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In this Supplementary Information we provide a discussion of the impact of particle dipole 
moments on the measurement outcome (I.) and we discuss the most important sources 
of decoherence in the proposed setup (II.). 
 

SUPPLEMENTARY NOTE I: IMPACT OF DIPOLE MOMENTS 
 

For the proposed parameters, including a small but finite dipole moment, the coupling 
between nanoparticle rotations and Cooper-pair box is so small that the orientation state 
after the pulse sequence almost perfectly overlaps with the state before the pulse 
sequence. The ensuing reduction of the interference signal is therefore negligible. 
 
A quantitatively more rigorous version of this argument, consists of five steps: 
a) First, the initial correlations between centre-of-mass state and rotation state are 

negligible. 
b) Second, these degrees of freedom do not interact directly and thus only become 

correlated via the qubit. 
c) Third, the rotation is very slow compared to the timescale of the experiment and thus 

its kinetic phase plays no role. 
d) Fourth, the resulting decay of the rotational interference signal is dominated by the 

rotational coupling to the qubit, which has a negligible effect on the timescale of the 
experiment. 

e) The relative phase on the rotation state induced by the external potential is 
negligible. 

 
a) Initial correlations:  
The spatial width of the initially thermal state is quantified by 𝑧th = #2𝑘B𝑇/𝑀ω! ≈ 2.9 ⋅
10"# m, and thus the harmonic contribution in Eq. (1) clearly dominates the coupling to 
the rotations since 𝑝/𝑞𝑧th ≈ 0.03 ≪ 1 , 𝑝!𝑀/𝐼q! ≈ 0.007 ≪ 1  and Qpzth𝑀/𝐼	𝑞!𝑧th! ≈
0.1 ≪ 1. (This last parameter overestimates the coupling since it neglects that the dipole 
moment is strongly aligned with the trap axis.) Here we assumed a dipole moment of 
𝑝 = |𝑝| = 2000 eÅ, a value ten-fold higher than what we deem realistic. 
 
Conversely, the rotational motion is not influenced by the centre of mass since 𝑧th𝑝/𝑄 ≈
0.06 ≪ 1   and 𝑧th𝑝𝑞	𝐼/𝑀𝑄! ≈ 0.02 ≪ 1 , where Q = 1.5 ⋅ 10"$! Cm!  quantifies the 
quadrupole tensor 𝘘 = 𝑄(𝒎⊗𝒎− 𝟙/3) of the cylinder with homogeneous surface 
charge and symmetry axis 𝒎.  
 
The rotations and the centre-of-mass are thus initially uncorrelated, where the centre-of-
mass is well approximated by a thermal state in the shifted harmonic potential while the 
rotations are given by a thermal state with potential 
 

𝑉eff(β) =
3𝑈ac! 𝑝!

16𝑀𝑧%&Ωac!
cos!β +

𝑈ac!

16𝐼𝑧%&Ωac!
𝑠𝑖𝑛!β (2𝑝𝑧' + 𝑄 𝑐𝑜𝑠 β)!. 
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Here, we used that the dipole points into the direction of the particle symmetry axis and 
β denotes the angle between the particle and the trap symmetry axis. 
 
b) Coupling to qubit: 
Equation (18) describes that the Cooper-pair box adds two terms that are independent 
of the qubit state to the effective potential (1): First, the constant shift of magnitude 
−2𝑒𝑘𝑁(𝑞𝒓 + 𝒑) ⋅ 𝒆𝒛/𝐶)𝑧% by the second term in Eq. (18) shifts the potential to the new 
minimum 𝑧 = 𝑧'. Since this shift fulfils 𝑝!𝑧th𝑧s/𝑝!𝑧s! ≈ 0.025 ≪ 1	and 𝑝!𝑧s𝑧th𝑀/𝑞!𝑧th! 𝐼 ≈
0.27, the initial rotational and translational state remains uncorrelated (again, the last 
parameter overestimates the coupling). Second, the third term of (18) slightly deforms 
the trapping potential, which is negligible in comparison to the effective potential (1). 
Thus, the dominant effect of the qubit on the rotation state is independent of the centre-
of-mass coordinates and is described by the coupling term −2𝑒𝑘𝜎-𝜎–𝒑 ⋅ 𝒆𝒛/𝐶)𝑧%. 
 
During the pulse scheme, a centre-of-mass superposition also induces a rotational 
superposition via the coupling in the effective potential. However, for our parameters the 
rotational delocalization due to the CPB dominates by several orders of magnitude. 
Similarly, the spatial superposition induced by the rotational superposition is negligible. 
We can thus treat translation and rotation independently during the whole experiment so 
that the reduction of the interference visibility due to the rotations is given by the overlap 
between the two rotational interference branches. 
 
c) Angular momentum kicks: 
During the pulse sequence, the rotations evolve in the effective potential 𝑉eff(β), so that 
the interaction picture dynamics of the pure rotor-qubit state |Φ⟩ are given by 
 

𝑖ℏ ∂1|Φ⟩ = 𝑒213!/ℏ𝑉𝑒213!/ℏ|Φ⟩ 
 
Here, 𝘏𝟢 = 𝐸7𝜎-𝜎– +𝘏𝘳𝘰𝘵 and V = Veff(β) − 2ℏκ;<=𝜎-𝜎–cos	β with the rotational coupling 
frequency κ>?1 = 𝑒𝑘𝑝/ℏ𝑧%𝐶) ≈ 17.7	MHz. 
 
Treating the cylinder as a linear rotor and expanding |Φ⟩ in the combined qubit-angular 
momentum basis |σ𝑙𝑚⟩  with the total and magnetic angular momentum quantum 
numbers 𝑙 and 𝑚, yields a linearly coupled set of differential equations for the expansion 
coefficients Φ@AB, 
 

𝑖ℏ ∂1Φ@AB = j 𝑒𝑥𝑝 l
𝑖𝑡
ℏ
nEC(δDE − δD"E) +

ℏ!

2I
𝑙(l + 1)

@"A"B"

−
ℏ!

2I
𝑙F(𝑙F + 1)st		⟨σ𝑙𝑚|𝖵|𝜎FlFmF⟩ΦD"A"B" . 

 
The potential 𝘝 only couples momentum states that maximally differ by 𝑙 − 𝑙F = ±Δ𝑙 =
±4 . Inserting the experimental timescale 𝑡 = 𝑡E = 21.7 ns , the thermal angular 
momentum 𝑙 = 800  and the moment of inertia 𝐼 = 2.48 ⋅ 10"$G kgm! , shows that the 
oscillating phase in the above time evolution is negligibly small since 
 

𝑡
ℏ
n
ℏ!

2𝐼
(𝑙 + 4)(𝑙 + 4 + 1)	−	

ℏ!

2𝐼
𝑙(𝑙 + 1)s = 𝑡

ℏ
2𝐼
(8𝑙 + 20) ≈ 0.028		 ≪ 1, 

 
for all realistically occupied 𝑙 states. 
The kinetic terms can thus be neglected, yielding the effective interaction picture 
Schrödinger equation 
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𝑖ℏ ∂1|Φ⟩ = 𝘝|Φ⟩ 

 
describing that the particle does not rotate during the pulse sequence. Since ℏκ;<=/𝑘H𝑇 ≈
0.13 < 1  the rotations induced by the CPB do not violate this approximation. The 
dynamics describe a superposition of angular momentum kicks, |Φ(t)⟩ ≈
exp �− 2

ℏ
𝑡𝘝� |Φ%⟩, with a relative strength according to the orientation dependence of V.  

 
d) Signal reduction: 
For the thermal rotation state ρ% (and neglecting the centre of mass for the moment), the 
time evolution yields after the pulse sequence the qubit population 
 

⟨𝜎-𝜎–⟩ =
1
4
+
1
4
𝑒
2
ℏI#1

"
tr�ρ%e"!2J$%&1

"7?' L � + ℎ. 𝑐. 
 
With increasing time 𝑡F = 2𝑡E − 2𝑡! + 𝑡$  the overlap tr�ρ%e"!2J$%&1

"7?' L �  and thus the 
interference visibility decreases. 
 
The thermal rotation state includes bound and unbound rotational contributions. To get 
an upper limit for the visibility loss we calculate the measurement signal for the free 
momentum eigenstates |χ⟩ = |𝑙𝑚⟩. These states are completely localized in angular 
momentum space and thus the torque-induced reduction of their overlaps is maximal. In 
contrast, bound states are localized in the orientation space and thus broader in 
momentum space, so that their overlaps vanish slower. 
 
For a free thermal rotor state, the qubit population can be calculated as 
 

⟨𝜎-𝜎–⟩ =
1
2
+
1
2
cos �

𝐸7
ℏ
(2𝑡E − 2𝑡! + 𝑡$)� sinc[2κ>?1(2𝑡E − 2𝑡! + 𝑡$)]. 

 
This expression is independent of the rotor temperature, and the visibility loss is 
characterized by 𝑠inc[2κ>?1(2𝑡E − 2𝑡! + 𝑡$)]. For fixed 𝑡E = 21.7 ns and 𝑡! = 65.1 ns, and 
with 𝑡$  between 80 ns  and 87 ns  (see Fig. 3) the visibility varies from 0.99 to 1, 
demonstrating that rotational dephasing is irrelevant for the measurement outcome. 
 
e) Imprinted phase: 
To unambiguously demonstrate that the rotations can be neglected for the proposed 
interference experiment we also have to show that the relative phase between the two 
centre-of-mass branches is always much larger than the corresponding rotational relative 
phase. This latter relative phase appears as an additional contribution in the above 
cosine function or in Eq. (25). The phase can be estimated semiclassically by 
approximating the extension of the CPB-induced orientational superposition, evaluating 
the resulting potential difference in an external homogeneous field 𝐸MN1 and dividing by 
ℏ. This yields for the rotations 
 

Δφ;<= =
𝑘𝑒𝐸MN1𝑡$

3C)z%ℏ
𝑝!

𝐼
 

 
and for the centre of mass 
 

ΔφCO =
𝑘𝑒𝐸MN1𝑡$

3C)z%ℏ
𝑞!

𝑀
. 
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The latter result is consistent with Eq. (25) expanded for ωτ ≪ 1	and thus validates this 
estimate. Since 𝑝!/𝐼 ≈ 0.007𝑞!/𝑀, the rotational phase is negligible and thus does not 
affect the measurement signal. 
 
 
 

SUPPLEMENTARY NOTE II: DECOHERENCE MECHANISMS 
 
The simulations shown in Fig. 3 take the most important decoherence mechanism, i.e. 
qubit dephasing, into account. 
 
Specifically, the most important sources of decoherence and dephasing in our setup are 
in order of negative impact 
 

a) Qubit dephasing: Decoherence of the qubit state is dominated by dephasing 
due to charge noise. This is described in the Methods and in the caption of Fig. 
3, leading to a reduction of the visibility.  
 

b) Nanoparticle rotations: Nanoparticle rotations and their correlations with the 
qubit and the centre-of-mass motion decrease the fringe visibility of the 
interference pattern. In our setup, this poses a condition on the maximally allowed 
dipole moment (≲ 2000	eÅ). A detailed discussion of this bound can be found 
above. 
 

c) Gas collisions: Collisions with residual gas particles can quickly decohere the 
quantum state of the nanoparticle [8, NJP 12 033015 (2010)]. The resulting 
decoherence rate is bounded from above by the frequency of collisions with gas 
particles. This total collision rate follows from integrating the thermal gas flux at 
temperature 𝑇  and pressure 𝑝P  over the particle surface [PRE 97, 052112 
(2018)] as 
 

Γcoll =
𝑝P𝑅(𝑅 + 𝐿)
mg𝑘H𝑇

 

 
For nitrogen (𝑚P = 28 amu) at room temperature and 10"& mbar,	one obtains 
Γcoll = 1.88 ⋅ 10Q/s for the proposed particle shape. Thus, on average only 0.016 
gas collisions occur during the pulse sequence of 87 ns. Decoherence due to gas 
collisions can thus be safely neglected. 
 

d) Surface noise: Fluctuating dipoles on the electrode surface can heat up the 
particle motion [61] and decohere the particle state. The heating rate ΓR = 170/𝑠 
is given in the main text and calculated on the basis of [61]. The corresponding 
momentum diffusion coefficient 𝐷 = ℏωΓR𝑚 can be used to estimate the spatial 
decoherence rate 
 

Γdec =
𝐷
ℏ!
Δ𝑧!.	 

 
We integrate the force due to one Cooper pair over the experimental time scale 
t = 87 ns  to obtain an upper bound for the spatial superposition Δ𝑧 <
𝑡!𝑒𝑘𝑞/𝑚𝐶)𝑧% ≈ 8.5 pm . The resulting decoherence is negligible during the 
experiment, Γdect ≈ 2.3 ⋅ 10"U. 
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e) Black body emission: Thermal black body emission off the particle leads to 
decoherence. This usually becomes relevant for extremely hot particles, and on 
relatively long timescales [NJP 12, 033015 (2010)]. In our all-electrical setup, the 
particles are not constantly illuminated by a laser and therefore do not heat up 
internally. The spatial decoherence rates due to emission, absorption and 
scattering of blackbody radiation read [PRA 84, 052121 (2011)] 

Γ!"	(%&) =
16π(𝑐𝑅)

189 *
𝑘*𝑇+(,)
ℏ𝑐 .

-

Im *
ϵ − 1
ϵ + 2.Δ𝑧

., 

Γ/0 =
8! 8ζ(9)𝑐𝑅-

9𝜋 *
𝑘*𝑇,
ℏ𝑐 .

1

Re *
𝜖 − 1
𝜖 + 2.

.

Δ𝑧., 

where 𝑇2	(M)  is the internal (external) temperature. At room temperature, a 
spherical 10Y amu  silicon particle with ϵ = 11.7 + 0.57𝑖  yields negligible 
decoherence with ΓMB	(Z[)𝑡 ≈ 3.9 ⋅ 10"EY  and Γ'7𝑡 ≈ 1.3 ⋅ 10"EU . Here we 
assumed the same absorption coefficient as was used in [PRA 84, 052121 
(2011)]. 


