashed dotted
curve) and classical (dash double dotted curve) visibility.

Finally, figure 3 shows for a fixed value of L/LT how the visibilities depend on the
molecular properties, which are summarized in the dipole force phase φ0 and the absorption
number n0. We choose L/LT = 8.5, which corresponds to C60 fullerenes at a velocity of
97 m s−1. One observes that at fixed velocity the parameter dependence is less complicated
than the wave length dependence of figure 2. Since the molecular velocity is easy to control
this implies that KDTL interference can be used to measure the molecular polarizability and the
absorption cross section by varying the intensity of the light grating [13, 29, 30].

So far, the molecular beam was assumed to be characterized by a fixed longitudinal velocity
vz. The case of a finite velocity spread is easily incorporated by averaging the interference
patterns of the monochromatic theory with the measured velocity distribution in the beam. This
also applies to the sinusoidal visibilities, since the zeroth Fourier component of the interference
pattern is independent of the velocity.

New Journal of Physics 11 (2009) 043032 (http://www.njp.org/)

http://www.njp.org/


15

Figure 4. Power dependence of the interference contrast for the fullerenes
C60 (filled circles) and C70 (open circles). The points represent the weighted
average of three consecutive measurements, the error bars depict one standard
deviation. Bold lines display the quantum expectations, obtained by weighting
equation (44) with the experimentally observed velocity distribution and fitting
α and σ0. The corresponding classical expectations are shown as thin lines. The
solid lines identify the theoretical predictions for C60, whereas the dashed lines
correspond to C70.

3. Verification of the model using fullerenes and fluorofullerenes

In a first experiment a mixture of the fullerenes C60 (720 amu) and C70 (840 amu) was
co-sublimated in a thermal source (see figure 1) at a temperature of 910 K. By alternating the
setting of the detecting quadrupole mass spectrometer between the masses of the two molecules,
the interference patterns of either species were recorded, one after the other, before the laser
power was shifted to the next point in the series. This way, we assured that the standing light
wave conditions were the same for both molecules. The result is shown in figure 4. Each data
point represents the weighted average of three consecutive measurements, where the confidence
intervals of the individual sine fits serve as weights. The single patterns were recorded
over four full sine periods with ten points per period and two seconds integration time per point.
The mean count rates per second amounted to 740 for C60 and 505 for C70.

The velocity of the particles was selected by limiting their path to the associated free
flight parabola in the Earth’s gravitational field [40]. This yields an approximately Gaussian
velocity distribution. The mean velocities in the experiment were determined to be 202 m s−1

for C60 and 194 m s−1 for C70 with velocity spreads of 27 and 25%, respectively (1v/v, full-
width at half-maximum (FWHM)). The interferometer setup is characterized by a grating
period of d = 266 nm (corresponding to a laser wave length of 532 nm), a grating separation
of L = 105 mm, a molecular beam height of about 200µm and a beam width of about 1 mm.
The slit widths are assumed to be 85 nm in G1 and 110 nm in G3.
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Both visibility curves reproduce the quantum expectations accurately (bold lines, equation
(30)), while being in distinctive disagreement with the classical prediction (thin lines,
equation (32)). We emphasize that the present result signifies a noticeable improvement
over previous measurements [13]. We attribute the enhanced interference contrast mainly
to further improvement of the highly critical adjustment of the machine as outlined in
section 4.

From the perfect accordance with the theory we also deduce that decoherence due to
collisions with particles of the background gas is negligible in our current experiments.
Following [41] we estimate an effective cross section for collisions of σeff = 4.2 × 10−17 m2

for C70. The experiment is conducted under pressures below 10−8 mbar, which results in a mean
free path of more than 17 m. This corresponds to a reduction of the effective visibility of Veff >

0.98V0. Since the effective collisional cross section is mainly governed by the polarizability of
the molecule rather than its geometrical size, an even smaller reduction of the visibility can be
expected for the other species discussed in this paper.

We also observe, and again in good agreement with our model, that the fringe contrast of
the more absorptive C70 decays significantly more rapidly than the contrast of C60 when we
increase the laser power. The increasing number of absorbed photons fills in the interference
minima with shifted interference curves, thus washing out the accumulated interference pattern.

It may come as a surprise that, in spite of the higher absorption cross section, C70

exhibits actually a higher interference contrast than C60 at lower laser powers. This can be
explained by the optical polarizability which, according to our present measurement, amounts
to αAC = 114 Å3 for C70 and is thus 31% higher than for C60. This results in a larger
phase shift in the optical grating and thus leads to a shift of the entire curve to the left in
figure 4.

The experiment was repeated in two additional and separate runs with the fluorofullerenes
C60F36 and C60F48. The C60F36 sample was synthesized by the method described in [42]
with a compositional purity of >95% as determined by mass spectrum analysis. It contains
two major isomers of C3 and C1 symmetry in the approximate ratio 2 : 1, as well as one
minor isomer of T symmetry (about 5%) [43]. The three isomers of C60F36 show very
similar polarizabilities, ranging between 62 and 65 Å, according to calculations performed
with Gaussian [44]. Depending on the specific isomer, C60F36 may possess a dipole moment
of upto 1.2 Debye. The sample of C60F48 was purchased from Professor L Sidorov, Moscow.
The synthesis and characterization were done according to Boltalina and Galeva [45]. C60F48

is formed predominantly as a single isomer of D3 symmetry, with the minor isomer of S6

symmetry comprising about 5% [43]. For both isomers of C60F48 the simulations yield virtually
identical polarizabilities and no dipole moment. Both fluorofullerene samples were produced
before the year 2003 but remained intact compounds over this period, as proven by mass
spectra.

It is noteworthy that an earlier experiment in a pure Talbot–Lau configuration succeeded
already with C60F48 but at limited contrast [31]. The present setup, however, substantially
outperforms its predecessor: the more sophisticated KDTLI scheme, an improved count rate and
a better vibration insulation with respect to the earlier experiment allowed us for the first time
to achieve the full expected quantum contrast for both C60F36 and C60F48, as shown in figure 5.
The larger error bars with respect to the C60–C70 measurement are mainly a consequence of
the lower count rates of only 60 and 75 per second for C60F36 and C60F48, respectively. The
temperature was kept at 590 K for both molecules.
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Figure 5. Power dependence of the interference contrast for the fluorofullerenes
C60F36 (filled circles) and C60F48 (open circles). The circles represent the
weighted average of three consecutive measurements, the error bars depict one
standard deviation of the shot noise. Bold lines display the quantum expectations.
The values used for the parameters α and σ0 correspond to a best fit and are
depicted in table 1. Classical expectations are shown as thin lines. Solid lines
correspond to C60F36 and dashed lines to C60F48.

The recorded velocities for C60F36 and C60F48 were of 130 and 116 m s−1 with velocity
spreads of 16 and 18%, respectively. Although smaller velocities tend to make the experiment
more susceptible to vibrations, drifts and misalignment, no significant drop of the measured
visibility below the theoretical expectation was observed.

In table 1, we compare the optical properties of all four particles that were extracted from
a best fit of the quantum curves to the experimental data. All values are in good agreement
with the parameters determined in independent experiments [29, 46] and with molecular
simulations carried out using Gaussian. The remarkably small statistical errors indicate that our
method offers the capacity for high precision metrology experiments with heavy molecules. The
accuracy is, however, currently limited by the systematic errors, which are primarily governed
by the accuracy of the measurement of the power (±5%) and the waist (±10%) of the diffracting
laser beam.

The decrease in polarizability from C60 to C60F48 is in good agreement with the
observation that fluorinated molecules in general show a reduced polarizability-to-mass ratio
and correspondingly lower inter-molecular binding, lower sublimation enthalpies and higher
vapor pressures at a given temperature [50]. It is also important to see that the fluorine shell
reduces the absorption cross section at the wavelength of the diffracting laser beam to a
negligible value. Our measurement thus allows us to extract information about the effect of
fluorination on the electronic properties of fullerenes.
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Table 1. Molecular parameters as derived from the best fit of the theory including
statistical and systematic errors. The data are in very good agreement with the
values provided by literature, where published, or with simulations performed
with Gaussian [44]. The simulation yields slightly different values for the three
conformers of C60F36, ranging between 62 and 65Å3. Note that the published and
calculated values represent static polarizabilities, whereas our experiment yields
the optical polarizability at the laser wavelength of 532 nm.

Molecule C60 C70 C60F36 C60F48

σabs(10−22 m2) 2.8 ± 0.3 ± 0.3 24.9 ± 1.1 ± 2.7 <0.6 <0.5
αopt(Å3) (Exp.) 87.1 ± 0.5 ± 9.7 114.2 ± 0.9 ± 12.7 60.3 ± 1.0 ± 6.7 60.1 ± 0.8 ± 6.7
αstat(Å3) (Lit.) 88.9 ± 0.9 ± 5.1 [46] 108.5 ± 2.0 ± 6.2 [46] 62–65 [44] 63 [44]
α(Å3) (Lit.) 89.2 [47] 109.2 [47] — —
α(Å3) (Lit.) 90 [48] 118.4 [48] — —
α(Å3) (Lit.) 98.2 [49] 122.6 [49] — —

4. Alignment requirements for precision experiments

Matter-wave interferometry with large molecules operates with de Broglie wavelengths in the
range of a few picometers and grating periods as small as a few hundred nanometers. As a result
of this, the interferometer alignment has to be considered carefully. The following section is
therefore devoted to a short assessment of the constraints on the experimental precision.

4.1. Equality of grating periods

If the first two gratings have only slightly different lattice periods, the interference pattern
spacing will not match the period of the third mask and the contrast will be reduced. A period
mismatch as small as one per mille leads already to half a fringe shift between slit one and five
hundred.

In practice, all grating periods must be, on average, equal to better than 0.05 nm,
i.e. about the diameter of a hydrogen atom. This condition enters both the choice of the
grating manufacturing process and the alignment of the yaw angle for all gratings. Modern
photolithography and etching procedures allow to reach this level of precision. The gratings
for our experiments were produced by Dr Tim Savas at MIT and ‘nm2’ Inc, Cambridge,
Massachusetts and independently checked by Ibsen Photonics, Denmark. The gratings were
fabricated to be 0.3 nm wider than the period of the standing light wave in order to allow for
later yaw adjustments.

4.2. Transverse grating shifts and grating roll angles

The lateral position 1xi of all gratings relative to each other determines the final location
of the fringe pattern. For Talbot–Lau interferometry, we can define a phase of the near-
sinusoidal interferogram, which is determined by the relative shift of the molecular density
maxima with regard to the openings of the third grating. For geometrical reasons this phase is
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determined by [51]

φ = kd(1x1 − 21x2 + 1x3) (46)

with kd = 2π/d. In a symmetrical setup such as ours, with L1 = L2, the prefactor of the first and
third gratings must be equal, while the second grating’s shift enters twice. Molecules passing the
gratings at different heights yi will effectively see different transverse grating shifts1xi = αi yi

if element i is rolled by the angle αi . Although a simple phase shift will not reduce the fringe
visibility, an integration over many height-dependent shifts does. If we neglect gravity, we can
assume the second grating to define the reference angle, α2 = 0, and study the influence of
rolling G1 by α1 and G3 around α3. In the paraxial limit, the total signal S(x) behind the third
grating is then

S(x)=
1

hshd

∫ hs/2

−hs/2

∫ hd/2

−hd/2
dys dyd S(x, kd1x1 + kd1x3) (47)

= S0

(
1 +V sin(x) sinc

(
kdhsα

′

1

)
sinc

(
kdhdα

′

3

))
, (48)

where the transmission function S is parametrized as a sine wave of amplitude S0 with visibility
V and height-dependent phase shifts x1 and x3. We denote α′

1 = α1L2(L1 + L2 + L3)/(L1L tot)+
α3L3/L tot, α′

3 = α1L0L2/(L1L tot)+α3(L0 + L1 + L2)/L tot with L tot = (L0 + L1 + L2 + L3) and
all distances as shown in figure 6.

From equation (48) we see that rolling G1 and G3 reduces the fringe visibility in a
sinc-shaped functional dependence. The alignment becomes increasingly important for smaller
grating constants and more extended molecular beams. In our experiment, the first zero of the
sinc curve appears for a roll angle of around 0.65 mrad.

In addition to shifting the phase, rolling also affects the effective grating constant. If
one of the gratings is rolled with respect to the others its projected period increases by
deff = d/cos(α)' d + dα2/2 + O(α4) (see figure 6). If we require the relative period change
not to exceed (deff − d)/d = 10−4, the roll angle has to be kept aligned to within 10 mrad.

4.3. Longitudinal grating shifts

The semiclassical picture in figure 6(a) shows that the interference pattern is also blurred when
the third mask is moved relative to the second grating by the distance ±1L . For symmetry
reasons, the same is true for a movement of G1. The contrast is severely reduced when the blur
D = d/2 is as wide as half a grating period. We see that this condition is met when

D

1L
=

d/2

1L
=

Nd

2L
, (49)

where N is the number of grating slits illuminated by the molecular beam. We thus derive the
length-balance criterion

1L

L
<

1

N
. (50)

When 4000 lines are illuminated, as in our experiments, we have to balance the distances to
better than 25µm. This is already comparable with the waist of the diffracting laser beam.
This intuitive condition is consistent with a complementary and more rigorous treatment using
Wigner functions [12].
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Figure 6. Illustration of the alignment considerations. (a) An imbalance of
grating separations leads to blurred interferences. (b) and (c) Illustration of
the grating’s motion during roll, pitch and yaw. (d) Distances relevant for the
assessment of grating roll: molecules can pass the gratings at different altitudes
and different transverse positions if the gratings are rolled with regard to each
other. The height of the first velocity selection slit is hs = 150µm, whereas the
third one is restricted to hd = 200µm. The distance between the source and G1 is
L0 = 150 cm, whereas the spacing between G3 and the detector is L3 = 250 mm.
The grating separation amounts to L1 = L2 = 105 mm. The beam width of about
1 mm is sufficient to illuminate nearly 4000 grating openings.

4.4. Grating pitch

The effect of forward or backward tilting a single grating, i.e. to add a pitch, is to introduce a
height-dependent imbalance in the grating separation. The pitch must be compatible with the
requirement of equation (50). If the beam height is h and the forward pitch is measured by
the angle θ then the arm lengths are balanced as long as 1z = hθ � L/N . For our experiment
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with h = 100µm, L = 105 mm and N = 4000, this corresponds to 250 mrad. This condition
can easily be met.

4.5. Grating yaw

To first order, the argument for grating pitch also holds for grating yaw. However, yaw also
changes the slit’s effective period as well as their effective open width. Under a yaw of angle φ
the grating constant shrinks like dy = cos(φ)d ≈ d −φ2d/2. Similarly to the roll-related period
change we derive the condition φ < 10 mrad.

Finally, we have to include the effective reduction of the open slit width if the grating
is turned: the openings shrink because of the finite wall thickness b to aeff = a − b tanφ.
A reduction of the open fraction in the first or third grating is important as it tends to increase
the fringe visibility, while decreasing the count rate at the same time. A variation by 10% in
visibility is already rather clearly noticeable, leading to the constraint: 0.1> (aeff − a)/a =

−(b/a)tanφ. For a = 90 nm and b = 190 nm, we thus find a limit of φ = 47 mrad for the
maximally allowed yaw angle in our experiments.

For the second grating a different reasoning applies: the optical grating is about 20µm
thick along the direction of the molecular beam, therefore we have to make sure that no molecule
crosses a sizeable fraction of the standing light wave period transversely. Since the period is as
small as 266 nm the condition imposes a limit on both the angle of incidence and the divergence
angle of the molecular beam: φ 6 0.1 × 266/20 000 ' 1 mrad.

5. Conclusions

Our experiment combines the virtues of near-field interferometry with the advantages of
optical manipulation. Compared with far-field diffraction of collimated beams, near-field
interferometry provides higher signal throughput at the expense of increased alignment
requirements. As discussed in this paper, the experimental challenges are non-negligible but
manageable with reasonable effort. Optical phase gratings allow us to operate with highly
polarizable molecules, which would otherwise acquire prohibitively large van der Waals phases
by interacting with the walls of material gratings.

The KDTLI is very well described using a Wigner function approach, which facilitates
in particular the inclusion of grating transformations and momentum exchange in the
interferometer. The model is in excellent agreement with the experiments, even for particles
as complex as C60F36 and C60F48. Actually the KDTLI allowed us to observe much improved
contrast compared with earlier pure Talbot–Lau experiments with the same particles [31].

This instrument and its theoretical description are now a good basis for continuing the
quest for the ultimate mass and complexity limits of matter-wave interferometry. In addition,
it has proven to be useful for a number of relevant measurements of molecular properties,
such as optical polarizabilities and absolute optical absorption cross sections [29, 30, 52].
Interestingly the rich internal structure of complex molecules, including electric dipole moments
or magnetic moments, structural properties etc, can be ignored unless they either modify the
optical polarizability or unless we introduce additional field gradients or collisions [41], which
allows these properties to be coupled separately [46].
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