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Abstract
We showhow to describe the diffusion of the quantized angularmomentumvector of an arbitrarily
shaped rigid rotor as induced by its collisional interactionwith an environment.We present the
general formof the Lindblad-typemaster equation and relate it to the orientational decoherence of an
asymmetric nanoparticle in the limit of small anisotropies. The corresponding diffusion coefficients
are derived for gas particles scattering off largemolecules and for ambient photons scattering off
dielectric particles, using the elastic scattering amplitudes.

1. Introduction

Trapping and cooling nanoscale particles in optical or quasistatic fields at lowpressures [1–6] offers a promising
route toward the realization of ultra-sensitive force sensors and toward tests of the quantum superposition
principle withmassive objects [7–9]. So far,most experiments in this nascent field of levitated optomechanics
have involved spherical nanoparticles. However, the prospect of enhancing the particle-light interaction by
using anisotropic objects [10–12]motivated several recent experiments demonstrating rotationalmanipulation
and orientational control of aspherical nanoparticles [10, 12–18].

The rotation of a levitated nanoparticle, governed by its tensor of inertia and by the external torques applied,
is in practice always disturbed by ambient gases orfluctuating fields. Individual environmental disruptions can
be viewed as randomkicks on the angularmomentumvector since they usually take place on short time scales
compared to the nanoparticle rotation. A diffusivemotion is then expected to occur in the limit of sufficiently
small and frequent kicks. This angularmomentumdiffusion can be viewed as theweakest conceivable
environmental influence on a rotor, persisting evenwhen the random torque averages to zero.

The purpose of this article is to showhow the classical picture of frequent andweak angularmomentum
kicks can be extended to the quantized description of the rotor and its interactionwith the environment.We
derive the general formof the quantum angularmomentumdiffusionmaster equation, showhow its diffusion
tensors can be related to themicroscopic scattering amplitudes, and demonstrate how the classical diffusion
equation is recovered in the semiclassical limit.

The theory of angularmomentumdiffusionwill be useful to understand optomechanical setups featuring
non-spherical particles. Its quantumaspects will become relevant once ro-translational groundstate cooling
[11, 12, 19] has been achieved, opening the door for quantum experiments that involve the orientation [20–24].
Moreover, understanding angularmomentumdiffusion can be regarded as the first step toward aMarkovian
quantum theory of rotational friction and thermalization.

We remark that a generalmicroscopic theory of environment-induced decoherence between different
orientation states was presented in [25, 26], and it was also shown in [25], for the special cases of photon and van
derWaals scattering off linearmolecules, that the limit of small anisotropies gives rise to quantum angular
momentumdiffusion.

We start in section 2 by showing how the classical diffusion equation can be derived from an additivewhite
noise process acting on the angularmomentumvector. In section 3we then derive a general quantummaster
equation describing angularmomentumdiffusion and orientational localization by accounting for the
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environmental interaction of the quantum rotor in terms ofmicroscopic, orientation-dependent scattering
events. The orientational decoherence and diffusion predicted by themaster equation is discussed in section 4,
wherewe also evaluate the semiclassical limit of themaster equation.We then specify our results for the cases of
azimuthally symmetric and planar rotors in section 5, andwork out explicitly the associated diffusion constants
in section 6, for gas scattering in the Born approximation and for Rayleigh scattering of light.

2. Classical angularmomentumdiffusion

A classical nanoparticle in thermal equilibriumwith a homogeneous gas experiences randomkicks through
collisions with the gas atoms [27–29]. The particleʼs angularmomentum vector J is then no longer constant in
the absence of external potentials, and its dynamics can be described by a Langevin-type stochastic differential
equation [29]. In the generic case the environment exerts a temporally uncorrelated random torque tN( ) (with
zeromean)whose covariancematrix is characterized by the positive semidefinite tensor D W( )

t t t tN N 2 D . 1dá Ä ¢ ñ = W - ¢( ) ( ) ( ) ( ) ( )

The Langevin equation for J then reads as

J Wd 2D d , 2t= W( ) ( )

with Wd t a vector of standard (uncorrelated)Wiener processes. Here, we neglect external torques for
convenience.

What turns this equation nontrivial is the fact that the covariancematrix (1)naturally depends on the
orientationΩ of the nanoparticle, reflecting that itmatters fromwhich direction an impinging gas atomhits the
particle surface. The orientationΩ, specified e.g. by the Euler angles, enters through the orthogonalmatrix R W( )
serving to rotate the particle from an initial orientation to the current one, D R D R0

TW = W W( ) ( ) ( ). The rotation
dynamics, to be solved togetherwith equation (2), is determined by [30, 31]

tJdR I R d . 31W = W ´ W-( ) ( ) ( ) ( )
Here, n nI Ii i i i1

3W = å W Ä W=( ) ( ) ( ) denotes the tensor of inertia, with Ii themoments of inertia and ni W( ) the
directions of the corresponding principal axes.

As an alternative to the use of stochastic equations, one can solve the deterministic equation for the
probability density function h J,t W( ),

h h hJ J J, , , . 4t t t t t t
free diff¶ W = ¶ W + ¶ W( ) ( ) ( ) ( )

Thefirst term accounts for the free dynamics, the second part describes the effect of the environment. It follows
from equation (2), similar to the derivation of the Fokker–Planck equation [27, 29], that

h hJ J, D , . 5t t tJ J
diff¶ W =  W  W( ) · ( ) ( ) ( )

Note that the use of canonicalmomenta instead of J would render the free evolution in (4) phase space volume
preserving, but it would complicate considerably the diffusive part (5).

In order to observe that equation (5) indeed describes angularmomentumdiffusion, we note that the
expectation value of J remains constant while its secondmoment increases linearly with time,

J J J0 and 2 D . 6t t¶ á ñ = ¶ á Ä ñ = á W ñ( ) ( )

Hence, we refer to D W( ) as the angularmomentumdiffusion tensor inwhat follows.
The Fokker–Planck equation of angularmomentumdiffusion (5)will be recovered in the semiclassical limit

from the quantummaster equation discussed in the subsequent section.

3.Derivation of themaster equation

3.1.Master equation of orientational decoherence
It is the aim of this section to derive the general formof the quantum angularmomentumdiffusion equation by
using as a starting point themaster equation for the orientational decoherence dynamics of an anisotropic
nanoparticle in a homogeneous environment. The latter was obtained in [25] from the quantum linear
Boltzmann equation [32–38]. It describes the decay of orientational superposition states due to gas collisions
with the nanoparticle surface in terms of themicroscopic scattering amplitudes.

Themaster equation of orientational decoherence is valid if themean rotation time ismuch longer than the
interaction time so that the scattering amplitude f p pn n, ;¢ W( ), describing a single collision between the
nanoparticle and a gas atomof incoming and outgoingmomentum pn and pn¢, is approximately diagonal in
the orientationΩ [39, 40]. For an asymmetric rotor with state operator tr and rotationalHamiltonianH the
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equation reads as [25]

i
, , 7t t t tgH
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Here, operators are denoted by sans-serif Roman characters and by boldGreek symbols, pm ( ) is the (isotropic)
momentumdistribution of the gas, while ng andm stand for the gas particle density andmass, respectively. The
master equation (8) is of Lindblad form and thus ensures complete positivity of the evolution tr . Note thatW is
an operator rendering the complex, orientation-dependent scattering amplitudes f p pn n, ; W¢( ) operator-
valued.

In order to arrive at the quantumangularmomentumdiffusion equationwe proceed in close analogy to the
derivation ofmomentumdiffusion of point particles from themaster equation of collisional decoherence
[41–44]. There one considers the limit of smallmomentumkicks and expands the Lindblad operators to leading
order in the position operator. Likewise, we now consider scattering amplitudes which depend onlyweakly on
the particle orientation, implying that the angularmomentumkicks are small.

First, the orientation dependence of the scattering amplitudes can bemade explicit by using the isotropy of
the scattering process, f p p f pn n n n, ; ; R , R0

T T¢ W = W ¢ W( ) [ ( ) ( ) ]. Second, the directional dependencies of the
scattering amplitude f p n n; ,0 ¢( ) can be expressed equivalently in terms of the orientation-independent
scattering angle n ncos q = ¢· and the orthonormal vectors n n n n ¢  ¢( ) ∣ ∣defining the scattering plane,

f p p f pn n
n n

n n

n n
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The advantage of this is that the orientation now enters only through the scattering plane vectors.

3.2. Limit ofweak dependence on orientation
Wenow take the scattering amplitude (9) to depend atmost quadratically on the orientationΩ. This limit occurs
naturally e.g. in Rayleigh scattering of photons if the polarizability tensor is nearly isotropic, or in atom scattering
off the nanoparticle surface for near-spherical particles.

Expanding the directional dependencies in spherical harmonics to second order, the scattering amplitude
takes the tensorial form

f p p f p p
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with the scalar f p,sph q( ), the vector pA , ;q W( ) and the symmetric tensors pB , ;q W( ), pC , ;q W( ) as
coefficients. Herewe used that time reversal invariance f p p f p pn n n n, ; , ;¢ W = - - ¢ W( ) ( ) [45], removes all
terms linear in n n+ ¢. Note that the scattering amplitude fsph accounts for spherically symmetric scattering,
and that the vector p pA A, ; R ,0q qW = W( ) ( ) ( ) vanishes if the scattering amplitude is inversion symmetric,
f p p f p pn n n n, ; , ;- ¢ - W = ¢ W( ) ( ). In the latter case the scattering amplitude depends quadratically on the
nanoparticleʼs orientation, as described by the symmetric tensors p pB , ; R B , R0

Tq qW = W W( ) ( ) ( ) ( )
and p pC , ; R C , R0

Tq qW = W W( ) ( ) ( ) ( ).
Inserting the scattering amplitude (10) into equation (8) yields two terms, one depending linearly and one

quadratically on the particleʼs orientation,

i
, , 11t t t t t1 2H
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and
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This concludes the general derivation of the angularmomentumdiffusion equation for isotropic
environments. (Anisotropic environments can be treated analogously by taking themomentumdistribution in
(8) to depend on direction n.)Microscopic expressions for the expansion coefficients will be provided in
section 6 for particle scattering in the Born approximation and incoherent photon scattering. In order to discuss
the properties of themaster equation (11)we now reduce it to itsmost elementary form.

3.3. Genericmaster equation of angularmomentumdiffusion
In afirst step,wenote that themomentum integrals in equations (12a) and (12b) canbeomitted since they amount
to a sumof superoperators of equivalent form.This is physically justified because themaster equation (11)
describes orientational decoherence also in the case that themomentumdistribution pm ( ) is sharply peaked. Since
the sameargument applies to the integrationover the scattering angleθwewill neglect also the dependenceon the
scattering angle in the following discussion. Second,weomit one of the two terms contributing to thequadratic
superoperator (12b)because they are of the same formand therefore describe the samephysical effects.

Finally, we assume for simplicity that the vector A W( ) and the tensor B W( ) are real. This is not a severe
restriction since the sole effect of complex Lindblad operators on orientational coherences tráW W¢ñ∣ ∣ is to
induce an additional phase oscillation, whose frequency is proportional to f p p f p pn n n nIm , , , ,*¢ W ¢ W¢[ ( ) ( )]
[25]while the decoherence rates are unaffected. The phase oscillation vanishes if the Lindblad operators A W( )
and B W( ) are eitherHermitian or anti-Hermitian.

These simplifications yields the elementary superoperators
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The orientation operatorW enters through the real vector A AR 0W W=( ) ( ) and the symmetric tensor
B R B R0

TW W W=( ) ( ) ( ), which describe the influence of the environment. Herewe absorbed all prefactors into
the Lindblad operators for convenience.

Carrying out the integrations and exploiting the spectral decomposition of B W( ) equations (13a) and (13b)
can bewrittenmore compactly as

A aA A
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Here Tr(·) stands for thematrix trace, not to be confusedwith the operator trace acting on theHilbert space of
orientation states.Moreover, A A= W∣ ( )∣ is the (orientation-independent) length of the vector A W( ).

4.Quantumangularmomentumdiffusion

Wenowprove that themaster equation (11) describes orientational decoherence, gives rise to angular
momentumdiffusion, and turns in the semiclassical limit into the expected classical angularmomentum
diffusion equation.

4.1.Orientational decoherence
An important property of the angularmomentumdiffusion superoperators (13a) and (13b) is that they jointly
serve to completely localize the orientation of the nanoparticle, in the sense that they reduce all orientational
coherences. Equations (13a) and (13b) give rise to an exponential decay of the orientational coherences of the
state operator since the Lindblad operators are diagonal in the orientation,
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F , . 15t t1,2 1,2 r ráW W¢ñ = - W W¢ áW W¢ñ∣ ∣ ( ) ∣ ∣ ( )

Weproceed to prove that the total localization rate F F, ,1 2W W¢ + W W¢( ) ( ) is indeed positive for W ¹ W¢ and
vanishes for W = W¢.Moreover, it depends only on the relative orientation betweenΩ and W¢.

As a first step, one can show that the localization rates take the explicit form
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wherewe set AA aW = W( ) ( ) and b bB Bi i i i1
3W = å W Ä W=( ) ( ) ( )with unit vectors a W( ) and bi W( ).Moreover,

we defined the diffusion constants

D A D B B
6

and
2

15
, 17i j k

1
2

2 2
2

2 
= = -( ) ( )( ) ( )

with i j k, ,( ) cyclic permutations of 1, 2, 3( ). The reasons for choosing this definitionwill become obvious in
section 4.2.

Note that the expressions (16a) and (16b) already imply that the localization rates depend only on the angle
of rotation betweenΩ and W¢ since a aR 0W = W( ) ( ) ( ) and b bR 0i iW = W( ) ( ) ( ).Moreover, it is evident from
(16a) that F , 01 W W¢( ) . However, the equality holds for all a aW = W¢( ) ( )meaning that (16a) vanishes for
superpositions between orientation states related by a rotation around a W( ). Several independent
superoperators of form (13a)would therefore be required to achieve complete localization. Alternatively, the
addition of equation (13b) can induce complete localization.

In order to show that F , 02 W W¢ >( ) for W ¹ W¢we note that atmost one of the coefficients
f D D2i i j i1

3 2 2= å -=
( ) ( ) can be negative, say f 03 < , and f f3 1,2<∣ ∣ , as follows from the positivity of the diffusion

coefficients (17). A direct calculation yields
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The expression (18) shows that the localization rate F2 ismanifestly positive unless b b1 2W ^ W¢( ) ( ) and
b b2 1W ^ W¢( ) ( ). The only pairs of orientations whose coherences do not get localized are therefore related by a
π-rotation around b3 W( ). In general, i.e.for a b3W ¹ W( ) ( ), this is remedied by the decoherence due to 1 r.

4.2. Angularmomentumdiffusion
Each of the superoperators 1 and 2 induces quantumangularmomentumdiffusion.We demonstrate this by
calculating explicitly the time evolution of the expectation value of the angularmomentumoperator J and of its
tensor of secondmoments J JÄ . As in the classical case (6), we expect that in the absence of a potential

0, and 2 D , 20t tJ J J W¶ á ñ = ¶ á Ä ñ = á ñ( ) ( )

where the angular brackets now stand for the quantum expectation value.Moreover, wewill see in the
subsequent section that the semiclassical limit of 1 r and 2 r yields the classical diffusion equation (5). It is
therefore natural to refer to the dynamics induced by 1 and 2 as quantumangularmomentumdiffusion.

In order to derive equations (20)we choose an explicit parametrization of the orientationΩ in terms of Euler
angles , ,a b g( ) in the z– y¢–z¢¢-convention [46–48]. In particular, anα-rotation around the ez axis is followed
by aβ-rotation around the nodal line e e esin cosx ya a a= - +n( ) , and afinal γ-rotation around the the body-
fixed axis n ,3 b a( ). Note that n eR z3 W = W( ) ( ) .

The space-fixed components of the angularmomentumoperator can be expressed as [46]

a
cot

2
, cos sin

cos

sin
, 21xJ p p p

b a a a
b

= - + -a b g

⎛
⎝⎜

⎞
⎠⎟{ } ( )

b
cot

2
, sin cos

sin

sin
, 21yJ p p p

b a a a
b

= - - -a b g

⎛
⎝⎜

⎞
⎠⎟{ } ( )

5

New J. Phys. 19 (2017) 122001



c. 21zJ p= a ( )

with themomentumoperators canonically conjugate to the Euler angle operators , ,a b g given by
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To evaluate the expectation values in (20) onemakes use of the commutation relations between a function of the
orientation and the canonicalmomentumoperators

g g, , , i , , . 23p a b g a b g= ¶l l[ ( ) ] ( ) ( )

Exploiting the fact that the freeHamiltonian commutes with the angularmomentumone readily obtains
0t J¶ á ñ = . Similarly, a lengthy but straightforward calculation yields
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This implies that the angularmomentum variance increases linearly with time since
D D4 2 .t i i

2 1
1

3 2J¶ á ñ = + å =
( ) ( ) The tensors (25a), (25b) can thus be identified as the angularmomentum

diffusion tensors. Their eigenvalues, introduced in equation (17), are the corresponding diffusion coefficients.

4.3. Semiclassical limit
To obtain the semiclassical limit of the quantumangularmomentumdiffusion equation (11)we express it in
quantumphase space using theWigner function for the orientation state and retain only the leading order in  .
Since the space of orientations is compact the associatedmomenta are discrete. Using the Euler angles

, ,a b gW = ( ) as configuration space coordinates, theWigner function is given by [49, 50]
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where m m mm , , 3= Îa b gW ( ) labels the discrete spectrumof the canonicalmomentumoperators
, ,p p pa b g( ). In addition, we abbreviated 2 mod 2a a a p=  ¢ ( ) , likewise for g,

and 2 modb b b p=  ¢ ( ) .
With this definition themaster equation (11) takes the form
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where h m,W W( ) is the phase space transformof theHamiltonianH and the symbol  denotes the star product
defined in [50]. Thefirst term accounts for the unitary rotational quantumdynamics of the rigid top and reduces
to the Poisson bracket in the semiclassical limit [49, 50].

The diffusivemotion is described by
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The semiclassical limit of (28) cannowbe calculated in three steps. First,we consider the state of a sufficientlymassive
particle implying that itsWigner function variesweaklywith the angularmomentumquantumnumbers mW. The
latter can thusbe approximatedby the continuous angularmomenta p p p m m m, , , 2 ,  a b g a b g( ) ( ) and
accordingly the sumover angularmomentumquantumnumbers is replacedby an integral. The following steps
consist of expanding the integrand in equation (28) to leadingorder in  and then rewriting the resulting equation in
termsof the angularmomentumvector inorder to comparewith the classical diffusion equation (5).

By substituting x a= ¢a in (28)we ensure that  appears only in the arguments of F1,2 in the form
2a x a , and accordingly for b¢ and g¢. Retaining F1,2 up to second order in  requires expanding the

vectors a 2xW  W( ) up to second order in  and b 2i xW  W( ) tofirst order, see equations (16a) and (16b).
Here it is pertinent to expand in a coordinate-independent way rather than componentwise. For example,
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wherewe dropped theΩ-dependence of a, en and n3. In the limit of small  the integration boundaries of xW
tend to infinity, which allows one to carry out all integrals and rewrite equation (28) in terms of pΩ-derivatives.

Finally, by transforming theWigner distribution function to the space of orientation and angularmomenta
h J,t W( ), one obtains after a lengthy but straightforward calculation

h hJ J, D D , , 30t t tJ J
diff 1 2  ¶ W =  W + W  W +( ) · [ ( ) ( )] ( ) ( ) ( )( ) ( )

with the two diffusion tensors (25a) and (25b). Thus the classical angularmomentumdiffusion equation (5)
emerges naturally as the semiclassical limit of the two superoperators (13a) and (13b).

5. Symmetric nanoparticles

Wenow specify themaster equation of quantum angularmomentumdiffusion for symmetric particles. This
simplifies the equation and facilitates its use in practical applications.We start with azimuthally symmetric
rotors and then turn to the planar rotor, for which themaster equation can be solved explicitly.

5.1. Symmetric and linear rigid rotor
In the case of perfect azimuthal symmetry, any physical interaction between the nanoparticle and its
environment depends atmost on the direction of the nanoparticleʼs symmetry axis m W( ). Prominent examples
include the anisotropic van derWaals interaction [51] or Rayleigh–Gans photon scattering [52, 53]. Accounting
for this symmetry, we assume the vector a W( ) in (13a) to point along m W( ) and the tensor B W( ) in (13b) to
be B B B m mB W = + - W Ä W^ ^( ) ( ) ( ) ( ).

Inserting AA mW = W( ) ( ) and B W( ) into the superoperators (13a) and (13b) yields

D
a

n
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p
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wherewe used the diffusion constants (17)

D
A

D B B
6

and
2

15
. 321 1

2 2
2 2

2
2 g g

= = -^ ( ) ( )( ) ( )

An equation of the form (31b) has already been derived in [25] for the special cases of photon scattering in the
generalized Rayleigh–Gans approximation and atom scattering off the anisotropic homogeneous dipole-
induced dipole potential.

From the discussion in the previous section it follows that the secondmoment of the angularmomentum
vector increases linearly with time as D D4t

2 1 2J¶ á ñ = +( )( ) ( ) . The resulting orientational localization rates can
bewritten compactly as

F
D

am m,
2

1 , 331

1

2
W W¢ = - W W¢( ) [ ( ) · ( )] ( )

( )

F
D

bm m, . 332

2

2
2


W W¢ = W ´ W¢( ) ∣ ( ) ( )∣ ( )

( )

In the semiclassical limit, one obtains the phase space angularmomentumdiffusion equation

w p D D w p O, sin , . 34t t p p t
diff 1 2 2 2 2 b¶ W = + ¶ + ¶ W +W Wa b

( ) ( )( ) ( ) ( ) ( )( ) ( )

The Langevin equation (2) gives rise to the same diffusion equation in the limit that no rotations around the
symmetry axis m W( ) are considered.
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5.2. Planar rigid rotor
The diffusionmaster equation simplifies even further if themotion is restricted to planar rotations parametrized
by the single degree of freedom 0, 2a pÎ [ ). Replacing in equations (31a) and (31b) m W( ) by
e ecos sinx ya a+ and carrying out the integration over the polar angle yields

D
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The localization rates are
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The semiclassical limit of the superoperators (35a) and (35b) gives the diffusion equation (34)with 2b p= and
without the pβ derivative. Note that equation (35b) appears already in [54], where it is obtained from the collapse
theory of continuous spontaneous localization (CSL).

In order to solve themaster equation (11)with the rotationalHamiltonian I2free
2H p= a and

superoperators (35a) and (35b)we express it in quantumphase space by using the 1D version of theWigner
function (26),

w m
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The left hand side of this equation describes the classical shearing dynamics of the rotor while diffusion enters on
the right hand side in the formof discretized angularmomentumderivatives. The fact that next-to-nearest
angularmomenta are coupled in the last term reflects theπ-symmetry of the localization rate F2.

Equation (37) can be solved for arbitrary initial states w m,0 a a( ). Since the special case D 01 =( ) was
discussed in the context of localization due toCSL [54], we only discuss the case D 02 =( ) . The equation (37) can
be solved by using the ansatz

w m w
m t

I
m T, d , , . 38t t0
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The kernelT ,t a¢ ℓ( ) is obtained by solving the resulting difference equationwith themethod of characteristic
functions,
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ℓ
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( )
( )

with I (·)ℓ themodified Bessel functions. It is easily observed thatT ,t a¢ ℓ( ) preserves the normalization of
w m,t a a( ) and that it suppresses the rotational revivals at integermultiples of I p for D 01 >( ) .

Infigure 1(a)we show the time evolution of theWigner function for the ground state
w m, 2m0 0a d p=a a( ) . The resultingmomentumdistribution can be calculated from equation (38) as

p m w m
D t

I
D t

d , exp
2 2

40t m
0

2 1

2

1

2 ò a a= = -a
p

a a

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( ) ( )

and it clearly shows angularmomentumdiffusion. Themean kinetic energy increases linearly with time,
D t Ifree

1Há ñ = ( ) . In order to see that the distribution (40) turns into aGaussian in the semiclassical limit one
multiplies it by 1  and draws the limit 0  while keeping p m=a a constant.

Figure 1(b) displays the time evolution of a superposition of two orientational wave packets. One observes
that the orientational coherences represented by the oscillatory structure around 0a = rapidly vanish under
the dynamics of themaster equation, while the free shearingmotion of the individual wave packets ismuch less
affected.
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6.Microscopic derivation of diffusion constants

In this sectionwe provide amicroscopic derivation of the angularmomentumdiffusion tensors for two
experimentally relevant scenarios, atom-molecule scattering in the Born approximation andRayleigh–Gans
scattering of photons.

6.1. Atom–molecule scattering in theBorn approximation
Amassivemolecule rotating in a homogeneousmono-atomic gas at temperatureT interacts with the individual
atoms via the general orientation-dependent interaction potential [51]

V V r Yr e, R , 41
m

m m r
0

Tå åW = W
=

¥

=-

( ) ( ) [ ( ) ] ( )
ℓ ℓ

ℓ

ℓ ℓ

where rr er= denotes the atom–molecule separation. If the interaction is weak in comparison to the energy of
the impinging atom, the scattering amplitude can be evaluated in the Born approximation [45],

f p p f p Yn n
n n

n n
, ; , R , 42

m
m m
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Tå å q¢ W W
- ¢
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=-


⎡
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∣ ∣
( )

ℓ ℓ

ℓ

ℓ ℓ

where the expansion coefficients are determined by

f p
mi

r r V r j
pr

,
2

d
2

sin
2

, 43m m2 0

2

 òq
q

= -
¥

⎜ ⎟
⎡
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⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( )ℓ

ℓ
ℓ ℓ

with j (·)ℓ the spherical Bessel functions. The scattering amplitude (42)depends on themoleculeʼs orientation
only through its dependence on n n n n- ¢ - ¢( ) ∣ ∣. For 0=ℓ one obtains thewell-knownBorn-
approximation scattering amplitude for spherically symmetric potentials [45].

In the case of aweakly anisotropic interaction potential only loworders of ℓ contribute to equations (41) and
(42) andwe can approximate f p, 0m q ( )ℓ for 2>ℓ . The diffusion coefficients (17) can thus be expressed in
terms of the expansion coefficients f p,m q( )ℓ by collecting them in the vector pA ,0 q( ) and the symmetric
tensor pB ,0 q( ),

Figure 1. (a)Timeevolutionof the rotational ground state inpresenceof angularmomentumdiffusion.Weshowadensity plot of the
Wigner function w m,t a a( ) and themomentumdistribution p ma( ) at times t=0, t 10a and t D3.75a

2 1p= ´ ( ). (b)Corresponding
plots for an initial superpositionof twowavepackets of the form exp cos 42 2y a a sµ - a ( )( ) ( ) / with 0.06s =a .Wechoose
D I101 3=( ) .Notehow thefineangularmomentumstructures arequicklywashedout already after the short time t D0.5b

2 1p= ´ ( ).
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so that A AR 0W = W( ) ( ) and B R B R0
TW = W W( ) ( ) ( ). Herewe dropped the dependence on p, q( ) for better

readability. Since the potential (41) is real, the expansion vector 0A is imaginary while the tensor B0 is real.
As a simple example consider the azimuthally symmetric interaction potential

V v r a
a

r m e m e, 1
5

2
, 46r r1

2 2W + W + W
⎡
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⎤
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where the dimensionless constants a1,2 quantify the anisotropy.Note that the dipole-induced-dipole interaction
is of this form [51]. Evaluating the coefficients (43)with (46) one obtains a diagonalmatrix B0. Due to the
azimuthal symmetry, themaster equation is of the form (31a), (31b), characterized by the diffusion constants
(32). For thermally distributed gasmomenta at temperatureT one arrives at the diffusion constants
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with the spherical form factor of the interaction potential
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0

2ò=
¥
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Hence, the diffusion constants increase quadratically with the anisotropy of the interaction potential.

6.2. Light scattering
In quantum experiments with optically levitated nanoparticles, scattering of stray photons is one of themost
important sources of environment-inducedmomentumdiffusion [7, 8, 55]. Here, we consider a particle of
volumeV0 incoherently illuminated by unpolarized,monochromatic radiation of wavenumber k. For
simplicity, we assume that the particle extension is small compared to the photonwavelength so that the internal
polarization field is completely determined by the susceptibility tensor 0c with eigenvalues ic .

The scattering amplitude can be calculatedwithin theRayleigh–Gans approximation [56]. For linear rotors,
the resulting decoherence rate has already been derived in [25]. Generalizing this treatment to arbitrary
susceptibility tensors shows that the orientational localization rate of the nanoparticle is of the symmetric form
(16b). The three diffusion coefficients are given by

D
V E k

36
, 49i j k

2 0 0
2

0
2 3

2e
p

c c= -( ) ( )( )

with i j k, ,( ) cyclic permutations of 1, 2, 3( ) andE0 the electric field amplitude per photon.
The angularmomentumdiffusion rates of an anisotropic nanoparticle thus depend on its susceptibility

anisotropies, which also determine the timescale onwhich orientational superpositions decohere [25, 26]. Note
also that there is no 1 -contribution to photon-induced angularmomentumdiffusion, implying that Rayleigh–
Gans scattering cannot completely localize the nanoparticle orientation. This is due to the fact that the photon
wavelength is consideredmuch larger than the nanoparticle extension.

7. Conclusion

The theory presented in this article provides aminimalmodel of complete orientational localization and
quantumangularmomentumdiffusion of an arbitrarily shaped particle.We derived the associatedmaster
equation from themicroscopic scattering processes responsible for orientational decoherence, studied its
properties, and verified that its semiclassical limit coincides with the classical rotational diffusion equation.We
discussed the simplified equations resulting for symmetric particles, and specified the diffusion tensors for a
number of relevant decoherence sources.
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The current frameworkwill be instrumental for the interpretation of future optomechanical experiments
with non-spherical nanoparticles. Rotations give rise to features not familiar from center-of-massmotion, such
as discrete angularmomenta and orientational revivals. Observation and interpretation of such effects will
require a quantitative understanding of the environmental influence.We illustrated this by discussing the
decoherence-induced suppression of rotational revivals of the planar rotor.

The theory of quantumangularmomentumdiffusionmay also be used to describe orientational localization
effects in atom–molecule scattering experiments [57] ormatter wave interferometry with largemolecules
[58, 59]. Our derivation directly relates the diffusion coefficients to themicroscopic interaction potential
between the impinging atomand themolecule. Finally, the quantum theory of angularmomentumdiffusion
constitutes afirst step toward a quantumdescription of the rotational friction and thermalization of a single
object interactingwith its environment.
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