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Abstract. We introduce a quantum phase space representation for the
orientation state of extended quantum objects, using the Euler angles and their
conjugate momenta as phase space coordinates. It exhibits the same properties
as the standard Wigner function and thus provides an intuitive framework for
discussing quantum effects and semiclassical approximations in the rotational
motion. Examples illustrating the viability of this quasi-probability distribution
include the phase space description of a molecular alignment effect.
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1. Introduction

Soon after Heisenberg and Schrödinger invented modern quantum mechanics, Wigner
introduced his prescription to represent quantum states by distribution functions in classical
phase space [1]. Moyal’s discovery [2] that the mapping between quantum operators and phase
space functions reflects Weyl’s correspondence rule [3] led to a representation of quantum
mechanics as a statistical theory on classical phase space. The Wigner function has found
numerous applications in many areas of physics, ranging from solid state physics, optics,
quantum optics and interferometry with particles to collisions of molecules and chemical
reactions [4–10].

Wigner’s standard formulation is restricted to the center-of-mass motion of spinless
particles. Many extensions to other dynamical degrees of freedom have been suggested,
notably by means of mapping to the Cartesian case [11–13], or formulations based on Lie
groups [14–23]. The former come with major drawbacks; for instance, one cannot even calculate
expectation values for arbitrary operators in these frameworks. In [14, 15, 17] a phase space
formulation for single irreducible representations of SU (2) is introduced, i.e. for spin states
with a fixed value of j . In [23] this is extended to account for superpositions in j . Based on
the theory of generalized coherent states [24], these concepts are applied to quantum systems
possessing arbitrary Lie group symmetries in [16, 18, 19]. However, in all these approaches
the marginal distributions cannot be obtained from the Wigner function by integrating out the
other variables. In [21, 22] a phase space formulation is developed for quantum systems whose
configuration space is a Lie group. This work takes into consideration the desired features of the
standard Wigner function. But also here the marginal distributions cannot be calculated as one
would do with a probability distribution, thus impeding a quasi-probability interpretation. All
the essential features of the standard Wigner function have so far only been demonstrated for
the simple one-dimensional case of a single angle–angular momentum pair [25–29]. Given the
success of the Wigner–Weyl representation for point particles, a viable phase space description
of spatially extended quantum objects should be useful e.g. for experiments probing quantum
and classical dynamics in the rotation and alignment of complex molecules.

In this paper, we present a Wigner function for the orientation state of an extended quantum
object. In contrast to the approaches mentioned above, it is found on the quantized canonical

New Journal of Physics 15 (2013) 063004 (http://www.njp.org/)

http://www.njp.org/


3

coordinates of the underlying classical phase space, providing a one-to-one mapping between
quantum operators and classical phase space functions, the Weyl symbols. In close analogy
to the standard Moyal formulation, we find that any Weyl-ordered observable is mapped to
its equivalent function on phase space, that integrating out phase space coordinates yields the
reduced probability distribution, and that the motion of the Wigner function is described by a
quantum Liouville equation, which turns into its classical equivalent as h̄ → 0.

2. Wigner function for the orientation

The Hilbert space H of a rigid rotor is spanned by the vectors |J K M〉, the eigenstates of the
square of the angular momentum operator J2 and its projections Pz and Jz on the body-fixed and
space-fixed z-axis. An alternative basis is provided by the resolution of the identity

I=
∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ |α, β, γ 〉〈α, β, γ | (1)

in terms of the Euler angles (α, β, γ ) ≡ �, which serve to specify the orientation (in the usual
z–y–z convention). The basis transformation

〈�|J K M〉 =

√
2J + 1

8π2
D J∗

M K (�) (2)

is mediated by the Wigner D-matrices D J
M K (�) [30].

Choosing the Euler angles as natural configuration space coordinates, the classical phase
space is completed by their conjugate momenta pα, pβ and pγ . As the generators of the rotations
defining the Euler angles, they are projections of the angular momentum vector J onto the
corresponding rotation axes: pα is the projection of J on the space-fixed z-axis, pβ on the
nodal line formed by intersecting the space-fixed x–y plane with the body-fixed x–y plane and
pγ on the body-fixed z-axis.

Quantum mechanically, the symmetrized projections are given by the operators [30]

pα = −i h̄∂α, (3a)

pβ = −i h̄

(
∂β +

1

2
cot β

)
, (3b)

pγ = −i h̄∂γ . (3c)

Like J2, Jz, Pz, they form a complete set of commuting observables exhibiting a discrete
spectrum with eigenvalues

pα = h̄mα, pβ = 2h̄mβ and pγ = h̄mγ , mα,β,γ ∈ Z. (4)

We denote the corresponding eigenstates as |mαmβmγ 〉 ≡ |m〉; they provide a further basis ofH
and their Euler angle representation is

〈�|m〉 =
1√

4π 3 sin β
eimααei2mββeimγ γ . (5)

With this, we can now state our Wigner function

W (�, m) ≡ W

(
α, β, γ,

pα

h̄
,

pβ

2h̄
,

pγ

h̄

)
(6)
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in terms of both the orientation representation 〈�′
|ρ|�′′

〉 and the angular momentum
representation 〈m′

|ρ|m′′
〉 of the quantum state

W (�, m) =
1

4π 3

∫ π

−π

dα′

∫ π/2

−π/2
dβ ′

∫ π

−π

dγ ′

√
sin β ′

+ sin β ′
− eimαα′

ei2mββ ′

eimγ γ ′

× 〈α′

−
, β ′

−
, γ ′

−
|ρ|α′

+, β
′

+, γ
′

+〉 (7a)

=
1

4π 3

∑
m′,m′′∈Z3

sinc

[(
m −

m′ + m′′

2

)
π

]
ei(m′

α−m′′
α)αei2(m′

β−m′′

β)β

×ei(m′
γ −m′′

γ )γ
〈m′

|ρ|m′′
〉. (7b)

Here we use the abbreviations α′

±
= (α ± α′/2) mod 2π , alike for γ , β ′

±
= (β ± β ′/2)mod π

and sinc (x) =
∏

i sin(xi)/xi . While the angular representation (7a) is similar to the standard
Wigner function [1], the momentum representation (7b) differs notably exhibiting a double sum
and sinc functions, which act like blurred Kronecker deltas. The Wigner function in terms of
the symmetric top eigenstate basis 〈J K M |ρ|J ′K ′M ′

〉 is readily obtained from (7a) by inserting
the corresponding resolution of the identity.

Note that the angular momentum arguments m are integers, which reflect the discrete
spectra of the corresponding operators. As discussed below, this discontinuity in the momenta
poses no conceptual problem, as all relevant properties of the standard Wigner function
remain untouched. The discreteness is rather a necessary consequence of quantizing compact
coordinates, which disappears in the classical limit.

As in the standard case, one can introduce a Stratonovich–Weyl operator kernel 1(�, m)

(see below) [31] such that the mapping of any operator A onto its Weyl symbol WA(�, m) reads
as

WA (�, m) = tr [A1 (�, m)] (8)

and its inversion

A =
1

4π3

∑
m

∫ 2π

0
dα

∫ π

0
dβ

∫ 2π

0
dγ WA (�, m) 1 (�, m) .

For A = ρ this implies (7a) and (7b), since Wρ(�, m) = 4π 3W (�, m).

3. Relevant properties of the Wigner function

Remarkably, all relevant properties of the standard Wigner function can be recovered. It follows
from (7a) that the Weyl symbol of any Hermitian operator is real, as required for a proper phase
space representation. Moreover, W (�, m) is normalized with respect to the phase space integral∫

d�
∑

m

W (�, m) = 1 , (9)

where d� ≡ dα dβ dγ , and expectation values can be calculated by the phase space average∫
d�

∑
m

WA(�, m)W (�, m) = 〈A〉 . (10)
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The quasi-probability interpretation of the Wigner function manifests itself in the expressions
for the probability distributions 〈�|ρ|�〉 and 〈m|ρ|m〉. They can be obtained as marginal
distributions of W (�, m) by integrating out the conjugate variable∑

m

W (�, m) = sin(β)〈�|ρ|�〉, (11a)∫
W (�, m) d� = 〈m|ρ|m〉 (11b)

as is readily verified from (7a) and (7b).
As for the Weyl symbols of the coordinate and momentum operators, equation (7a)

yields the expected expressions Wα̂(�, m) = α and Wpα
(�, m) = h̄mα = pα. Moreover, in close

analogy to the standard case, the operator ordering

{α̂n, pm
α }W =

1

2m

m∑
k=0

(
m

k

)
pm−k

α α̂npk
α (12)

turns the Weyl symbol of arbitrary products of α̂ and pα into their classical equivalents

W{α̂n,pm
α }W (�, m) = αn pm

α , (13)

the other angles satisfy analogous expressions. Unlike in the standard case, this ‘Weyl ordering’
is not equivalent to the ‘symmetric ordering’ due to the operator-valued commutator [α̂, pα].

We have thus established that using the Euler angles and their conjugate momenta, one
can obtain the desired features of a Wigner–Weyl phase space representation. The phase
space variables have a clear physical meaning and provide the appropriate framework for a
semiclassical description of the quantum dynamics.

In view of the standard Wigner function, one might expect that the phase space is
continuous in both variables. To appreciate why the momenta occur as discrete variables
in the Wigner function, note that the momenta correspond to projections of the angular
momentum vector. As such they are quantum mechanical observables with discrete spectra.
This discreteness, which can in principle be observed experimentally, is a consequence of the
compact range of the Euler angles. Moreover, the eigenstates of these conjugate momenta
are proper physical states. These two facts imply that the associated phase space coordinate
of the Wigner function must be discrete, as can be seen from the fact that the Wigner
function describing a mixture of such eigenstates must yield the correct marginal distribution
for measurements of the conjugate momenta: after integrating out the angles it must yield a
probability distribution for a discrete variable since the measurement outcomes are discrete.

The discreteness is thus a natural and unavoidable physical consequence of a consistent
Wigner–Weyl representation, simply locating how closely one can get to a classical description.
Outside the deep quantum regime, once the continuum limit can be taken, one recovers the
full correspondence with classical mechanics, including the Liouville equation to leading
order in h̄.

4. Construction of the Wigner function

To shed light on how the Wigner function is devised, let us consider the displacement operators

Dα (α, mα) = exp
(
i mαα̂

)
exp

(
−

i αpα

h̄

)
, (14a)
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Dβ

(
β, mβ

)
= exp(i 2mβ β̂) exp

(
−

i βpβ

h̄

)
, (14b)

Dγ

(
γ, mγ

)
= exp

(
i mγ γ̂

)
exp

(
−

i γ pγ

h̄

)
, (14c)

where angular values outside the Euler range are mapped back by taking the modulus,
e.g. Dα(α, 0)|α0〉 = |(α0 + α)mod 2π〉. These phase space translation operators commute, as
follows from the commutators of the phase space coordinates. The D(�, m) = Dα(α, mα) ⊗

Dβ(β, mβ) ⊗ Dγ (γ, mγ ) allow one to construct the major building block of the phase space
formulation, the operator kernel 1(�, m) = D(�, m)1(0, 0)D†(�, m), where 1(0, 0) is the
direct product of

1α (0, 0) =
1

2π

∑
m∈Z

∫ π

−π

dα′ Dα(α
′, m)e−i mα′/2, (15a)

1β(0, 0) =
1

π

∑
m∈Z

∫ π
2

−
π
2

dβ ′ Dβ(β
′, m)e−i mβ ′

(15b)

and 1γ (0, 0) having the same form as (15a). The choice of the phase factor in (15a), (15b)
guarantees that the angular momentum symmetry of a state is correctly reflected by the Wigner
function [29]. The symmetric choice of the integral limits, on the other hand, is required to
ensure the hermiticity of the 1i(0, 0). Note that the negative lower integration boundaries do
not contradict the definition range of the Euler angles since they refer to translations. The
expressions (7a) and (7b) then follow by inserting into (8) the explicit form

1(�, m) =

∫ π

−π

dα′

∫ π/2

−π/2
dβ ′

∫ π

−π

dγ ′

√
sin β ′

+ sin β ′
− eimαα′

ei2mββ ′

eimγ γ ′

×|α′

+, β
′

+, γ
′

+〉〈α
′

−
, β ′

−
, γ ′

−
| . (16)

These results reproduce a further crucial property of the Wigner function: it properly
reflects phase space translations in the sense that the Weyl symbol of a translated operator
A′

= D(�′, m′)AD†(�′, m′) is the translated Weyl symbol WA(� − �′, m − m′). This is proven
by rewriting tr[A′1(�, m)] as tr[A1(� − �′, m − m′)] using the invariance of the trace under
cyclic permutations.

5. Quantum Liouville equation of a free symmetric top

Applying the definition (7a) to the von Neumann equation allows one to determine the quantum
Liouville equation, the law of motion for the Wigner function. To this end, the free symmetric
top Hamiltonian [32] must be recast in terms of the canonical operators

H =
(pα − pγ cos β̂)2

(2I1 sin2 β̂)
+

p2
β

2I1
+

p2
γ

2I3
−

h̄2(1 + sin−2 β̂)

8I1
(17)

with I1 and I3 the principal moments of inertia. One thus recovers the classical Hamiltonian with
an additional quantum potential given by the last term. Owing to this quantum correction one
does not recover the classical Liouville equation for the torque-free motion, unlike the case of
a free point particle. This is a consequence of quantization and not inherent to the chosen phase
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Figure 1. Wigner function of a coherent state in α localized at (α, mα) = (π, 10).
The function is constant in the other angles and a Kronecker delta in the other
angular momenta.

space approach. Moreover, the discreteness of the conjugate momenta yields summations over
m, in variance with the form of the classical Liouville equation. However, in the limit that the
Wigner function varies only weakly in the discrete momenta they can be replaced by continuous
variables. This is the case for a ‘classical’ state with macroscopic extension over phase space. If
one further rescales the dimensionless Wigner function to W̃ (�, p) ≡ W (�, m)/(2h̄3) (where
pα, pβ and pγ replace h̄mα, 2h̄mβ and h̄mγ ), the quantum Liouville equation assumes the form
of the classical Liouville equation to leading order in h̄,

∂t W̃ (�, p)=−

[
1

I1 sin2 β

(
pα−pγ cos β

) ∂

∂α
+

pβ

I1

∂

∂β
+

{
1

I1 sin2 β

(
pγ cos2 β−pα cos β

)
+

pγ

I3

}
∂

∂γ

−

{
1

I1 sin3 β

(
pγ −pα cos β

) (
pα−pγ cos β

)} ∂

∂pβ

]
W̃ (�, p) +O

(
h̄2

)
. (18)

Hence, the classical dynamics is retained up to corrections of order h̄2, like in the standard case
of a point particle.

6. Representative Wigner functions

As a first application, we consider the Wigner function of a coherent state in α [33], |α, mα〉α =

D(α, mα)|0, 0〉α|mβ〉|mγ 〉, where

|0, 0〉α = ϑ
−1/2
3 (0, e−1/σ 2

)
∑
mα

e−m2
α/σ 2

|mα〉 (19)

defines the coherent state at the phase space origin (with ϑ3 a Jacobi theta function). Figure 1
shows the coherent state |π, 10〉α with momentum spread σ = 7. As one expects, the Wigner
function is well localized in α and mα. If one decreases the angular width the discreteness in mα

gets even less pronounced, illustrating that mα can be replaced by a continuous variable in the
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Figure 2. Wigner function of a superposition of two α-coherent states, localized
at (α, mα) = (π, 4) and (π, −4). The number of fringes in the interference
contribution is 8, as expected from 1mα = 8. The blue shaded colors indicate
negative values (σ = 1).

classical limit. We note that, unlike the standard Wigner function for Glauber coherent states, the
phase space function of |π, 10〉α takes on negative values in parts of the phase space. However,
since these are negligibly small compared to the peak height in figure 1, one can maintain that
the coherent states provide a classical correspondence. Coherent states involving more than a
single angle exhibit a similar behavior.

If one superposes two coherent states separated in phase space, oscillatory interference
terms emerge in between the classical contributions, see figure 2. We find that the number
of interference fringes scales with the phase space separation of the classical peaks. This
is precisely the behavior known from the standard Wigner function of superposed Glauber
coherent states.

7. Molecular alignment dynamics

The following application aims at demonstrating the viability of the presented phase space
approach also to describe dynamical situations. Specifically, we study the nonadiabatic
alignment of symmetric top molecules initiated by picosecond laser pulses [32]. In these
experiments, the expectation value of cos2 β̂ quantifies the alignment. The dynamics after
the initial laser kick is governed, in the rigid rotor limit, by the field-free Hamiltonian of
the symmetric top, h̄2H = AJ2 + (C − A)J2

z , where A = h̄2/2I1 and C = h̄2/2I3. Using the
conventions of [32], we describe the initial kick by a Gaussian pulse at t̄ = 0 with duration
10−3 and strength �R = 10 (time in units of h̄/I1).

Figure 3 shows how the Wigner function of the molecular orientation evolves in time,
taking |333〉 as initial state. The half-moon shape in snapshot (a), shortly after the kick, is
due to the β-dependence of the interaction Hamiltonian Hint = �̄RᾱZ X cos2 β̂ . The molecular
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t = t =

t = t =

t = t =

Figure 3. Phase space representation of molecular alignment dynamics. The
red (blue) shades indicate positive (negative) values; gray lines represent
classical phase space trajectories. Panel (a) depicts the state right after the kick,
corresponding to maximal alignment. Panels (b)–(d) show how the rotational
wave packet evolves at the short times t̄ = 0.05, 0.09 and 0.13. After dispersion,
at the later time t̄ = 1.44, it is completely delocalized and alignment is lost,
see (e). A quantum interference effect related to the eigenvalue spacing of
the symmetric top leads to an alignment revival at t̄ = nπ , n ∈ N. Panel (f)
provides the Wigner function at the first revival, while (a) is recovered for t̄ = 2π .
(W (�, m) is constant in α, γ and a Kronecker delta in mα, mγ .)

alignment achieved can be assessed from the form of the quasi-probability distribution. One
also notices an interference structure between the two arms of the half-moon, indicating the
coherence in the state. The following three snapshots (b)–(d) show the Wigner function at
fractions of the period associated with the classical trajectory centered on the half-moon. One
observes that the distribution function by and large follows the classical trajectories (gray
lines) at these short times, although it starts to disperse. In snapshot (e), at a much later
time, the distribution is spread over the accessible phase space and the alignment is lost.
Remarkably, at t̄ = π (and in multiples of thereof) the alignment revives, marked by a small
dispersion in β, see figure 3(f). One observes from the Wigner function that this phenomenon
can be associated with an angular momentum superposition of two localized wave packets. A
movie of the Wigner function dynamics is provided as supplementary material (available from
stacks.iop.org/NJP/15/063004/mmedia).

8. Conclusions

In summary, a quantum phase space representation has been introduced for the rotation
dynamics of rigid bodies. Based on the natural canonical variables, i.e. the Euler angles and the
associated angular momentum projections, it inherits all the relevant properties of the standard
Wigner function. This includes its interpretation as a quasi-probability distribution with correct
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marginals, its agreement with the Weyl correspondence rule and with the semiclassical limit. It
provides an appropriate and intuitive framework for discussing quantum effects in the rotational
motion, and we expect it to find applications in molecular physics [34], in quantum state
reconstruction [35] and beyond.
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