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a b s t r a c t

We review the quantum version of the linear Boltzmann equation, which describes in
a non-perturbative fashion, by means of scattering theory, how the quantum motion of
a single test particle is affected by collisions with an ideal background gas. A heuristic
derivation of this Lindblad master equation is presented, based on the requirement of
translation–covariance and on the relation to the classical linear Boltzmann equation.
After analyzing its general symmetry properties and the associated relaxation dynamics,
we discuss a quantum Monte Carlo method for its numerical solution. We then review
important limiting forms of the quantum linear Boltzmann equation, such as the case of
quantum Brownian motion and pure collisional decoherence, as well as the application to
matter wave optics. Finally, we point to the incorporation of quantum degeneracies and
self-interactions in the gas by relating the equation to the dynamic structure factor of the
ambient medium, and we provide an extension of the equation to include internal degrees
of freedom.
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1. Introduction

The Boltzmann equation, as the basic equation of kinetic gas theory, belongs to the foundations of classical statistical
mechanics. Apart from its great relevance for concrete applications, it is a paradigm for the description of classical systems far
from the thermodynamic equilibrium and for the understanding of irreversibility and equilibration [1–5]. A closely related
equation is used if onewants to describe how themotion of a single distinguished test particle is affected by elastic collisions
with an ideal, stationary background gas. In both situations one deals with the evolution of a probability distribution defined
on the phase space of a single particle. In case of the Boltzmann equation this is the marginal one-particle distribution of
a dilute gas, whose self-interaction gives rise to the nonlinear form of the integro-differential equation. There is no such
self-interaction if an individual test particle is considered, such that the corresponding equation is linear, like the Liouville
equation. Apart form this, the linear equation shares much of its structure and many basic properties with the original
Boltzmann equation, and it is derived the same way using the Stosszahlansatz—it is thus aptly called the linear Boltzmann
equation [2]. This equation for themotion of a distinguished test particle has found important applications, especially in the
study of transport phenomena [6,7].
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Fig. 1.1. The quantum linear Boltzmann equation describes the motion of a single, distinguished test particle in an ambient medium, taken to be an
ideal, stationary, and uniform background gas. In the framework of the Markov approximation, it is valid for arbitrary initial states of motion, such as the
non-classical spatial superpositions found in an interferometer. As such it describes the interplay of decoherence phenomena at short time scales with
the dissipative effects and the thermalizing behavior expected in the longer-term. The interaction with the gas is accounted for in a non-perturbative and
microscopic fashion, by means of the exact two-body scattering amplitudes. The equation ceases to be applicable if the neglect of three-body collisions or
correlated scattering events cannot be justified, as in the case of liquids.

The present review is devoted to the quantum analog of the linear Boltzmann equation. It is therefore important not
to confuse its classical counterpart with a ‘‘linearized Boltzmann equation’’. The latter is an approximation of the original
Boltzmann equation for a self-interacting gas, which is valid when the gas is close to equilibrium and the interactions are a
weak perturbation. In the linear Boltzmann equation, in contrast, the coupling to the gas can be strong and the distinguished
test particle may be very far from an equilibrium state. The background gas, on the other hand, is taken to be in a stationary
state, typically at thermal equilibrium, which remains undisturbed by the presence of the test particle.
In the quantum physics literature a large number of master equations has been termed the ‘‘quantum Boltzmann

equation’’. The name is likely to appear whenever the dynamics is amenable to a kinetic description based on interaction
events that can be described as scattering processes. A first basic result on a quantum extension of the original Boltzmann
equation was the introduction of a correction accounting for the effects of quantum statistics in the classical collision term
[8–10].Moreover, Boltzmann-like kinetic equations appear in awealth of situationswith the aimof describing relaxation and
transport properties in a quantum setting.Most recently, the study of quantumkinetic equations required for the description
of degenerate Bose gases has been the object of extensive research, see, e.g., the series of papers [11–17] and references
therein.
In the field of mathematical physics, major efforts have been undertaken in order to rigorously derive a quantum version

of the nonlinear Boltzmann equation. Here, one typically starts out from the many-particle Hamiltonian with a simple
interaction potential and seeks to obtain a nonlinear equation of motion for the reduced single-particle state by considering
approximations for the hierarchy of equations of motion of many-particle distribution functions, see [18–23] for reviews
on recent results. Similar attempts have been devoted to the derivation of the quantum linear Boltzmann equation, using
a random potential approach, see [24–26] for recent results. However, it should be emphasized that even the classical
Boltzmann equation has not yet been properly derived in the rigorous sense of mathematical physics. The problem is
substantially more difficult in the quantum formulation, due to the need for accommodating the unitarity of the underlying
many-body dynamics and due to the quantum restrictions of the associated phase-space representation.
The situation is more tractable if one asks for the proper quantum version of the linear Boltzmann equation. Due to the

inherent linearity of the problem, the quantum equation of motion must be given by a linear mapping of the statistical
operator representing the motional state of the test particle. It can be expressed in the framework of quantum dynamical
semigroups [27–29] since the use of a Boltzmann equation implies that the time evolution is Markovian. It follows that
the generator of the irreversible time evolution must have the Gorini–Kossakowski–Sudarshan–Lindblad form [30,31]; this
guarantees complete positivity, thus ensuring that the motion of the reduced single particle state is compatible with an
underlying many particle state that evolves in a unitary fashion.
Using the framework of Lindblad master equations, the natural quantum counterpart of the classical linear Boltzmann

equation can indeed be obtained as a unique master equation. It thus describes how the free quantum motion of a test
particle, possibly in a very non-classical, delocalized state, is modified by the presence of a background gas, see Fig. 1.1.
As with the classical linear Boltzmann equation, the quantum master equation applies provided (i) the background gas is
sufficiently dilute, such that three-body collisions can be neglected, (ii) the particle interaction is sufficiently short-ranged,
such that scattering theory can be applied, and (iii) the gas temperature is sufficiently high, such that effects of quantum
statistics can be disregarded and the Markov assumption is justified. Both the classical and the quantum formulation
incorporate the two-body interaction between test particle and a gas molecule in a non-perturbative fashion by means of
scattering theory. While the classical equation contains the differential cross section to account for the molecular collisions,
the quantum master equation involves pairs of scattering amplitudes. These objects, which feature a complex phase, show
up as operator-valued quantities if the master equation is stated in a representation independent form.
The main significance of the quantum linear Boltzmann equation lies in the fact that it serves to describe the interplay of

two distinct gas-induced phenomena, typically occurring on different time scales and usually requiring a non-perturbative
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description of the coupling to the gas. On one hand, this is the collisional decoherence effect, taking place at short timeswhen
the energy exchange between test particle andmedium can be disregarded. On the other hand, the test particle experiences
friction, leading on a longer time scale to a slowing down of the particle and its eventual thermalization. The equation should
thus predict how a test particle, starting out in a delocalized state, gradually loses its ability to display quantum interference,
due to the dissemination of position information effected by the gas collisions. One then expects the quantumparticle,whose
motional state is increasingly hard to distinguish from a classical one, to display the relaxation and equilibration behavior
predicted by the classical linear Boltzmann equation. It is thus an important consistency requirement that the quantum
linear Boltzmann equation indeed reduces to the classical version once the quantum state of motion is indistinguishable
from a classical state. Also in the other relevant limiting cases the equation turns into well-established forms, in particular
in the limit of quantum Brownian motion, of pure collisional decoherence, and of coherent forward scattering, as will be
discussed below.
In the present review we do not aim at providing a microscopic derivation of the quantum linear Boltzmann equation;

such a calculation was given recently in some detail in [32]. Instead, we will motivate the form of the equation in a more
succinct line of reasoning by combining natural physical and mathematical requirements. It builds on the structure of the
classical equation and onHolevo’s characterization of general translation–covariant quantumdynamical semigroups [33], by
exploiting both the required limiting expression of the equation and the translational symmetry expected in a homogeneous
medium. Apart from the operator form, we will also discuss the equation and its limiting cases in different representations,
each admitting specific physical insights.
The physics described by the quantum linear Boltzmann equation is discussed and applied in quite different fields

of physics, ranging from mathematical physics and statistical mechanics to matter wave optics. Traditionally, quantum
versions of the linear Boltzmann equation were introduced in order to provide a microscopic explanation of transport
phenomena, or to obtain a derivation of quantum Brownianmotion. These are situations where the relevant quantum states
are close to the state of motion of a classical particle.
Only recently has it become possible to study the influence of a gas environment on the motion of a molecule which is

very far from a classical state, such as in a superposition of macroscopically distinct spatial positions [34]. This is a result
of the experimental advances in the interferometry of massive particles [35,36], allowing one to observe the phenomenon
of decoherence independently from dissipative effects. In fact, the main experimental applications and confirmations of
the quantum linear Boltzmann equation are found in situations where the quantum coherences described by the statistical
operator play a crucial role. This applies to the study of the refractive index for matter waves traveling through a gas [37,38],
and in particular to the analysis of collisional decoherence for massive particles [39]. It is worth noting that the seminal
paper on decoherence by Joos and Zeh [40], seeking to explain the absence of quantum delocalization in a dust particle by
the scattering of photons and air molecules, derived and studied what the authors called a Boltzmann-type master equation.
Two decades later, the long quest for the characterization of the phenomenon of collisional decoherence has now reached a
mature theoretical description, permitting its quantitative experimental confirmation.
The article is organized as follows. In Section 2we introduce the equation both in its operator form and in themomentum

representation. Section 3 provides an intuitive line of derivation, based on reconciling the expression of the classical
linear Boltzmann equation with the general form of a translation–covariant generator of a quantum dynamical semigroup.
Various properties and features of the quantum linear Boltzmann equation are then discussed in the following sections,
by first addressing phenomena with a classical counterpart, and then moving to problems which can only be considered
in a quantum setting. Specifically, Section 4 considers the symmetry properties of the equation and its relaxation and
equilibration behavior, while Section 5 is devoted to the limiting case of quantum Brownian motion, obtained if the test
particle is much more massive than the gas particles. Section 6 deals with a distinguished quantum effect, the index
of refraction experienced by a matter wave due to the presence of a background gas, which depends on the coherent
part of the quantum linear Boltzmann equation. The phenomenon of decoherence is then addressed in Section 7, both
regarding collisional decoherence and more general forms. Section 8 discusses an alternative expression of the quantum
linear Boltzmann equation in terms of the dynamic structure factor of the gas, suggesting a generalization to the case of
quantum degenerate background gases. It further provides the extension of the quantum linear Boltzmann equation to
include internal degrees of freedom. We finally present our conclusions in Section 9, where we also point to possible future
developments.

2. The quantum linear Boltzmann equation

We start by introducing the general expression of the quantum linear Boltzmann equation in its representation-
independent operator form. In order to understand why the scattering amplitudes and distribution functions in this
expressionmust be operator-valued, andwhy themomentumprojections parallelwith andperpendicular to themomentum
exchange play different roles, it will be helpful to represent it in the appropriate coordinates. We therefore proceed by
presenting the equation in themomentumbasis,whichwill also facilitate the comparisonwith the classical linear Boltzmann
equation. We conclude this section with a discussion of the Born approximation and a brief outline of existing approaches
for deriving the equation.
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2.1. The operator form

The quantum linear Boltzmann equation is a Markovian master equation for the statistical operator ρ describing the
motion of a distinguished test particle in a gas. It has the form

d
dt
ρ = Mρ

=
1
ih̄
[H0 + Hn (P) , ρ]+Lρ, (2.1)

where H0 = P2/ (2M) is the kinetic energy of the test particle and Hn (P) describes an energy shift due to the presence of
the background gas, as defined in Eq. (2.5). Here and in the following we use sans-serif symbols to denote operators in a
single particle Hilbert space; variables referring to the test particle will be set in upper-case letters.
The superoperator L in (2.1) is a linear mapping which accounts for the incoherent part of the collisional interaction

with the gas. It can be expressed in Lindblad form as [41]

Lρ =

∫
dQ

∫
Q⊥
dk⊥

[
eiQ ·X/h̄L (k⊥, P;Q ) ρLĎ (k⊥, P;Q ) e−iQ ·X/h̄ −

1
2

{
ρ, LĎ (k⊥, P;Q ) L (k⊥, P;Q )

}]
, (2.2)

where X and P are the position and the momentum operator of the test particle, and the curly brackets denote the
anti-commutator. The integration is over all momentum transfers Q , and over gas particle momenta p from the plane
perpendicular to Q , i.e., from Q⊥ ≡

{
p ∈ R3 : p · Q = 0

}
. The function L, which appears operator-valued in (2.2), contains

all the details of the collisional interaction with the gas. It is defined by

L (p, P;Q ) =
√
ngasm
m2
∗
Q
f
(
rel
(
p⊥Q , P⊥Q

)
−

Q
2
, rel

(
p⊥Q , P⊥Q

)
+

Q
2

)√
µ

(
p⊥Q +

m
m∗

Q
2
+
m
M

P‖Q

)
, (2.3)

where m and M are the masses of the gas particles and of the test particle, respectively, and m∗ = mM/ (m+M) denotes
the reduced mass. It involves also the gas number density ngas, the distribution function µ (p) of the gas momenta, and,
most importantly, the elastic scattering amplitude f

(
pf , pi

)
determined by the two-body interaction between gas and test

particle. The subscripts ‖Q and⊥Q denote the component of a vector parallel and perpendicular to themomentum transfer
Q , such that P‖Q = (P · Q )Q /Q 2 and P⊥Q = P − P‖Q respectively. Finally, relative momenta are stated by means of the
abbreviation

rel (p, P) ≡
m∗
m

p−
m∗
M

P . (2.4)

The Hamiltonian correction in (2.1) is defined by the function [32]

Hn (P) = −2π h̄2
ngas
m∗

∫
dpµ (p) Re [f (rel (p, P) , rel (p, P))] . (2.5)

As discussed in Section 6, this energy shift is related to forward scattering.
The quantum linear Boltzmann equation is valid for non-degenerate, uniform gaseswith arbitrary stationarymomentum

distributionµ (p). However, for concrete calculationswewill often tacitly takeµ (p) to be the standardMaxwell–Boltzmann
expression

µβ (p) =
1

π3/2p3β
exp

(
−

p2

p2β

)
, (2.6)

with pβ =
√
2m/β the most probable momentum at temperature T = 1/ (kBβ).

2.2. Momentum representation

To gain some physical insight into the equation it is convenient to express it in the basis of improper momentum
eigenstates, P|P〉 = P|P〉, which will also help in establishing the relation to its classical counterpart. In the momentum
representation (Eq. (2.2)) can be brought into the form

〈P|Lρ|P ′〉 =
∫
dQ Min

(
P, P ′;Q

)
〈P − Q |ρ|P ′ − Q 〉 −

1
2

[
Mclout (P)+M

cl
out

(
P ′
)]
〈P|ρ|P ′〉. (2.7)

The ‘‘gain term’’, i.e., the first term on the right-hand side, is here given by

Min
(
P, P ′;Q

)
=

∫
Q⊥
dk⊥ L (k⊥, P − Q ;Q ) L∗

(
k⊥, P ′ − Q ;Q

)
(2.8)
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with L defined in Eq. (2.3). Importantly, (2.8) reduces to the rate known from the classical linear Boltzmann equation if one
approaches the diagonals P = P ′,

Min (P, P;Q ) = Mclin (P;Q ) . (2.9)

This classical gain rate, which involves the quantummechanically defined differential cross section σ
(
pf , pi

)
=
∣∣f (pf , pi)∣∣2,

reads as

Mclin (P + Q ;Q ) =
ngasm
m2
∗
Q

∫
Q⊥
dk⊥ µ

(
k⊥ +

m
m∗

Q
2
+
m
M

P‖Q

)
σ

(
rel
(
k⊥, P⊥Q

)
−

Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)
. (2.10)

It has a natural meaning in the sense that the transition rate

Mcl
(
Pi → Pf

)
≡ Mclin

(
Pf ; Pf − Pi

)
(2.11)

provides the rate of collisions which change the test particle momentum from Pi to Pf , or equivalently, which lead to a final
momentum Pf due to a gain of momentum Q = Pf − Pi.
The loss term in (2.7) is given by the arithmetic mean of the loss rates which appear in the corresponding classical

equation. The latter are related to the classical gain rate by

Mclout (P) =
∫
dQ Mclin (P + Q ;Q ) . (2.12)

This relationship, which ensures that the probability is conserved in the classical case, follows directly from the structure of
(2.2), and it guarantees the normalization of the statistical operator ρ.
If fact, by considering Eq. (2.7) only on the diagonal,

〈P|Lρ|P〉 =
∫
dQ Mclin (P;Q ) 〈P − Q |ρ|P − Q 〉 −Mclout (P) 〈P|ρ|P〉, (2.13)

one immediately recovers one of the possible expressions of the classical linear Boltzmann equation, as we shall see
in Section 3. It takes the explicit form

〈P|Lρ|P〉 =
ngasm
m2
∗

∫
dQ
Q

∫
Q⊥
dk⊥ σ

(
rel
(
k⊥, P⊥Q

)
−

Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)
×

[
µ

(
k⊥ +

m
m∗

Q
2
+
m
M

(
P‖Q − Q

))
〈P − Q |ρ|P − Q 〉 − µ

(
k⊥ +

m
m∗

Q
2
+
m
M

P‖Q

)
〈P|ρ|P〉

]
.

(2.14)

2.3. Born approximation

The weak coupling limit of the quantum linear Boltzmann equation is obtained if one replaces the scattering amplitudes
in Eq. (2.3) by their Born approximation. This simplifies the equation considerably, since the Born amplitude associated to
the interaction potential V (x) depends only on the difference of the momenta according to

fB
(
pf , pi

)
= −4π2h̄m∗〈pf |V (x) |pi〉

= −
m∗
2π h̄2

∫
dx V (x) exp

(
−i

(
pf − pi

)
· x

h̄

)
≡ fB

(
pf − pi

)
. (2.15)

This removes the operator-valuedness of the scattering amplitudes in (2.2) because the function (2.3) reduces to the form

L (p, P;Q )→
√
ngasm
m2
∗
Q
fB (−Q )

√
µ

(
p⊥Q +

m
m∗

Q
2
+
m
M

P‖Q

)
, (2.16)

such that the dk⊥-integration in Eq. (2.2) can be carried out if one assumes the Maxwell–Boltzmann distribution (2.6). The
resulting equation then reduces to the one proposed in [42]. Introducing the operators

LB (P;Q ) =

√√
βm
2π
ngasσB (Q )
m2
∗
Q

exp

(
−β

((
1+ m

M

)
Q 2 + 2 mM P · Q

)2
16mQ 2

)
, (2.17)
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with σB = |fB|2, it takes the simpler form

LBρ =

∫
dQ

[
eiQ ·X/h̄LB (P;Q ) ρL

Ď
B (P;Q ) e

−iQ ·X/h̄
−
1
2

{
ρ, LĎB (P;Q ) LB (P;Q )

}]
, (2.18)

where only the integration over the momentum transfers is left.
We note that Eq. (2.2) can be simplified also by other limiting procedures. The minimally extended Caldeira–Leggett

master equation is obtained in the diffusive limit described in Section 5.2, while the master equation of pure collisional
decoherence discussed in Section 7.1 is gained in the limit of a very massive tracer particle,m/M → 0.

2.4. Survey and comparison of derivations in the literature

The quantum linear Boltzmann equation has a long history, even though the general form Eq. (2.2) was obtained only
recently. The key difficulty lies in the necessity to account for the collisional dynamics in amicroscopically realistic and non-
perturbativeway, leading to a dynamicswhich is consistentwith the semigroup structure of a properMarkovian description
and which displays the thermalization behavior known from the classical description.
A Boltzmann-like master equation already appeared in the seminal work by Joos and Zeh [40] which used a scattering

theory description to treat the decoherence effect of environmental collisions on the motion of a quantum particle. Despite
its similar name the master equation presented there is quite different from Eq. (2.2) in that it linearizes the interaction
effect and neglects dissipation, thus leading to an infinite growth of the kinetic energy of the test particle on long time
scales. Indeed, the equation is meant to describe only the short-time loss of coherence in the motional state. However, due
to the linearization involved the predicted localization rate grows above all bounds for increasingly delocalized quantum
states, which may quickly lead to unrealistically large decoherence rates.
This result was improved by Gallis and Fleming [43], who proposed a master equation using the full scattering matrix.

This equation predicts a saturation of the localization rate at large distances, as one expects for local interactions with the
environment, though at a numerically incorrect value. Like themaster equation by Joos and Zeh, this result does not account
for dissipation phenomena.
To our knowledge, the first proposal pointing to a quantum linear Boltzmann equation which also describes energy

relaxation and therefore grants the existence of a stationary solution, was given by Diòsi [44]. As discussed in Section 3.4,
this result is not equivalent to what we consider the correct quantum linear Boltzmann equation, although the diagonal
matrix elements in the momentum representation coincide, yielding the expected classical equation.
The correct result including both decoherence and dissipative effects, though restricted to a perturbative scattering cross

section evaluated in the Born approximation, was later obtained in [45,46,42,47]. This work also pointed out an important
connection between the collision kernel in the quantum linear Boltzmann equation and a two-point correlation function
of the medium known as dynamic structure factor, first introduced by van Hove for the description of scattering of a test
particle off amacroscopic sample. In themaster equation the dynamic structure factor, given by the Fourier transform of the
time dependent density autocorrelation function of the gas, appears operator-valued and accounts for the existence of the
canonical stationary solution, as discussed in detail in Section 8. At the same time, the connection between this quantum
master equation and the general structure of translation–covariant master equations obtained by Holevo [33] was first
explored and clarified.
The final, non-perturbative version of the quantum linear Boltzmann equation, which is discussed in the present article,

was first derived in [41]. It is noteworthy that this result is not obtained from the weak coupling expression by naively
replacing the Born approximation of the scattering amplitude with the exact expression, since this procedure is not
unambiguous. Indeed, the substitution of σ 1/2B in (2.17) by the exact scattering amplitude would yield an expression very
different from the correct equation as given by (2.2) and (2.3), which requires an additional two-dimensional integration.
Other recent attempts to derivemaster equations related to the effect of a gas environment are due toAlicki [48] andDodd

and Halliwell [49] (see also [50–53] for recent mathematical work building on the covariance under translations). These
papers focus on the collisional decoherence effect for the case of a very massive particle, where dissipative effects are not
accounted for. In this regard, a reexamination of the derivation of the master equation by Gallis and Fleming was presented
in [54]. That article discusses several ways how to consistently incorporate scattering theory into a Markovian description,
which served to ascertain the numerical value of the localization rate due to collisional decoherence, thus confirming the
prefactor implied by [44,46]. The importance of an accurate description of collisional decoherence was demonstrated by
experimentalmeasurementswith interfering fullerenemolecules [39,55], whichwere sensitive to the exact saturation value
of the localization rate.Wenote that the techniques used in [54]were also instrumental for developing themethods required
to combine asymptotic scattering theory with a dynamic description of the state evolution, as required in the derivation of
the final form of the quantum linear Boltzmann equation.
Retrospectively, one can distinguish two rather different approaches followed in the various attempts at deriving the

master equation discussed in the present article. One possible line of argumentation starts from themicroscopicHamiltonian
for the joint system of test particle and gas, with an interaction term specified by a potential depending on the relative
distance between gas particle and test particle. A natural mathematical framework in this approach is the formalism of
second quantization. In this non-relativistic quantum field theoretical setting the interaction is naturally expressed as a
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density–density coupling. In this context a second order perturbation expansion leads to the Fourier transformof the density
autocorrelation function of the gas, that is to its dynamic structure factor [56]. The result includes statistical corrections,
which are naturally accounted for in a field theoretical formalism. However, the restriction to the second order term involves
the Fourier transform of the interaction potential, corresponding to the Born approximation for the scattering cross section.
Going beyond the second order term, thus recovering the full T-matrix including statistical corrections, becomes a very
difficult task, which has still not been fully accomplished. This standpoint has been considered in [57,58,42,49].
A second line of reasoning starts from the description of single collision events, formulated by means of scattering

theory, which has also recently been the object of mathematical investigations [59–63]. While this approach admits a non-
perturbative description of the effect of a collision, it cannot easily account for degeneracy effects, whichmay occur if the gas
particles are to be considered as being indistinguishable. The dynamic effect of the gas is essentially described by weighting
the effect of a single collision, obtained by tracing over the scattered gas particle, with the rate of collisions. This reasoning
was pursued in a phenomenological sense in [64,44]. However, since both the rate of collisions and the effect of a single
collision depend in general on the particle state, it is not straightforward to derive an expression for the infinitesimal state
evolution which is linear in the density operator, as required in a Markovian master equation. It is achieved in a line of
reasoning termed the monitoring approach [65,66], which is based on concepts drawn from the theory of generalized and
continuous measurements [28,67,68]. It introduces a positive operator for the scattering rate and thus yields an expression
for the dynamic state evolution, involving the S-matrix and square roots of the rate operator, which ismanifestly of Lindblad
form once the environmental trace is done. This approach has been shown to yield nontrivial master equations that have
been established by other means [65,69]. If applied to the case of a tracer particle in a gas it leads in a stringent calculation
to the quantum linear Boltzmann equation, as discussed in some detail in [32].
Finally, we note that a large number of works can be found in the literature which are related to the present subject.

While it is impossible to do justice to all authors, we mention a few recent articles related to the derivation of a quantum
kinetic equation in the spirit of the Boltzmann equation, both linear [70–80] and nonlinear [11–17,20,81–83,23,84,85].

3. A heuristic derivation

We now present a heuristic motivation for the particular form of the quantum linear Boltzmann equation as given by
Eqs. (2.2) and (2.3). It rests upon two basic requirements, its compatibility with (a) the classical linear Boltzmann equation,
and with (b) the structure of the general form of a covariant completely positive master equation. Although our line of
reasoning can hardly be called a proper derivation, it is rather straightforward and provides an intuitive reasoning why the
particular form given above is necessary.

3.1. The classical linear Boltzmann equation

It is helpful to first discuss the classical version of the linear Boltzmann equation. In particular, we will rewrite it in a
form that exhibits a natural correspondencewith the quantum version. As already explained in Section 1, the classical linear
Boltzmann equation describes the collisional dynamics of a test particle interacting with a homogeneous, ideal background
gas characterized by the momentum distribution µ (p). The nontrivial part of the equation is therefore the collisional
contribution to the time evolution of the distribution function f (P), which we shall denote by ∂collt f (P). We start with
the form

∂collt f (P) =
ngas
m2
∗

∫
dP ′

∫
dp′

∫
dp σ

(
rel (p, P) , rel

(
p′, P ′

))
× δ

(
P ′2

2M
+
p′2

2m
−
P2

2M
−
p2

2m

)
δ3
(
P ′ + p′ − P − p

) [
µ
(
p′
)
f
(
P ′
)
− µ (p) f (P)

]
, (3.1)

where the fundamental role of energy and momentum conservation in each single collision is put in the foreground. The
differential scattering cross section σ , which is a function of the relative momenta before and after a collision with a gas
particle, is taken to satisfy σ

(
pf , pi

)
= σ

(
pi, pf

)
, reflecting the invariance of the collisional interaction under an inversion

of time and parity.We note that the collision integral of the original, nonlinear Boltzmann is obtained from (3.1) by replacing
µ (p)with f (p), and by settingM = m.
As shown in Appendix A.1, by explicitly evaluating the two delta functions in (3.1) one arrives at the expression

∂collt f (P) =
ngasm
m2
∗

∫
dQ
Q

∫
Q⊥
dk⊥ σ

(
rel
(
k⊥, P⊥Q

)
−

Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)
×

[
µ

(
k⊥ +

m
m∗

Q
2
+
m
M

(
P‖Q − Q

))
f (P − Q )− µ

(
k⊥ +

m
m∗

Q
2
+
m
M

P‖Q

)
f (P)

]
. (3.2)
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It has already the same form as the right-hand side of Eq. (2.14). By exploiting the notation used in Eqs. (2.9) and (2.12) one
can write (3.2) more compactly as

∂collt f (P) =
∫
dQ Mclin (P;Q ) f (P − Q )−Mclout (P) f (P) , (3.3)

that is, one arrives at Eq. (2.13) upon identifying the classical momentum distribution function f (P) with 〈P|ρ|P〉, the
diagonal matrix elements of the statistical operator in the momentum representation. Eq. (3.3) makes it immediately
apparent that the classical linear Boltzmann equation takes exactly the form of a classical Markovian master equation.

3.2. General form of a translation–covariant quantum master equation

The classical result (Eq. (3.2)) already provides a hint on the quantum version of the linear Boltzmann equation, in that
it tells how the diagonal matrix elements in the momentum representation must look like. However, this constraint does
obviously not suffice to fix the quantum master equation, which is required to describe not only the populations in a given
basis, but also the coherences corresponding to the off-diagonal elements.
As is well-known from the theory of open quantum systems [29], the general structure of a Markovian master equation

is fixed by the Lindblad form, according to which the non-Hamiltonian part must have the structure

Lρ =
∑
j

[
LjρL

Ď

j −
1
2

{
L
Ď

j Lj, ρ
}]
. (3.4)

In the present case, however, a more powerful mathematical characterization of the master equation is available, which
builds on the translational covariance of Lρ, and thus provides further cues on the possible expressions of the Lindblad
operators Lj. Early results on the subject go back to one of the pioneering works on quantum dynamical semigroups [86],
and the problem was later reconsidered in [87,88]. The final characterization was obtained by Holevo in a series of papers
[89–92], by building on a quantum generalization of the classical Lévy–Khintchine formula.
The linear Boltzmann equation must be invariant under translations, both in the classical and in the quantum version,

because the background gas is taken to be homogeneous, while the interactions are described by a two-body potential
depending on the relative distance between colliding particles. This property is immediately apparent in the structure of
the classical equation. As discussed in more detail in Section 4.1.1, it implies on the quantum level that the master equation
must be translation–covariant, that is, its action must commute with the unitary representation of translations,

L
(
e−iA·P/h̄ρeiA·P/h̄

)
= e−iA·P/h̄LρeiA·P/h̄. (3.5)

It was shown by Holevo in the aforementioned work that the structure of a master equation which complies with Eq. (3.5)
is given by

Lρ =

∫
dQ

∑
j

[
eiQ ·X/h̄Lj (P;Q ) ρL

Ď

j (P;Q ) e
−iQ ·X/h̄

−
1
2

{
L
Ď

j (P;Q ) Lj (P;Q ) , ρ
}]
, (3.6)

with arbitrary functions Lj (P;Q ), while an additional Hamiltonian contribution may depend only on P. This assumes that
the mapping L is bounded and that the underlying statistical process is Poissonian. A more general expression including
both a Gaussian and a Poisson component has to be considered if one also allows for unbounded mappings [47,56,93]. An
example of such a Gaussian component is given by the master equation (Eq. (5.10)), obtained from the quantum linear
Boltzmann equation in the Brownian motion limit considered in Section 5.
Although the form of Eq. (3.6) complies with the Lindblad result, it provides much richer information on the structure

of the Lindblad operators. For instance, it states that the only possible dependence on the position operator X can be in the
unitary momentum boost operator exp (iQ · X/h̄). In particular, the diagonal matrix elements of Eq. (3.6) in themomentum
representation are given by

〈P|Lρ|P〉 =
∫
dQ

∑
j

[∣∣Lj (Q , P − Q )
∣∣2 〈P − Q |ρ|P − Q 〉 −

∣∣Lj (Q , P)∣∣2 〈P|ρ|P〉] . (3.7)

3.3. Combining translational invariance with the classical equation

One can now ask whether a natural choice of the Lindblad operators for the quantum linear Boltzmann equation is
suggested already by combining the requirements posed by its classical analogue and by the characterization of translation–
covariantMarkovian dynamics. Specifically, by comparing the diagonalmomentummatrix elements of the covariantmaster
equation (3.7)with the classical expression Eq. (3.3) one finds that the gain term

∑
j

∣∣Lj (Q , P − Q )
∣∣2 in Eq. (3.7) corresponds

to that expression in Eq. (3.2) which yields the classical rateMclin (P;Q ) in Eq. (3.3).
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It follows that the sum over the discrete set of Lindblad operators Lj (P;Q ) must be replaced by an integration over a
two-dimensional continuous index, in order to recover the five-fold integration in Eq. (3.2). Apart from the integral over the
momentum transfer Q , this brings about an additional integration over the plane of momenta perpendicular to Q ,∑

j

Lj (P;Q ) ρL
Ď
j (P;Q )→

∫
Q⊥
dk⊥ L (k⊥, P;Q ) ρLĎ (k⊥, P;Q ) (3.8)

with L (p, P;Q ) the accordingly continuous collection of Lindblad operators. It follows from Eq. (3.2) that they must satisfy

|L (p, P;Q )|2 =
ngasm
m2
∗
Q
σ

(
rel
(
p⊥Q , P⊥Q

)
−

Q
2
, rel

(
p⊥Q , P⊥Q

)
+

Q
2

)
µ

(
p⊥Q +

m
m∗

Q
2
+
m
M

P‖Q

)
. (3.9)

The relation σ
(
pf , pi

)
=
∣∣f (pf , pi)∣∣2 and the positivity of µ now suggest a natural choice for the Lindblad operators,

L (p, P;Q ) =
√
ngasm
m2
∗
Q
f
(
rel
(
p⊥Q , P⊥Q

)
−

Q
2
, rel

(
p⊥Q , P⊥Q

)
+

Q
2

)√
µ

(
p⊥Q +

m
m∗

Q
2
+
m
M

P‖Q

)
. (3.10)

This expression, which involves a complex, operator-valued scattering amplitude, was obtained here in a rather
straightforward and intuitive way. It is identical with the result (2.3), derived stringently by means of quantum scattering
theory within the monitoring approach.

3.4. Inequivalent expressions

The previous section presented a rather suggestive line of reasoning in support of the expression (Eq. (2.3)). We
emphasize, however, that these arguments are not fully conclusive, since one can formulate quantum master equations
different from Eq. (2.2), which still comply with Eqs. (3.2) and (3.6). Incidentally, this is the case for a proposal by Diòsi
[44], aiming at the generalization of the classical linear Boltzmann equation. Clearly, the remaining freedom lies in the
fact that the diagonal matrix elements in the momentum representation do not uniquely fix the mappingL. The quantum
linear Boltzmann equation is an operator equation for the density matrix, after all, while its classical version governs only a
probability distribution.
In order to pinpoint the remaining freedom and the connection to Diòsi’s result [44] let us return to the classical

expression (Eq. (3.2)). This equation is invariant under a change of integration variables of the form

k⊥ → a(k⊥, P;Q )k⊥ + b(k⊥, P;Q )P⊥Q , (3.11)

with a and b arbitrary scalar functions. This changes the dependence on the test particle momentum P in the explicit
expression of the classical gain term, such that different master equations are obtained when promoting P to an operator
and reading off the Lindblad operators, as done above in Eqs. (3.9) and (3.10). These various master equations coincide
with respect to the diagonal in momentum representation, because one can translate back the integration variables when
evaluating those matrix elements.
In particular, by choosing a = 1 and b = m/M the classical linear Boltzmann equation takes the form

∂collt f (P) =
ngasm
m2
∗

∫
dQ
Q

∫
Q⊥
dk⊥ σ

(
m∗
m

k⊥ −
Q
2
,
m∗
m

k⊥ +
Q
2

)
×

[
µ

(
k⊥ +

m
M

P⊥Q +
m
m∗

Q
2
+
m
M

(
P‖Q − Q

))
f (P − Q )

−µ

(
k⊥ +

m
M

P⊥Q +
m
m∗

Q
2
+
m
M

P‖Q

)
f (P)

]
. (3.12)

In this case, the constraint on the Lindblad operators corresponding to Eq. (3.9) reads as

|L (p, P;Q )|2 =
ngasm
m2
∗
Q
σ

(
m∗
m

p⊥Q −
Q
2
,
m∗
m

p⊥Q +
Q
2

)
µ

(
p⊥Q +

m
m∗

Q
2
+
m
M

P

)
. (3.13)

In the same spirit as above, this would lead to the identification

LD (p, P;Q ) =
√
ngasm
m2
∗
Q
f
(
m∗
m

p⊥Q −
Q
2
,
m∗
m

p⊥Q +
Q
2

)√
µ

(
p⊥Q +

m
m∗

Q
2
+
m
M

P

)
, (3.14)

which corresponds to Diòsi’s result [44] written in operator form. Unlike the quantum linear Boltzmann equation (2.3), the
scattering amplitude is here not operator-valued, since it is independent of P.
Other choices of a and b can lead to further equations of motion. They all recover the classical linear Boltzmann equation,

since their diagonal momentum matrix elements coincide, granting in particular the existence of a stationary solution.
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However, they differ in general as far as the description of quantum effects is concerned. For instance, the diffusive limit
considered in Section 5will lead to different master equations of quantum Brownianmotion. In this respect, the assignment
(3.10), and therefore the quantum linear Boltzmann equation, is distinguished by the fact that it leads to the minimal
correction of the Caldeira–Leggett master equation [29], as discussed in Section 5.
As another distinguishing feature of the assignment (3.10), the complex rate Min

(
P, P ′;Q

)
resulting from Eq. (2.8) has

a physically meaningful form. It is an integration over all those pairs of scattering amplitudes f and f ∗ which are defined
by the value of P and of P ′, respectively, together with the requirement of energy and momentum conservation for a given
choice of Q and the initial gas particle momentum [66]. In an assignment like (3.14), in contrast, test particle momenta with
different energies P2 6=

(
P ′
)2 would contribute with some common scattering cross section which does not correspond to

the initial and final relative momenta determined by P, P ′, and Q .

4. Properties of the quantum linear Boltzmann equation

We now address features of the quantum linear Boltzmann equation, which are the quantum counterpart of properties
also exhibited by the classical version. We start by considering the behavior under symmetry transformations. Then the
relaxation dynamics predicted by the equation is addressed, and in particular the approach to an equilibrium state. As in
the classical case, the latter can be understood independently of the details of scattering cross section and gas properties.
This thermalization behavior is exemplified by means of numerical results based on stochastic unravellings which exploit
the particular form of the master equation.

4.1. Symmetry transformations

4.1.1. Spatial translations
A basic symmetry property of the quantum linear Boltzmann equation is its invariance under spatial translations, which

was already employed in Section 3. One expects this to hold because the collisional interaction is due to a two-body potential
which depends on the relative distance between test and gas particle. Together with the homogeneity of the gas this implies
that a transformation to a frame of reference translated by a vector A should not affect the dynamics. This property is
expressed at the mathematical level by requiring that the mapping yielding the infinitesimal time evolution commutes
with the action of the unitary representation of translations, as expressed by Eq. (3.5). It implies in particular that if the
statistical operator ρ is a solution of the master equation, the translated operator e−iA·P/h̄ρeiA·P/h̄ also provides a solution.
To check this invariance of the quantum linear Boltzmann equation let us consider the effect of a translation by a vector

A on the superoperatorM appearing in Eq. (2.1). We here recall its explicit expression

Mρ = −
i
h̄
[H0 + Hn (P) , ρ]+

∫
dQ

∫
Q⊥
dk⊥

[
eiQ ·X/h̄L (k⊥, P;Q ) ρLĎ (k⊥, P;Q ) e−iQ ·X/h̄

−
1
2

{
ρ, LĎ (k⊥, P;Q ) L (k⊥, P;Q )

}]
, (4.1)

with L (p, P;Q ) as in Eq. (2.3) and Hn (P) as in Eq. (2.5).
The mapping in the transformed frame of reference is then given by

MA [ρ] = eiA·P/h̄M
[
e−iA·P/h̄ρeiA·P/h̄

]
e−iA·P/h̄, (4.2)

and we have to verify thatMA =M.
This is easily checked by separately considering the commutator term and the incoherent part in (4.1). The Hamiltonian

terms are only functions of themomentum operator P and therefore invariant under translations. In the incoherent part, the
specific form of L (p, P;Q ) is not important, since it commutes in any case with exp (iA · P/h̄), while the unitary operators
exp (iQ · X/h̄) and exp (−iQ · X/h̄) are modified by two opposite phases which cancel out. The invariance clearly relies on
the special way in which the position operator X appears in Eq. (4.1).

4.1.2. Velocity transformations
The collisional physics underlying the quantum linear Boltzmann equation not only fixes its behavior under translations,

but also under velocity transformations. This is due to the fact that the interaction rate depends on the relative velocity
between the tracer particle and the gas particles, the latter being drawn from themomentumdistribution of the gas particles.
A transformation to a reference frame that moves with constant velocity V should therefore be equivalent to performing
the corresponding shift in the momentum distribution of the gas particles.
Let us therefore consider the superoperator of the infinitesimal time evolutionMV , valid in a frame of reference which

moves with velocity V compared to the original frame,

MV [ρ] = eiMV ·X/h̄M
[
e−iMV ·X/h̄ρeiMV ·X/h̄] e−iMV ·X/h̄, (4.3)
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whereM is given by Eq. (4.1). According to the microscopic considerations above, we expect thatMV can be obtained as
well by evaluatingM with the transformed gas momentum distribution µ (p)→ µV (p) = µ (p−mV ).
To check this symmetry, we first observe that the free kinetic term is left untouched. The explicit form (2.5) of the gas

induced energy shift also immediately grants that Hn (P−MV ) = HV
n (P), where the superscript V indicates quantities

evaluated with the shifted momentum distribution µV .
Applying the same analysis to the remaining incoherent part, we note that (4.3) transforms the second term of Eq. (4.1)

into

LV [ρ] =
∫
dQ

∫
Q⊥
dk⊥

[
eiQ ·X/h̄L (k⊥, P−MV ;Q ) ρL

Ď
(k⊥, P−MV ;Q ) e−iQ ·X/h̄

−
1
2

{
ρ, L

Ď
(k⊥, P−MV ;Q ) L (k⊥, P−MV ;Q )

}]
. (4.4)

The definition of L (p, P;Q ) in Eq. (2.3) implies

L (p, P −MV ;Q ) = LV
(
p+mV⊥Q , P;Q

)
. (4.5)

By inserting this into Eq. (4.4) and performing a change of integration variables k⊥ → k′
⊥
= k⊥ − mV⊥Q one also finds for

the incoherent part that the transformation (4.3) is tantamount to the replacement µ → µV . In our notation this proves
thatMV =MV , that is, boosting the reference frame is equivalent to translating the gas distribution in momentum space.

4.1.3. Rotations
On similar grounds one can consider the behavior of the quantum linear Boltzmann equation under spatial rotation. Let

us denote by R the rotation around a direction n by the angle α. The mappingMR in the rotated frame is then related to the
original mappingM by

MR [ρ] = eiαn·J/h̄M
[
e−iαn·J/h̄ρeiαn·J/h̄

]
e−iαn·J/h̄, (4.6)

where J is the angular momentum of the test particle, acting as the generator of rotations.
Usually the collisional interaction between the particles depends only on the relative orientation of incoming and

outgoing momenta, f
(
pf , pi

)
= f

(
Rpf , Rpi

)
. One expects that the quantum linear Boltzmann equation is then invariant

under rotations provided the gas momentum distribution is isotropic, i.e., µ (p) = µ (Rp). Indeed, the identityMR = M is
then checked easily.

4.2. Approach to equilibrium

4.2.1. Detailed balance and the stationary solution
One of the most important features of both the classical and the quantum linear Boltzmann equation is the existence of

a stationary solution of the canonical form, e.g. proportional to the thermal momentum distribution νEQ(P) given by

νEQ (P) =
1

π3/2P3β
exp

(
−

P2

P2β

)
, (4.7)

with Pβ =
√
2M/β . It is reached asymptotically for any initial state and depends only on the mass M of the test particle

and on the temperature T = 1/ (kBβ) of the gas, provided the latter is described by the Maxwell–Boltzmann distribution
(2.6). We now show that the existence of this solution relies also in the quantum case on the fact that the scattering rateMclin
obeys the so-called detailed balance condition. Here and in the following the Hamiltonian part of the master equation does
not contribute, so that we can concentrate on the mappingL instead ofM.
As a first step, consider the quantum linear Boltzmann equation (2.2) for a state ν(P), which is only a function of the

momentum operator P

L [ν(P)] =
∫
dQ

[
Mclin (P;Q ) ν(P− Q )−Mclin (P+ Q ;Q ) ν(P)

]
. (4.8)

One says that the transition rateMcl
(
Pi → Pf

)
≡ Mclin

(
Pf ; Pf − Pi

)
obeys the detailed balance condition provided

Mcl (P1 → P2) exp
(
−β

P21
2M

)
= Mcl (P2 → P1) exp

(
−β

P22
2M

)
. (4.9)

For the gain rate Eq. (2.9) this implies

Mclin (P + Q ;Q ) = Mclin (P;−Q ) exp (−βE (Q , P)) , (4.10)
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with E (Q , P) denoting the energy transferred to the test particle in a collision where the momentum changes from P to
P + Q ,

E (Q , P) =
(P + Q )2

2M
−
P2

2M
=
Q 2

2M
+

Q · P
M

. (4.11)

This quantity also relates the Maxwell–Boltzmann distribution at different momenta,

e−βE(Q ,P)νEQ (P) = νEQ (P + Q ) . (4.12)

Based on the detailed balance condition (4.9) we therefore have

LνEQ(P) =

∫
dQ

[
Mclin (P;Q ) νEQ(P− Q )−Mclin (P;−Q ) νEQ(P+ Q )

]
, (4.13)

which is equal to zero because the integrand ismanifestly odd inQ . If follows that νEQ(P) is then indeed a stationary solution.
The problem is therefore reduced to checking the validity of the detailed balance condition (4.9). This can be done

considering the explicit expression for the classical rate given by Eq. (2.10) and taking as the stationary distribution
function µ for the gas particles the Maxwell–Boltzmann distribution (2.6). Provided the scattering cross section obeys
σ
(
pf , pi

)
= σ

(
pi, pf

)
one can then directly confirm that (4.10) holds.

Finally, we emphasize that the existence of a stationary solution can be proved in a more general and direct way by
writing the quantum linear Boltzmann equation in terms of the dynamic structure factor of the gas, as will be discussed
in Section 8.

4.2.2. Entropy growth
The celebrated H-theorem for the nonlinear Boltzmann equation [2] states that the function

H (t) =
∫
dP f (P) log f (P) , (4.14)

satisfies ∂tH (t) 6 0. That is, the entropy S (t) = −kBH (t) associated to the momentum distribution function f (P) of
the self-interacting gas particles does not decrease under the evolution of the nonlinear Boltzmann equation. In particular,
∂tH (t) = 0 if and only if f (P) = fEQ (P), with fEQ (P) the canonical stationary solution given by the Maxwell–Boltzmann
distribution. This tells us that fEQ (P) is the only stationary solution, reached for t →∞ independently of the initial condition
[94].
Unlike the proper Boltzmann equation, the classical linear Boltzmann equation describes an open system, implying that

the entropy associated to the distribution function f (P) can increase or decrease in general. In this case it is necessary to
consider the relative entropy of f (P), defined with respect to another reference distribution function g (P),

H (f |g) =
∫
dP f (P) log

f (P)
g (P)

. (4.15)

As ameasure of howeffectively one can distinguish the two distribution functions, the relative entropy provides information
on how close the two distribution functions are. The quantity is non-negative, and equal to zero if and only if the two
distribution functions coincide. We prove in Appendix A.2 that any solution f (P) of the classical linear Boltzmann equation
satisfies

d
dt
H
(
f |fEQ

)
6 0, (4.16)

where fEQ (P) is the canonical stationary solution given by the Maxwell–Boltzmann distribution. Also in this case we have
∂tH

(
f |fEQ

)
= 0 if and only if f (P) = fEQ (P). Eq. (4.16) thus reflects the fact that independently of the initial condition any

solution approaches the stationary distribution function for t →∞.
The situation is similar in the case of the quantum linear Boltzmann equation. Here one considers the quantum

correspondence of the relative entropy and studies its behavior under the action of completely positive quantum dynamical
semigroups [95–97].
One should emphasize that the following argumentation can be put on firmer ground only by confining thewhole system

in a region of finite volume. In this case the generator of the dynamics is given by a bounded mapping, and the stationary
solution of the canonical form is indeed a trace class operator. If the test particle can move in an infinite volume, on the
other hand, an operator of this form is not of trace class since P has a continuous spectrum. The particle is not bounded to a
finite region, and it gets completely delocalized with elapsing time.
The quantum analogue of the relative entropy is given by the expression

S (ρ|w) = kBTrρ log ρ − kBTrρ logw, (4.17)

where ρ andw are two statistical operators. According to Klein’s inequality this quantity is non-negative, and equal to zero
if and only if the two statistical operators are equal [98,96,97].
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Taking the quantum relative entropy of the solution of the master equation ρt = etMρ with respect to the stationary
solution ρEQ one is led to consider the time derivative of S

(
ρt |ρEQ

)
. We can now exploit the inequality

S (Uρ|Uw) 6 S (ρ|w) , (4.18)

valid for any completely positive mapping U [98,96,97]. It provides a quantum analog of the H-theorem for dynamical
evolutions described by quantum dynamical semigroups. In particular, forU = etM , withM the generator of a Markovian
master equation, and noting that ρEQ is a time translation invariant state, etMρEQ = ρEQ, it follows that

d
dt
S
(
ρt |ρEQ

)
6 0. (4.19)

Eq. (4.19) tells us that, even though the variation of the von Neumann entropy associated to the solution ρt = etMρ does not
have a definite sign, reflecting the fact that the system is open, one still has loss of information with elapsing time because
different initial states get less and less distinguishable.
In particular, the derivative of the relative entropy with respect to time can be written as

d
dt
S
(
ρt |ρEQ

)
= kBTr

[
Mρt

(
log ρt − log ρEQ

)]
. (4.20)

It is equal to zero if and only if ρt equals the stationary solution, which is unique as a consequence of the fact that only
multiples of the identity commute with the Lindblad operators exp (iQ · X/h̄) L (p, P;Q ) appearing in the quantum linear
Boltzmann equation (2.1) [95,99]. This result is in complete correspondence with the classical case.
Moreover, according to Eq. (4.19) any solution of themaster equation gets increasingly close to the stationary distribution

function. This implies in particular that any initial state gets diagonal in momentum representation for t →∞. That is, the
momentum coherences described by the off-diagonal elements decay, such that the quantum linear Boltzmann equation
goes over to the classical linear Boltzmann equation, which describes the remaining populations.

4.3. Relaxation dynamics

4.3.1. Momentum and energy relaxation
The previous section considered the evolution of the statistical operator, which suggested to work in the Schrödinger

picture. In contrast to that, we will now use the Heisenberg picture when focussing on the dynamics of momentum and
kinetic energy, that is, on the two observables most relevant for the description of a test particle in a gas.
The Heisenberg time evolution of observables requires the adjoint mapping M∗, with respect to the quantum linear

Boltzmann equation. It is defined through the duality relation

Tr (AMρ) = Tr
(
ρM∗A

)
, (4.21)

which connects the space of trace class operators, containing the statistical operators ρ, with its dual, the space of bounded
observables A. The dynamics of a Heisenberg observable At is thus given by

d
dt

At =
1
ih̄
[At ,H0 + Hn (P)]+L∗A, (4.22)

with

L∗A =

∫
dQ

∫
Q⊥
dk⊥

[
L
Ď
(k⊥, P;Q ) e−iQ ·X/h̄AeiQ ·X/h̄L (k⊥, P;Q )−

1
2

{
L
Ď
(k⊥, P;Q ) L (k⊥, P;Q ) ,A

}]
. (4.23)

We will take the Heisenberg operator to coincide with the corresponding Schrödinger observable at t = 0, i.e., A0 = A.
An important class of observables are those which are only functions of the momentum operator, At = At (P). The

equation of motion in the Heisenberg picture then simplifies considerably,

d
dt

At =

∫
dQ

∫
Q⊥
dk⊥ |L (k⊥, P;Q )|2

[
e−iQ ·X/h̄AteiQ ·X/h̄ − At

]
. (4.24)

Note that L, and equivalently L∗, is covariant under translations in the sense of Eq. (3.5), which implies that the algebra
generated by the momentum operator is left invariant. Consequently, A0 = A0 (P) implies At = At(P) for t > 0 and there-
fore [At , P] = 0. Recalling the definition of the quantum and the classical gain rates in Eqs. (2.8) and (2.9), we find that
observables given by a function of momentum obey

d
dt
At (P) =

∫
dQ Mclin (P+ Q ;Q ) [At (P+ Q )− At (P)] , (4.25)

in strict analogy with the classical formulation.
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Let us now focus on the time evolution of the expectation values of momentum and kinetic energy, A (P) = P and
A (P) = P2/ (2M). Using the momentum representation one can evaluate Eq. (4.25) for these quantities by working with
real numbers rather than operators. In particular, for A(P) = P the quantity [A (P + Q )− A (P)] appearing at the right hand
side of Eq. (4.25) is simply the momentum transfer Q in the single collision. For A(P) = P2/ (2M) it is the energy transfer
E (Q , P) as given by Eq. (4.11). The positivity of Mclin thus allows one straightforwardly to confirm from Eq. (4.25) that the
change of momentum is positive when the momentum transfer is positive. Likewise, a positive energy transfer increases
the energy.
The dynamic equation (4.25) for themomentum and kinetic energy can be evaluated explicitly if one assumes a constant

scattering cross-section |f
(
pf , pi

)
|
2
= σtot/4π and a free gas of Maxwell–Boltzmann particles. Inserting the expression of

Mclin into Eq. (4.25) it can be shown in this case [100] that the time evolution of the momentum expectation value is given by

d
dt
〈P〉ρt = −

8
3
√
π

m∗
M
Γβ

〈
P1F1

(
−
1
2
,
5
2
;−

(
P

Mvβ

)2)〉
ρt

. (4.26)

Accordingly, the kinetic energy E = P2/ (2M) evolves as

d
dt
〈E〉ρt = −

16
3
√
π

m∗
M
Γβ

〈
1F1

(
−
1
2
,
5
2
;−βE

m
M

)
E−

3
2β
m∗
m 1F1

(
−
3
2
,
3
2
;−βE

m
M

)〉
ρt

. (4.27)

In these equations we have denoted the most probable velocity of the gas particles as vβ = pβ/m =
√
2/ (βm). Moreover,

Γβ = ngasvβσtot (4.28)

is the total scattering rate for a flux of particles with the most probable velocity vβ , and the symbol 1F1 denotes confluent
hypergeometric functions. Their explicit expressions are given by

1F1

(
−
1
2
,
5
2
;−x2

)
=
3
16
1
x2

{[
1+ 2x2

]
e−x

2
−
[
1− 4x2 − 4x4

] √π
2
erf(x)
x

}
(4.29)

and

1F1

(
−
3
2
,
3
2
;−x2

)
=
1
8

{[
5+ 2x2

]
e−x

2
+
[
3+ 12x2 + 4x4

] √π
2
erf (x)
x

}
, (4.30)

which are both positive monotone increasing functions. From these expressions it is immediately clear that in general there
is no closed evolution equation for either the first or the second moment of the momentum operator, 〈P〉ρt or 〈P

2
〉ρt , since

moments of arbitrary high order are involved in the equation, due to the presence of the confluent hypergeometric functions.
This becomesmanifest in strong deviations of themoments fromGaussian statistics, as can be observed by studying the time
dependence of high order cumulants of the momentum distribution [101].
However, the equations do get closed in the limit of a very massive test particle close to thermal equilibrium, which

corresponds to the diffusive limit considered in Section 5. In this case, the velocity V = P/M of the test particle is taken to
be much smaller than the typical velocity vβ of the gas particles. Thus taking V/vβ � 1 and m/M � 1 in Eqs. (4.26) and
(4.27) the confluent hypergeometric functions can be replaced by unity, since 1F1 (α, γ ; 0) = 1, while the reduced massm∗
is replaced bym. This leads to

d
dt
〈P〉ρt = −η〈P〉ρt (4.31)

which describes a friction proportional to velocity, leading to the expected exponential relaxation to a vanishing mean
momentum. Similarly, one finds

d
dt
〈E〉ρt = −2η

(
〈E〉ρt −

3
2β

)
(4.32)

which shows that the mean kinetic energy relaxes exponentially to the equipartition value 3/2kBT . The friction coefficient
η in Eqs. (4.31) and (4.32) is given by

η =
8
3
√
π

m
M
Γβ . (4.33)
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4.3.2. Simulation algorithm
The complexity of the quantum linear Boltzmann equation prevents its solutions from being analytically tractable,

even if one allows for special choices of the scattering amplitude and the initial state. Nevertheless, one can efficiently
simulate the temporal behavior of various interesting quantities by using quantum trajectory methods, which build on
the Lindblad structure of the master equation and its translation–covariance. These techniques are based on stochastic
differential equations for the state vector |ψ (t)〉, whose solutions are a stochastic process in the Hilbert space. A stochastic
unravelling of the quantum master equation is achieved if the ensemble average E [|ψ (t)〉〈ψ (t) |] yields a solution of the
master equation [102–105,29].
One way of motivating these unravelling techniques is to consider measurement schemes, which lead to instantaneous

changes of the wave vector conditioned on the random outcomes. Together with the covariant structure of the master
equation described above, this consideration leads to a natural choice of the unravelling. It is a piecewise deterministic
process, described by a deterministic time evolution, which gets interrupted by random jumps which change the particle
momentum. This unravelling corresponds to a measurement scheme in which one monitors the momentum transferred
between system and environment.
For the sake of simplicity we will restrict our analysis to the Born approximation of the equation, where the scattering

cross-section depends only on the momentum transfer. Although this is not a conceptual restriction, it leads to major
simplifications in the sampling of the jump events.
In Born approximation the quantum linear Boltzmann equation reads

d
dt
ρ = −

i
h̄
[H, ρ]+

∫
dQ

[
eiQ ·X/h̄LB (P;Q ) ρL

Ď
B (P;Q ) e

−iQ ·X/h̄
−
1
2

{
LĎB (P;Q ) LB (P;Q ) , ρ

}]
, (4.34)

where we have used the more compact notation H = H0 + Hn (P) for the Hamiltonian term, and the Lindblad operators are
given by Eq. (2.17).
In theMonte Carlowave functionmethod [105,29] one then considers a stochastic differential equation for the stochastic

wave vector ψ (t), which has the form

d|ψ (t)〉 =
[
−
i
h̄
H−

G

2
+
1
2

∫
dQ ‖LB (P;Q ) |ψ (t)〉‖2

]
|ψ (t)〉dt

+

∫
dQ

[
eiQ ·X/h̄LB (P;Q ) |ψ (t)〉
‖LB (P;Q ) |ψ (t)〉‖

− |ψ (t)〉
]
dNQ (t) . (4.35)

Here, the rate operator G is given by

G =

∫
dQ LĎB (P;Q ) LB (P;Q ) . (4.36)

The field of Poisson increments dNQ (t) satisfies

dNQ (t) dNQ ′ (t) = δ3
(
Q − Q ′

)
dNQ (t) (4.37)

E
[
dNQ (t)

]
= ‖LB (P;Q ) |ψ (t)〉‖2dt,

where the symbol E denotes the ensemble mean over realizations of the process. The solutions of (4.35) starting from an
initial state |ψ (0)〉 provide an unravelling of the master equation (4.34) in the sense that

ρt = E [|ψ (t)〉〈ψ (t) |] , (4.38)

if ρ0 = |ψ (0)〉〈ψ (0) |.
In spite of the complicated form of the stochastic differential equation, which involves a field of Poisson increments,

the Monte Carlo wave function method provides a rather simple simulation algorithm. The realizations of the process are
characterized by deterministic time evolutions interrupted by jumps. If a jump into the state |ψ (t)〉 occurs at time t , it will
evolve until the time t + τ of the next jump according to the deterministic equation

|ψ (t + τ)〉 =
e−iHτ/h̄−Gτ/2|ψ (t)〉
‖e−iHτ/h̄−Gτ/2|ψ (t)〉‖

. (4.39)

The waiting time τ between two jumps is determined by the cumulative distribution function

F (τ ) = 1− ‖e−iHτ/h̄−Gτ/2|ψ (t)〉‖2. (4.40)

A straightforward way to obtain the random variable τ numerically is to draw a random number η from a uniform
distribution over the interval [0, 1] and to invert the relation ‖e−iHτ/h̄−Gτ/2|ψ (t)〉‖2 = η. The jump is then implemented by
the replacement

|ψ (t + τ)〉 →
eiQ ·X/h̄LB (P;Q ) |ψ (t + τ)〉
‖LB (P;Q ) |ψ (t + τ)〉‖

, (4.41)
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where the unitary operator exp (iQ · X/h̄) effects a momentum kick of amount Q . These momentum transfers must be
drawn from the probability distribution

P (Q ) =
‖LB (P;Q ) |ψ (t)〉‖2

〈ψ (t) |G|ψ (t)〉
, (4.42)

which is normalized by the total scattering rate out of the state ψ (t),

〈ψ (t) |G|ψ (t)〉 =
∫
dQ ‖LB (P;Q ) |ψ (t)〉‖2. (4.43)

The random jumps in this unravelling are therefore naturally associated to the collisionswith the gasmolecules experienced
by the test particle. The realizations of the process are thus given by a deterministic evolution interrupted by random
momentum kicks corresponding to collisions. The value of the momentum transfers and the rate of collisions are fixed
by the state dependent quantities Eqs. (4.42) and (4.43) respectively.
The described algorithm can be implemented in a particularly simple way if the initial state is a discrete superposition

of momentum eigenstates, |ψ (0)〉 =
∑N

j=1
cj|Pj〉. Due to the translation–covariance (4.2) of the master equation superpo-

sitions of this kind are preserved during the stochastic time evolution in the sense that the quantum trajectory remains a
superposition of N momentum eigenstates at all times. The stochastic process is thus mapped into the space of the different
amplitudes cj and momenta Pj.

4.3.3. The loss term
Whendiscussing themomentumand energy relaxation in Section 4.3 itwas not necessary towork out the loss termof the

quantum linear Boltzmann equation explicitly, since it cancels out in Eq. (4.25). However, this expression is of independent
interest; it appears in the Monte Carlo simulation of the quantum linear Boltzmann equation through the rate Eq. (4.36),
and it also determines the loss of visibility due to collisional decoherence in matter wave interference experiments, as we
shall discuss in Section 7. We therefore provide an explicit expression assuming that the cross-section depends only on the
relative velocity, which includes the case of a constant cross-section discussed in Section 4.3.
The classical loss term in the quantum linear Boltzmann equation is given by

Llossρ = −
1
2

{
Mclout(P), ρ

}
, (4.44)

as evident from Eq. (2.7). It is convenient to rewrite the classical loss rateMclout (P), in terms of an effective scattering cross-
section σeff (P) defined as the area to be multiplied by the current density ngasV of the test particle,

Mclout (P) = ngas
P
M
σeff(P). (4.45)

The effective cross-section can be calculated exactly if the scattering cross-section is independent of the scattering angle
(s-wave scattering), and if it depends on the energy only as a power of the relative velocity between test particle and gas
particles. The microscopic cross-section can then be expressed as

σ

(
rel
(
p⊥Q , P⊥Q

)
−

Q
2
, rel

(
p⊥Q , P⊥Q

)
+

Q
2

)
= c

∣∣∣∣ pm − P
M

∣∣∣∣a = c |v − V |a . (4.46)

This yields the effective scattering cross-section [106]

σeff (P) = 8
√
πΓ

( a
2
+ 2

) Mva+1β c

P 1F1

(
−

(
a
2
+
1
2

)
,
3
2
;−

(
P
Mvβ

)2)
, (4.47)

where 1F1 denotes the confluent hypergeometric function and vβ =
√
2/ (βm) the most probable velocity in the gas.

For a = 0 one recovers the case of a constant scattering cross-section
∣∣f (pf , pi)∣∣2 = σtot/4π , used below to perform a

Monte Carlo simulation of the quantum linear Boltzmann equation. The corresponding expression is

σeff (P) = σtot
2
√
π

Mvβ
P 1F1

(
−
1
2
,
3
2
;−

(
P
Mvβ

)2)
, (4.48)

where

1F1

(
−
1
2
,
3
2
;−x2

)
=

{
1
2
e−x

2
+
[
1+ 2x2

] √π
4
erf (x)
x

}
. (4.49)
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For small velocities of the test particle V/vβ � 1 the expression Eq. (4.48) simplifies to

σeff (P)
V�vβ
−→ σtot

2
√
π

Mvβ
P
= σtot

v̄

V
, (4.50)

with v̄ =
√
8/πmβ the average thermal velocity. This corresponds to the famous 1/V dependence of the total scattering

cross-section for small velocities, expected when the scattering probability is independent of the velocity of the tracer
particle, as verified in neutron scattering [7].

4.3.4. Simulating the momentum and energy dynamics
Wenow discuss a numerical study of the relaxation properties of the quantum linear Boltzmann equation [101], which is

based on the unravelling given by Eq. (4.35) and the algorithmpresented above. The use of dimensionless variables, naturally
suggested by the typical physical lengths of the problem, turns out to be very convenient. Specifically, we introduce the
variables

U =
P
Mvβ

=
V
vβ
, (4.51)

and

K =
Q
m∗vβ

. (4.52)

They provide the momentum of the test particle, scaled with respect to the most probable velocity vβ in the gas, as well as
the scaled momentum transfer in a single collision.
For the sake of simplicity we also focus on the case of a constant cross-section. In terms of the new variables the Lindblad

operators then read as

L̃B (U;K ) =

√
Γβ
√
πK
exp

(
−
1
2

(
K
2
+

U · K
K

)2)
. (4.53)

We assume that the initial state is a momentum eigenstate |U〉, labeled by the dimensionless momentum (4.51) of the test
particle. The algorithm considered in Section 4.3.2 then leads to a pure jumpprocess inU , whose realizations can be obtained
by means of the standard algorithm used for the stochastic simulation of classical Markovian master equations [107]. This
is due to the fact that the deterministic evolution given by Eq. (4.39) only affects the normalization in this case, since both
H and G are only functions of the momentum operator.
According to Eqs. (4.40) and (4.43) thewaiting timedistribution for a jump is characterized by the cumulative distribution

function F (τ ) = 1 − exp
[
−Γ̃ (U) τ

]
in our case, where Γ̃ (U) = M̃clout (U) is the dimensionless version of the loss rate.

According to Eqs. (4.45) and (4.48) it reads

Γ̃ (U) = Γβ
2
√
π
1F1

(
−
1
2
,
3
2
;−U2

)
, (4.54)

with Γβ as in Eq. (4.28) and 1F1 as in Eq. (4.49).
Each jump is characterized by a momentum transfer drawn from the probability density (4.42). In the present case, this

distribution depends only on the modulus K of the momentum transfer and on the cosine ξ = U · K/ (UK) of the angle
between U and K ,

P (K , ξ) =
Γβ

2
√
π Γ̃ (U)

K exp

[
−

(
K
2
+ Uξ

)2]
, (4.55)

while components of the momentum transfer perpendicular to U are uniformly distributed. For each jump one has to draw
random numbers (K , ξ) according to the probability density (4.55) and perform the shift U → U + Km∗/M with K given
by

K = Kξ
U
U
+ K

√
1− ξ 2

U × e
|U × e|

, (4.56)

with e a random unit vector.
Single realizations of the process for different values of the mass ratio are shown in Fig. 4.1 as three-dimensional plots.

One observes that the ratio between the masses of the gas and test particle affects the number of collisions which are
necessary in order to drive the test particle momentum close to its equilibrium value. At smaller mass ratios m/M , an
increasingly large number of collisions is required to thermalize the test particle. The fluctuations around the equilibrium
value, on the other hand, decrease in this limit.



B. Vacchini, K. Hornberger / Physics Reports 478 (2009) 71–120 89

Fig. 4.1. Single quantum trajectory realizations of the scaled momentum U (t), as described in Section 4.3.4. The panels differ in the ratiom/M between
the gas and particle mass, which decreases from top left to right bottom (top row: m/M = 2 and m/M = 1, bottom row: m/M = 0.5 and m/M = 0.1).
One observes that the number of collisions required to get into the thermal cloud increases asm/M gets smaller, while the width of the cloud decreases.

By averaging over a sufficiently large number of realizations one can study the relaxation of the momentum and of the
kinetic energy of the test particle. According to the scaling introduced in Eq. (4.51) the expected equilibrium value 3/ (2β)
of the kinetic energy corresponds to 〈U2〉eq = 3m/ (2M), while the momentum should relax to 〈U〉eq = 0. This behavior is
confirmed well by the numerical simulations reported in Fig. 4.2, where the squared mean momentum 〈U〉2eq and the mean
squared momentum 〈U2〉eq are plotted as a function of time in units of the inverse of the total scattering rate Γβ .
The numerical results in Fig. 4.2 are compared to the analytic predictions Eqs. (4.31) and (4.32) for the meanmomentum

and mean kinetic energy respectively, which are valid form/M � 1. In terms of the dimensionless variable U the solutions
of Eqs. (4.31) and (4.32) read as

〈U〉2ρt = 〈U〉
2
ρ0
e−2ηt (4.57)

and

〈U2〉ρt = 〈U
2
〉eq +

[
〈U2〉ρ0 − 〈U

2
〉eq
]
e−2ηt , (4.58)

with η given by Eq. (4.33). As one observes from Fig. 4.2 the analytic approximation is indeed very good for small mass
ratios m/M � 1, while deviations appear for higher values of the ratio. These changes show up in particular through the
appearance of different decay rates for the momentum and the kinetic energy. For large m/M one can also observe strong
deviations from Gaussian statistics, e.g., by studying the behavior of cumulants of order higher than two [101].

5. The limit of quantum Brownian motion

One of the most important limits of the quantum linear Boltzmann equation is the situation where the test particle has
a much greater mass than the gas particles. In the classical case, this limit turns the linear Boltzmann equation into the
Kramers equation for the description of Brownian motion. As discussed in the following, the situation is quite similar in the
quantum case, where one obtains a quantum Fokker–Planck equation describing quantum Brownian motion.
The term quantum Brownian motion is generally used for master equations intended to phenomenologically describe the

quantum analog of classical Brownian motion [108–111], without accounting for the microscopic details of the underlying
dynamics. In contrast to such models, which usually assume a linear coupling to a harmonic bath, we focus in the following
on the specific situation of a massive test particle suffering collisions with a surrounding Maxwell–Boltzmann gas. The
microscopic expressions of the friction and diffusion coefficients are worked out as a function of the cross section, and we
put into evidence the new quantum terms appearing in the master equation corresponding to the Kramers equation.
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Fig. 4.2. Averages of squared mean momentum (top) and mean squared momentum (bottom) for the mass ratiosm/M = 1 (left) andm/M = 0.2 (right).
The solid line gives the results obtained from the Monte Carlo method, while the dashed lines correspond to the analytic predictions in Eqs. (4.57) and
(4.58), respectively. As one expects, the analytic approximation deteriorates if one increases the mass ratio (left panels). In this regime the decay rates for
the (squared) momentum and the kinetic energy also no longer coincide.

5.1. The classical Kramers equation

In order to discuss the Brownian motion limit of the quantum linear Boltzmann equation it is useful to first recall the
relationship between the classical linear Boltzmann equation and Kramers’ Fokker–Planck equation. It was Rayleigh who
first investigated the limiting case of a very heavy test particle in the collision integral of the linear Boltzmann equation
[112,113]. The resulting equation in this so-called Rayleigh limit, or Brownian limit, is the well-known Kramers equation.
For the homogeneous case and in the absence of an external force it reads as

∂t f (P) = η
3∑
i=1

[
∂

∂Pi
(Pif (P))+

M
β

∂2

∂P2i
f (P)

]
. (5.1)

The friction coefficient η is given by [114,115]

η =
16
3
√
π
m
M
ngas

√
2
βm

∫
∞

0
du u5e−u

2
∫ π

0
dϑ sinϑ (1− cosϑ) σ(ϑ; upβ), (5.2)

with σ(ϑ; upβ) the differential scattering cross-section as a function of the scattering angle and of the momentum of the
gas particle p = upβ .
The derivation of the microscopic expression of the friction coefficient is not easy to find in the literature. We therefore

briefly recall the derivation of (5.1) and (5.2) in Appendix A.3 for the reader’s convenience and for the sake of comparison
with the quantum calculation. The crucial assumption required to derive the Fokker–Planck equation (5.1) from the classical
linear Boltzmann equation (3.1) is that the test particle is much heavier than the gas particles, m/M � 1, and that its
momentum is close to the typical thermal value Pβ =

√
2M/β . The collisions with the gas particles are then characterized

by small momentum and energy transfers. The typical value of the momentum transfer Q is of the order of the momentum
of the colliding gas particles pβ =

√
2m/β , and therefore much smaller than the momentum Pβ of the test particle, while

the energy transfer is on the order of E (Q , P) ≈ 1/β
√
m/M , which is smaller than the thermal energy 1/β . As discussed in

Appendix A.3, under these conditions one can expand f
(
P ′
)
in Eq. (3.1) around P for small momentum transfersQ = P ′−P ,

and arrive at Eq. (5.1) by sorting the orders in anm/M expansion.
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5.2. The quantum Brownian limit

5.2.1. Conditions of validity
The situation ismore complicated in the quantumcase, since one is dealingwith operatorswhose values can be estimated

in a meaningful way only by considering suitable matrix elements. We will show that the quantummaster equation which
corresponds to the classical Fokker–Planck equation is obtained by expanding the scattering kernel up to second order in
the operators X and P. It is important to stress that the result is not equivalent to a direct application of the correspondence
principle on the classical result, which would lead to a master equation which does not generally preserve the positivity of
the statistical operator [116,117].
The expansion can be performed provided the test particle is very massive and not far from thermal equilibrium, that

is to say, close to diagonal in momentum representation. More precisely, the off-diagonal elements 〈P|ρ|P ′〉 may differ
significantly from zero only for 1P :=

∣∣P − P ′
∣∣ .
√
M/β . In the position representation, the validity of the expansion

requires that the motional state exhibits coherences only over a length scale of the order of the thermal wavelength of
the test particle, such that 〈X |ρ|X ′〉 is appreciably different from zero only within a range given by the thermal de Broglie
wavelength λth =

√
2π h̄2 β/M , i.e., for 1X :=

∣∣X − X ′
∣∣ . λth. The small mass ratio m/M � 1 implies in particular that

when the test particle gets close to thermal equilibrium its coherence length of the order of its thermal de Brogliewavelength
is much smaller than the coherence length of the environment given by the thermal wavelength of the gas.

5.2.2. Diffusive limit of the quantum linear Boltzmann equation
In order to study the Brownian motion limit of the quantum linear Boltzmann equation, we start with the incoherent

part given by Eq. (2.2). Using the explicit expression of the Lindblad operators (Eq. (2.3)) with the distribution function (2.6)
of a Maxwell–Boltzmann gas, one obtains the exact expression

Lρ = ngas
m
m2
∗

∫
dQ
Q

∫
Q⊥
dk⊥ µβ

(
k⊥ +

m
m∗

Q
2

)[
f
(
rel
(
k⊥, P⊥Q

)
−

Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)

× eiQ ·X/h̄ exp

(
−β
mP2
‖Q

4M2
− β

mQ · P
4Mm∗

)
ρ exp

(
−β
mP2
‖Q

4M2
− β

mQ · P
4Mm∗

)
e−iQ ·X/h̄

× f Ď
(
rel
(
k⊥, P⊥Q

)
−

Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)

−
1
2

{
exp

(
−β
mP2
‖Q

4M2
− β

mQ · P
4Mm∗

) ∣∣∣∣f (rel (k⊥, P⊥Q )− Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)∣∣∣∣2 , ρ
}]

. (5.3)

In the expansion up to second order in P the contributions from the terms exp
(
−βmP2

‖Q /
(
4M2

))
cancel out, such that they

can be replaced by unity. We further expand the various quantities under the assumption that the change in momentum of
the Brownian particle is small compared to the scales involved in its motional state. More specifically, one has to assume
that for typical values of the momentum transfer Q the relevant matrix elements of the statistical operator vanish unless

Q
h̄
1X � 1 (5.4)

and
βQ
M
1P � 1. (5.5)

These conditions are both satisfied if the Brownian state is close to thermal and M � m, such that m∗ ≈ m, since the
momentum transfer Q is then typically of the order of the momentum pβ =

√
2m/β of the colliding gas particles. This

implies in particular that

Q
h̄
≈

√
m

2π h̄2 β
=
1
λ
gas
th
�
1
λth

.
1
1X

(5.6)

and

βQ
M
≈

√
m
M

√
β

M
�

√
β

M
.
1
1P

. (5.7)

Apart from the exponentials in Eq. (5.3) one also has to expand the scattering amplitude, which appears as an operator-
valued expression. However, for the assumed small mass ratio the argument of the scattering amplitude becomes

rel
(
k⊥, P⊥Q

)
−

Q
2
≈ k⊥ −

m
M

P⊥Q −
Q
2
, (5.8)
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such that the leading term in an expansion in m/M does not depend any longer on P⊥Q . This removes an operator
dependence arising from the scattering amplitude. By further expanding the exponentials involving Q · P in Eq. (5.3) one is
then left with

Lρ = −
ngas
m
1
2

∫
dQ
Q

3∑
j,k=1

QjQk

∫
Q⊥
dk⊥ µβ

(
k⊥ +

Q
2

) ∣∣∣∣f (k⊥ − Q
2
, k⊥ +

Q
2

)∣∣∣∣2

×

[
1
h̄2
[
Xj, [Xk, ρ]

]
+

(
β

4M

)2 [
Pj, [Pk, ρ]

]
+
i
h̄
β

2M

[
Xj, {Pk, ρ}

]]
. (5.9)

We here omitted the term linear in the momentum transfer, since it vanishes upon integration due to the isotropy of the
integrand. By exploiting also the invariance of the scattering cross section under parity transformations the quantity QjQk
can be replaced by δjkQ 2/3.We have thus put into evidence the operator structure of the limiting expression of the quantum
linear Boltzmann equation for the case of quantum Brownian motion,

Lρ = −η
3∑
j=1

[
M
h̄2 β

[
Xj,
[
Xj, ρ

]]
+

β

16M

[
Pj,
[
Pj, ρ

]]
+
i
2h̄

[
Xj,
{
Pj, ρ

}]]
. (5.10)

This equation is still covariant under translations [47,56,93], since the limiting procedure does not spoil the symmetry
properties.

5.2.3. Microscopic expression for the friction constant
We now evaluate the friction coefficient η in Eq. (5.10), which is defined by

η =
β

6
ngas
Mm

∫
dQ Q

∫
Q⊥
dk⊥ µβ

(
k⊥ +

Q
2

) ∣∣∣∣f (k⊥ − Q
2
, k⊥ +

Q
2

)∣∣∣∣2 . (5.11)

The exact expression of η will turn out to be the same as the classical friction coefficient (5.2). Comparing the procedure
followed here with the calculations in Appendix A.3 it turns out that the microscopic derivation of the friction coefficient is
more straightforward in the quantum case. Upon using δ (p · Q ) = δ(p‖)/Q and introducing the new variables pi = p+Q /2
and pf = p− Q /2 the expression for η becomes

η =
β

6
ngas
Mm

∫
dpi

∫
dpf δ

(
p2i − p

2
f

2

) ∣∣pi − pf
∣∣2 µβ (pi) ∣∣f (pf , pi)∣∣2 . (5.12)

As a final step, we introduce the angle ϑ between pi and pf as an integration variable, and recall that the scattering cross-
section is assumed to depend only on pi and ϑ , thus finally obtaining for a Maxwell–Boltzmann gas distribution

η =
16
3
√
π
m
M
ngas

√
2
mβ

∫
∞

0
du u5e−u

2
∫ π

0
dϑ sinϑ (1− cosϑ)

∣∣f (ϑ; upβ)∣∣2 , (5.13)

with u as in (5.2). This expression coincides with the classical result [114], recalled in Eq. (5.2). For the case of a constant
scattering cross-section it reads as

η =
8
3
√
π

m
M
Γβ , (5.14)

which also agrees with the result (4.33) obtained in Section 4.3.

5.3. The master equation of quantum Brownian motion

Putting the master equation for quantum Brownian motion (Eq. (5.10)) in the standard form, it finally reads

Lρ =
1
ih̄
η

2

3∑
j=1

[
Xj,
{
Pj, ρ

}]
−
Dpp
h̄2

3∑
j=1

[
Xj,
[
Xj, ρ

]]
−
Dxx
h̄2

3∑
j=1

[
Pj,
[
Pj, ρ

]]
. (5.15)

The friction coefficient η is given by Eq. (5.13), while Dpp has the meaning of a diffusion coefficient,

Dpp = η
M
β
, (5.16)
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and Dxx is related to Dpp and to η by

Dxx =
(
βh̄
4M

)2
Dpp =

β h̄2

16M
η. (5.17)

This equation admits an exact solution, though the explicit expression is a bit cumbersome [118]. We shall consider it
in Section 7.4, when studying how this master equation describes decoherence effects.
We note that the Caldeira–Leggett master equation, describing the high-temperature regime of the Caldeira–Leggett

model [119–121,111], is related to Eq. (5.15) by neglecting the third term in (5.15), i.e., by setting Dxx = 0. This equation,
which cannot be brought into Lindblad form, is also obtained from the classical Kramers equation if one takes the naive
operator correspondence ∂/∂Pj → Xj/ (ih̄).

5.3.1. The diffusion coefficients and complete positivity
The diffusion coefficient Dpp can also be related to the second moment of the thermal momentum 〈P2〉β = 3M/β

according to

Dpp =
η

3
〈P2〉β , (5.18)

while Dxx, which is sometimes denoted as ‘‘quantum diffusion coefficient’’ or ‘‘momentum localization coefficient’’, can be
written by means of the thermal de Broglie wavelength λth =

√
2π h̄2 β/M of the test particle as

Dxx =
η

32π
λ2th. (5.19)

As discussed in [122–126,29] a necessary and sufficient condition for master equations of the form (5.15) to yield a
completely positive dynamics is

DxxDpp >
η2 h̄2

16
, (5.20)

since only then they can be cast into Lindblad form. This is an important statement, because in many approaches the coeffi-
cients η, Dxx, and Dpp are treated as free, phenomenological parameters. In contrast to that, the derivation from the quantum
linear Boltzmann equation yielded microscopically formulated definitions and relations of the coefficients (5.15)–(5.17). It
is therefore reassuring that Dxx and Dpp from Eqs. (5.17) and (5.16) satisfy Eq. (5.20) with an equality sign.
For a given choice of η and Dpp = ηM/β the coefficient Dxx obtained in Eq. (5.17) therefore takes the minimal value

allowed within the framework of a Lindblad master equation. This implies that the equation of quantum Brownian motion
obtained from the quantum linear Boltzmann equation is as close to the classical Kramers equation as it can possibly be,
within the bounds set by the requirement of complete positivity.

5.3.2. The quantum diffusion term
It was discussed by several authors [122–125,127,29] that the lack of complete positivity of the Caldeira Leggett master

equation can be corrected by adding a ‘‘position diffusion term’’ of the form
[
Pj,
[
Pj, ρ

]]
. In view of the fact that the Brownian

limit of the quantum linear Boltzmann equation yields the minimal correction, it is worth noting that this is not achieved in
other microscopic approaches.
Diòsi’s proposal [44], for instance, leads to an expression of the coefficient Dxx, whose relation to Dpp is not given

exclusively by thermodynamic quantities. Rather, it involves a complicated average over the scattering cross-section. More
refined derivations within the Caldeira Leggett model, on the other hand, which seek for correction terms beyond the high
temperature approximation [128,129], lead to a coefficient Dxx which exceeds the present, minimal value by a factor of 4/3.
As alreadymentioned, the term

∑3
j=1

[
Pj,
[
Pj, ρ

]]
in Eq. (5.15) has no counterpart in the classical Fokker–Planck equation

(5.1). It describes a position diffusion process, which is expected to appear togetherwithmomentumdiffusion, as implied by
the inequality Eq. (5.20). That this is a pure quantum phenomenon is confirmed by the fact that the coefficient Dxx depends
explicitly on h̄; it vanishes in the semiclassical limit h̄→ 0.
Even though the occurrence of this quantum effect leading to momentum localization was predicted in many theoretical

papers, it is still unclear how to observe the effect experimentally. The main difficulty lies in the fact that the position
localization term, with its direct classical analog, dominates under typical experimental conditions, due to its strong
temperature dependence, while the quantum diffusion term vanishes in the limit of high temperatures. Effects of the latter
might show up by either inducing decoherence with respect to the momentum basis, or by looking for corrections to the
classical diffusion coefficient. The last possibilitywas considered for the strong friction limit of the quantummaster equation
[130]. Compared to the classical case, the Einstein diffusion coefficient appears multiplied by a factor 1 + (ηβh̄)2 /16,
involving the ratio between two characteristic times βh̄ for the bath of gas particles and 1/η for the system. The separation
of time scales typical for a Markov description of the dynamics implies that this correction should be extremely small under
typical conditions.
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6. Matter wave optics in gaseous samples

So far, we mostly dealt with features of the quantum linear Boltzmann equation that are also shared by its classical
counterpart. In particular, its symmetry and relaxation properties, as well as the existence of the stationary solution, are
already described by the behavior of the momentum populations, i.e., of the diagonal matrix elements of Eq. (2.7). In the
following two sections, wewill now consider properties of the quantum linear Boltzmann equation that becomemanifest in
interference phenomena,where it is decisive that themotion of the test particlemay be in a coherently delocalized,wavelike
state.
An important quantum effect that one expects to be described by Eq. (2.2) is the dynamical transition of an initially

delocalized superposition state into an incoherent, particlelike mixture. Such decoherence phenomena are described
in Section 7. But before that, we focus on the dynamics described by the coherent part of the quantum linear Boltzmann
equation and its loss term. They play an important role in experiments involving spatially separate beams.
The claim that massive particles can exhibit wave-like behavior is one of the central predictions of quantummechanics;

it is confirmed experimentally with neutrons [131,132], atoms [133,134,35], and even complex molecules [135]. In such
experiments, the de Brogliewave length λdB = h/ (MV ) of thematterwaves is usuallymuch shorter than the scale of change
of the potential produced by the gratings and collimation slits, which act as optical elements. It is then often permissible to
neglect diffraction phenomena by describing the matter wave in terms of well defined beams, which are coherently split
and rejoined by means of interference gratings. The effect of an additional external potential on those beams can then be
accounted for, in complete analogy to the optical case, by introducing an index of refraction.
In a number of Mach–Zehnder-type interference experiments a truly macroscopic separation of the interfering beams

was achieved. This makes it possible to perform experiments where the interfering particles interact with an external
system in just one arm of the interferometer. The modification of the interference fringe pattern then provides sensitive
information of the strength of interaction. Its theoretical description requires the use of quantum kinetic equations if the
interaction is due to a dilute background gas, as realized in experiments with sodium and lithium atoms [37,136,38], or
due to a homogeneous sample of thermalized condensed matter, as in the experiments performed with the perfect crystal
neutron interferometer [137,132].

6.1. The gas induced energy shift

The presence of a background gas manifests itself not only in the incoherent part L of the quantum linear Boltzmann
equation, but also in a modified Hamiltonian H = P2/ (2M) + Hn (P) appearing in its coherent part. The additional term
Hn (P), which has been neglected so far, describes the modification of the free matter wave dispersion relation due to the
coherent interactionwith the background gas. It becomes observable in the abovementionedMach-Zehnder interferometers
as a gas-induced phase shift.
According to Eq. (2.5), derived in [32], the energy shift Hn (P) is related to a ‘‘forward scattering process’’ which does not

change themomenta of the gas and the test particle. The forward scattering amplitude f0 (p) ≡ f (p, p) appears in a thermal
average over the momentum distribution of the gas,

〈f0 (P)〉µ =
∫
dpµ (p) f (rel (p, P) , rel (p, P)) , (6.1)

allowing us to write more compactly

Hn (P) = −2π h̄2
ngas
m∗
Re〈f0 (P)〉µ. (6.2)

To observe the effect of Eq. (6.2) an experimental situation is required where the interfering matter wave beams are
strongly collimated and directed into narrow apertures. In this case any proper, momentum changing collision due to a
dilute background gas will unavoidably lead to a loss of the particle. This implies that all particles arriving in the detector
experienced atmost the effect of ‘‘forward scattering’’. It can be observed as a phase shift in the interference pattern, as done
in the experiments [37,136,38].
If the particles do not get lost, theirmotional state ismodified atmost coherently in the described experimental situation.

The purity of the matter waves impinging at the detector therefore remains unchanged by the presence of the background
gas, rendering a description by means of a wave equation possible. The effect of particle loss can be accounted for by an
attenuation of the amplitude, as arguedbelow in Section 6.3. Incidentally, the loss term introduced in Eq. (2.13) anddiscussed
in Section 4.3.3, can be related to the imaginary part of Eq. (6.1). This fact naturally leads to the introduction of an optical
potential.

6.2. The optical potential

It is helpful to express the damping of the wave amplitude due to collisional losses in term of the forward scattering
amplitude. Let us start from Eq. (3.1) for the loss term in the classical linear Boltzmann equation. Switching to center-of-
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mass variables with respect to p′ and P ′, denoting k = rel
(
p′, P ′

)
and K = p′ + P ′ one obtains

Mclout (P) =
ngas
m∗

∫
dk k

∫
dpµ (p) δ (k− |rel (p, P) |)

∫
dΩk σ (k, rel (p, P)) . (6.3)

We also introduce the total scattering cross-section

σtot (p) =
∫
dΩn σ (pn, p) , (6.4)

where n is a unit vector with dΩn the associated solid angle element. By exploiting the optical theorem [138],

σtot (p) =
4π h̄
p
Im [f (p, p)] , (6.5)

and by using the thermal average defined in Eq. (6.1), one finds that the loss term takes the simple form

Mclout (P) =
ngas
m∗
4π h̄Im 〈f0 (P)〉µ . (6.6)

Recalling Eqs. (2.7) and (6.2) the quantum linear Boltzmann equation can therefore be written as

d
dt
ρ = −

i
h̄

[
H0 − 2π h̄2

ngas
m∗
Re〈f0 (P)〉µ, ρ

]
−
1
2

{
ngas
m∗
4π h̄Im〈f0 (P)〉µ, ρ

}
+

∫
dQ

∫
Q⊥
dk⊥ eiQ ·X/h̄L (k⊥, P;Q ) ρLĎ (k⊥, P;Q ) e−iQ ·X/h̄. (6.7)

This suggests to introduce a non-hermitian operator, often denoted as optical potential, of the form

Vopt (P) = −2π h̄2
ngas
m∗
〈f0 (P)〉µ . (6.8)

One thus arrives at a compact and suggestive expression for the quantum linear Boltzmann equation

d
dt
ρ =

1
ih̄
[H0, ρ]+

1
ih̄

(
Vopt (P) ρ − ρV

Ď
opt (P)

)
+

∫
dQ

∫
Q⊥
dk⊥ eiQ ·X/h̄L (k⊥, P;Q ) ρLĎ (k⊥, P;Q ) e−iQ ·X/h̄. (6.9)

The first three terms at the right-hand side describe a coherent dynamics. They preserve the pure states, but not their
normalization, due to the fact that the optical potential is not self-adjoint. The completely positive mapping expressed by
the last term describes an incoherent contribution. It transforms pure states intomixtures and accounts for the preservation
of the trace.

6.3. Index of refraction

As described above, typical matter wave interference experiments are characterized by a well-collimated, stationary
beam of particles, with a momentum centered around a reference value P = h̄K in the longitudinal direction. One can then
exploit the formal analogy between the Schrödinger equation and the Helmholtz wave equation [131,133,135] in order to
introduce an index of refraction for matter waves.
For the case of a constant, complex potential,

Vopt = −2π h̄2
ngas
m∗
〈f0 (h̄K )〉µ , (6.10)

the stationary Schrödinger equation takes the form

∇
2ψ (r)+

2M
h̄2

[
E − Vopt

]
ψ (r) = 0. (6.11)

By analogy with the Helmholtz equation one can introduce a wave number associated to the propagation of the scalar field
ψ (r)with energy E,

K ′ =

√
2M
h̄2

[
E − Vopt

]
. (6.12)

The effect of the optical potential on the dynamics can thus be equivalently described by an effective index of refraction

n =
K ′

K
=

√
1−

Vopt
E
, (6.13)
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where K =
√
2ME/h̄ is the wave number associated to the de Broglie wavelength of the tracer particle. Since the optical

potential can be non-Hermitian in general, the index of refraction is in general complex.
In the situations described above, where the last, incoherent term of Eq. (6.9) can be neglected, thematterwave dynamics

can thus be effectively described by a wave equation with the optical potential equation (6.8). The beam state may then be
equivalently expressed as awave propagation in amedium characterized by the refractive index (6.13), in complete analogy
to the optical case.
For dilute gases the complex index of refraction is very close to unity, such that

n ≈ 1+ 2π
ngas
K 2
M
m∗
〈f0 (h̄K )〉µ . (6.14)

Its real part

n1 = 1+ 2π
ngas
K 2
M
m∗
Re 〈f0 (h̄K )〉µ , (6.15)

describes the phase shift due to the background gas, while its imaginary part

n2 = 2π
ngas
K 2
M
m∗
Im 〈f0 (h̄K )〉µ

=
Moutcl (h̄K )
2h̄K 2/M

, (6.16)

determined by the loss term of the classical linear Boltzmann equation, accounts for the attenuation of the coherent beam.
We stress that this analysis in terms of a refractive index relies on neglecting the last term in Eq. (6.9). This is only

valid under very particular experimental conditions. These might be realized in a Mach–Zender interferometer provided
just one of the spatially separated paths interacts with a background gas and particles whose momentum has changed due
to this interaction are blocked by the interferometer apertures. In this case only the part of the incoming beam scattered
in the forward direction contributes to the signal collected at the outlet of the interferometer. Note in particular that the
preservation of the trace implies that the loss and gain term do have the sameweight, such that one is not allowed to neglect
the last term of Eq. (6.9) because of its smallness with respect to the anticommutator term.
At variance with the typical intuition developed for electromagnetic waves the imaginary part of the index of refraction,

which describes the exponential decay of the beam intensity, does not involve true absorption. The tracer particles are
obviously not absorbed by the background gas, but the coherent collimated part of the beam entering the interferometer and
responsible for the final interference pattern gets reduced. This is the reasonwhy the reduction of intensity in the signal does
not lead to a corresponding reduction of the visibility as in the case of collisional decoherence [39]. Over a distance L travelled
with velocity V = P/M the reduction factor is given by the exponential exp

(
−Moutcl (P) L/V

)
. Comparing this quantity with

the damped intensity exp (−2n2KL) of an electromagnetic wavewithwavenumber K in amedium characterized by an index
of refraction with imaginary part n2 gives indeed back Eq. (6.16).
Specializing to a rotationally invariant scattering amplitude, f

(
pf , pi

)
= f (ϑ; Erel), with ϑ the angle between incoming

and outgoing relative momentum, and Erel = p2i /2m∗ the kinetic energy in the center of mass, one can explicitly evaluate
the thermal average introduced in Eq. (6.1)

〈f0 (P)〉µ =
2
√
π

∫
∞

0

dv
vβ

v

V
sinh

(
2vV
v2β

)
exp

(
−
v2 + V 2

v2β

)
f
(
0;
m∗v2

2

)
. (6.17)

Here V = P/M is the velocity of the interfering particle and a Maxwell–Boltzmann distribution (2.6) is assumed with
vβ = pβ/m.
This expression, derived here from the quantum linear Boltzmann equation [32], agrees with the formula in [139,140],

whichwas recently obtained along a very different line of thought.While it has been used in themost recent interferometric
experiments with lithium atoms [38], it deviates from previous theoretical results [141,142] used for the analysis of the
earlier experiments [37,136,143]. The difference lies in the thermal averaging procedure employed, and the averages in
Eqs. (6.1) and (6.17), which follow naturally from the linear Boltzmann equation, should be considered correct, as also
pointed out in [140]. We note that still different methods of deriving a gas induced index of refraction were recently
presented in [79,144].
It was already emphasized that the notion of a gas induced index of refraction can only be applied to a restricted set of

experimental situations. One may describe phase shift and particle loss phenomena with this concept, but it does not apply
to proper decoherence phenomena, where the purity of themotional state in the beams gets dynamically reduced due to the
interaction with a background gas. As described in the following section, we have to return to a density matrix description
in order to account for such effects.
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7. Collisional decoherence of matter waves

The concept of environmental decoherence [145–149,29] is often drawn upon to explain how the emergence of classical
behavior comes about if physical systems get larger and more complex. Though formulated in the same framework of
open quantum systems also used to describe friction and thermalization, decoherence should be distinguished from such
dissipative phenomena since it usually takes place on much shorter time scales and even in the absence of relaxation
processes with a classical analogue.
The main point is to acknowledge the crucial role played by the quantum correlations arising between the system

and environmental degrees of freedom. The combined state of system and environment is no longer separable after the
interaction, resulting in a loss of purity in the reduced quantum state, which is obtained by disregarding the environmental
state by means of a partial trace. In a complementary view, which highlights the quantum aspects of the correlation, one
may view the interaction as constituting an information transfer from the system to the environment.
In our case of a quantum test particle, collisionswith a background gas have the effect of unsharp positionmeasurements

because the scattered state of a gas particle carries away some information on the position of the tracer which would be
available, in principle, to an outside observer. One therefore expects that if the test particle is initially in a superposition of
two positions, as in an interferometer, the coherence of this state will be reduced the more the better a typical scattering
event can distinguish between the two positions. Once the coherence expressed by the off-diagonal elements in the position
representation has vanished, the motional state will be indistinguishable from a classical mixture.
In the followingwe discuss how the dynamics of such collisional decoherence phenomena are described by the quantum

linear Boltzmann equation. We start with the case of pure collisional decoherence, which is present even in the limit of
an infinitely massive particle, where no dissipation takes place. We also provide the quantitative connection to recent
interference experiments [34], where decoherence due to a background gas was observed as a loss of visibility in the
quantum interference fringes. After that, we discuss the related topics of the loss of coherence in case of momentum
superpositions and in the Brownian motion limit.

7.1. The limit of a massive tracer particle

The incoherent part of the quantum linear Boltzmann equation (2.2) simplifies if the test particle is much more massive
than the gas particles. The function L from Eq. (2.3), which provides the details of the collisional interaction, is then replaced
by

L (p, P;Q )
M�m
→

√
ngas
mQ
f
(
p⊥Q −

Q
2
, p⊥Q +

Q
2

)√
µ

(
p⊥Q +

Q
2

)
. (7.1)

Hence, in this limit the Lindblad operators no longer depend on the test particle momentum P. One can now perform the
dk⊥-integration in Eq. (2.2), such that, recalling Eqs. (2.8) and (2.9), one gets the much simpler expression

Lρ = −

∫
dQ Mclin (Q ;Q )

[
ρ − eiQ ·X/h̄ρe−iQ ·X/h̄

]
. (7.2)

Here the classical rate Mclin (Q ;Q ) must be evaluated with m∗ → m. It gives the rate for a particle with vanishing mo-
mentum P = 0 to experience a momentum change of Q .
It is now helpful to introduce the probability distribution of the possible momentum transfers according to

P (Q ) =
Mclin (Q ;Q )∫
dQ ′Mclin (Q ′;Q ′)

. (7.3)

The normalization, i.e., the total rate of collisions is given by the classical loss rate known from Eq. (2.12),

Γtot ≡ Mclout (0) =
∫
dQ ′Mclin

(
Q ′;Q ′

)
. (7.4)

It is determined by the total scattering cross section and therefore always finite.
We can thus write Eq. (7.2) in the compact form [48]

Lρ = −Γtot

∫
dQ P (Q )

(
ρ − eiQ ·X/h̄ρe−iQ ·X/h̄

)
. (7.5)

It puts into evidence that the incoherent dynamics is simply given by momentum kicks

ρ → eiQ ·X/h̄ρe−iQ ·X/h̄, (7.6)

characterized by a random momentum transfer Q , which is distributed according to Eq. (7.3). As discussed below, Eq. (7.5)
induces an exponential decay of the off-diagonal elements in position representation, i.e., a ‘‘localization’’ of a spatial
superposition into a statistical mixture.
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A useful explicit expression is obtained from Eq. (7.2) by introducing the variables pi ≡ pni = p+ Q /2 and pf ≡ pnf =
p− Q /2,

Lρ = −ngas

∫
∞

0
dp ν̄ (p)

p
m

∫
dΩni

4π

∫
dΩnf

∣∣f (pnf , pni)∣∣2 [ρ − ei(pi−pf )·X/h̄ρe−i(pi−pf )·X/h̄] , (7.7)

where ν̄ (p) = 4πp2µβ (pn) is the Maxwell distribution of the momentum magnitudes in the gas.
Eq. (7.7) corresponds to the result of Gallis and Fleming [43], once amended for an incorrect factor of 2π . This little

flaw, which is however experimentally relevant, was not due to a simple calculational error, but goes back to an incorrect
treatment of a ‘‘square of δ-functions’’ in [40]. Such a strictly ill-defined expression arises if asymptotic scattering theory
is naively incorporated into a dynamic description. One can fix the factor either by circumventing the S-matrix in a weak-
coupling treatment [46,150,54,49,77] or by formally modifying the S-matrix such that asymptotically outgoing states are
not transformed [54,66,32].
The equation of pure collisional decoherence discussed so far was obtained by the naive limitM →∞ of the quantum

linear Boltzmann equation. As a result, the incoherent part Eq. (2.2) depends only on the position operator X of the test
particle. Also in the coherent part of Eq. (2.1) the dependence on P gets lost in this limit, since the kinetic energy P2/ (2M)
vanishes, while the gas induced energy shift Hn (P) turns into an (unobservable) constant. It follows that the dynamics of
the momentum distribution of the test particle state remains frozen under Eq. (7.7).
The full quantum linear Boltzmann equation provides of course a much more refined description of the dynamics.

However, for a massive test particle and at short time scales, where the effects of an energy exchange between particle
and gas are negligible, an improved version of Eq. (7.2) may already be sufficient in many situations. A natural improvement
is suggested by the fact that the loss term (7.4) is evaluated for a test particle at rest.
Provided that the test particle is very massive, such that its momentum varies slowly on the short time scale of

decoherence, it may be allowed to replace the momentum operator in Eq. (2.2) by its initial expectation value P0 = 〈P〉ρ0 .
This leads to an equation very similar to Eq. (7.2),

Lρ = −

∫
dQ Mclin (P0 + Q ;Q )

[
ρ − eiQ ·X/h̄ρe−iQ ·X/h̄

]
. (7.8)

Introducing the normalized probability density

PP0 (Q ) =
Mclin (P0 + Q ;Q )∫
dQ ′Mclin (P0 + Q ′;Q ′)

, (7.9)

one arrives at

Lρ = −Γtot (P0)
∫
dQ PP0 (Q )

[
ρ − eiQ ·X/h̄ρe−iQ ·X/h̄

]
, (7.10)

where the rate Γtot (P0) = Mclout (P0) gives the classical rate of collisions experienced by a test particle with momentum P0.
The difference with respect to Eq. (7.5) lies in the residual, parametric dependence on the momentum of the test particle

P0, leading to a more realistic estimate for the total scattering rate Γtot (P0) and thus of collisional decoherence. This is of
relevance for the quantitative description of experiments on gas-induced decoherence [39,55,151,106].
It is clear that Eq. (7.10) cannot account for the long time dynamics of momentum and kinetic energy, since the

momentum of the test particle here only appears as a classical label. As far as the short time dynamics is concerned we
note that the corresponding random momentum transfers (7.6) are here incorporated in full, without the assumption
|Q1X/h̄| � 1, used in Section 5 when considering the limit of quantum Brownian motion.

7.2. Decoherence in position

7.2.1. The exact solution of pure decoherence
In position representation Eq. (7.5) takes the simple form

〈X |Lρ|X ′〉 = −Γtot
[
1− ΦP

(
X − X ′

)]
〈X |ρ|X ′〉, (7.11)

where ΦP (X) denotes the Fourier transform of the probability density (7.3) of momentum transfers, i.e., its characteristic
function [152]

ΦP (S) =
∫
dQ P (Q ) eiQ ·S/h̄. (7.12)

The solution of the master equation dρ/dt = Lρ then shows an exponential decay of the position off-diagonal elements,

〈X |ρt |X ′〉 = e−Γtot[1−ΦP (X−X ′)]t〈X |ρ0|X ′〉. (7.13)

The position density is not affected, 〈X |ρt |X〉 = 〈X |ρ0|X〉, sinceΦP (0) = 1.
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The function ΦP

(
X − X ′

)
describes the effect of a single collision event on the statistical operator in the position

representation, 〈X |ρ|X ′〉 → ΦP

(
X − X ′

)
〈X |ρ|X ′〉. It is sometimes called the ‘‘decoherence function’’ since it amounts to

the overlap of two scattered gas particle states displaced by X −X ′, which quantifies to what extent the gas can distinguish
between the two positions.
It follows from Eq. (7.3) that in terms of the scattering amplitude it is explicitly given by

ΦP (S) =
ngas
Γtot

∫
dp ν̄ (p)

p
m

∫
dΩni

4π

∫
dΩnf

∣∣f (pnf , pni)∣∣2 eip(ni−nf )·S/h̄. (7.14)

In the case of isotropic scattering, the decoherence effect depends only on the distance S =
∣∣X − X ′

∣∣ of the positions con-
sidered. It then takes the form

ΦP (S) = 2π
ngas
Γtot

∫
dp ν̄ (p)

p
m

∫ 1

−1
d (cos θ)

∣∣∣∣f (cos θ; p22m
)∣∣∣∣2 sinc(2p sin(θ2

)
S
h̄

)
, (7.15)

with θ the scattering angle and sinc (x) = sin (x) /x. Due to the infinite test mass the momentum transfer is given by the
expression Q = 2p sin (θ/2), which appears in the argument of the sinc-function. The effect of this function in Eq. (7.15) is
thus to suppress position coherences the more the better the scattered state with its resolving capacity h̄/Q can distinguish
between two possible scattering positions with distance S.
The second ingredient to Eq. (7.13) is the total rate of collisionsΓtot defined in Eq. (7.4). The effect and the rate of collisions

are thus fixed by ΦP and Γtot separately, which can be of great importance in physical applications. We note in particular
that the function

Ψ (S, t) = e−Γtot[1−ΦP (S)]t (7.16)

appearing in Eq. (7.13) is itself a characteristic function, namely that of a compoundPoissonprocess [153,152]. Such a process
differs from a simple Poisson process in that the jump events, here the collisions, do not have a fixed size, while the waiting
time distribution between the events is Poissonian. Rather, the jump size is itself a random variable, here the momentum
transfer in a single collision, which is distributed according to P (Q ).
This physical picture behind the collisional dynamics is best seen by expanding the exponential in Eq. (7.13), which

corresponds to a jump expansion of the solution of the master equation

〈X |ρt |X ′〉 =
∞∑
n=0

pn (t)ΦnP
(
X − X ′

)
〈X |ρ0|X ′〉. (7.17)

Here pn (t) = e−Γtott (Γtott)n /n! is the probability to have n collisions during the time t , given by the Poisson distribution
with parameterΓtot. The associated effect is themultiplication of the initial statistical operator in the position representation
with the n-th power of the decoherence functionΦP for the effect of a single collision.
Eq. (7.13) is a particular case of a more general class of solutions of master equations for the description of decoherence,

applying in the presence of translational invariance. In the general case, the characteristic function Ψ (X, t) corresponding
to Eq. (7.16) is the characteristic function of a Lévy process, of which compound Poisson processes are a particular example
[29,152]. This result can be obtained considering the general structure of translation–covariantMarkovianmaster equations
obtained by Holevo, and considering its limiting expression relevant for the description of decoherence. This provides a
common theoretical framework for the description of quite different decoherence experiments [154]. The solution of such
master equations reads

〈X |ρt |X ′〉 = Ψ
(
X − X ′, t

)
〈X |ρ0|X ′〉, (7.18)

and due to the general properties of characteristic functions it naturally describes decoherence effects. In fact, it is a defining
property of characteristic functions that Ψ (0, t) = 1, while |Ψ

(
X − X ′, t

)
| 6 1, such that diagonal matrix elements are

not affected, while off-diagonal matrix elements are generally suppressed. In particular, for the characteristic function of a
Lévy process one has limt→∞ Ψ

(
X − X ′, t

)
= 0 for X 6= X ′ [153], such that all coherences are completely lost with elapsing

time. For fixed interaction time t , on the other hand, a variety of position dependencies are possible, from an exponential
loss of coherence to revivals ending up with a constant decoherence rate. All such behaviors are comprised in the general
expression of the characteristic function of a Lévy process, provided by the Lévy–Khintchine formula, one of the beautiful
results of probability theory [152].

7.2.2. Experimental tests
One of the most important experimental verifications of the quantum linear Boltzmann equation comes from its

application to the quantitative explanation of collisional decoherence observed in near-field interferometry experiments
with large molecules [39,55]. In such experiments a velocity selected molecular beam from a thermal source passes an
interferometermade up ofmaterial gratings. After flooding the vacuum chamberwith various background gases one records
the reduction of visibility of the interference fringes as a function of the gas pressure. This decrease of the interference
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contrast is directly related to the loss of coherence in the position off-diagonal elements in the state of motion, which was
discussed in the previous section.
An important requirement for the experimental observation of collisional decoherence is that the interfering molecule

is not removed from the interferometer by the interaction with the background gas. As described in Section 6, such a loss
process would lead to a reduction of the count rate, but it would not diminish the interference contrast of the detected
molecules. This is the reason why relatively heavy C70 fullerene molecules were required to observe the effect in [39,55],
while the Mach-Zehnder-type atom interferometers realized so far cannot observe collisional decoherence with room
temperature gases. We note that the loss of visibility in a sodium atom interferometer reported in [155] is therefore due to
a different mechanism, namely the gas-induced noise at the preparation, i.e., the slit collimation and at the detection stage
of the interferometer beam. The atomic motion between preparation and detection is there coherent, in contrast, such that
this gas-induced effect is not described by the theory of Section 7.2.1.
Due to the largemass of the interfering particles and the short time of flight in [39,55], one is allowed to neglect relaxation

effects in the quantum description of the interfering test particle. The limit of Section 7.1 thus applies, and one expects in
particular that the dynamics is correctly described by Eq. (7.10), which accounts for the finite velocity of themolecular beam
with respect to the thermal gas. In the position representation the equation reads as

〈X |Lρ|X ′〉 = −Γtot (P0)
[
1− ΦPP0

(
X − X ′

)]
〈X |ρ|X ′〉, (7.19)

where P0 is now the mean momentum of the incoming fullerenes. It determines the rate Γtot (P0) = Mclout (P0), as well as
the decoherence function

ΦPP0
(X) =

∫
dQ Mclin (P0 + Q ;Q ) eiQ ·X/h̄.

The classical rateMclin, defined in Eq. (2.10), includes the differential scattering cross section for collisions between fullerene
and gas molecules.
The interaction between the gas molecules and the fullerenes is well described in the experiment by the isotropic part of

the London dispersion force. It corresponds to a potential of the formU (r) = −C6/r6, with an interaction strength C6, which
can be calculated for different gases [156,39]. The associated total scattering cross-section can be obtained in a semiclassical
calculation [157]; it depends on the relative velocity as

σtot (v − V ) =
π2

sin (π/5)Γ (2/5)

(
3πC6
8h̄

)2/5
|v − V |−

2
5 . (7.20)

A quantitative description of the general loss of coherence in a near field interferometer due to master equations of the
form (7.10) was presented in [151]. However, the situation is somewhat simpler in the experiment described in [39,55]
since the background gases are at room temperature. This implies that for practically all positions in the interferometer the
collisions are characterized by large momentum transfers Q in the sense that Q � h̄/S, if S denotes the separation of the
interference paths. As follows from Eq. (7.15), already a single collision then suffices to completely reduce the off-diagonal
elements of the position representation, ΦP (S 6= 0) ' 0, while ΦP (0) = 1. Only those molecules then contribute to the
contrast of the interference pattern which experienced no collisions, while the others contribute only to the unstructured
background.
In this situation the loss of visibility is determined only by the collision rate Γtot (P0) in Eq. (7.19), determined by the loss

term Γtot (P0) = Mclout (P0) in the linear Boltzmann equation [106,79], according to the formula [39]

V = V0e−Γtot(P0)t . (7.21)

Here V0 is the visibility in the absence of the gas and t is the time of flight of the fullerenes crossing the interferometer.
It is therefore sufficient to evaluate the collision frequency Γtot (P0), which is best described by an effective scattering

cross-section

Γtot (P0) = ngas
P0
M
σeff(P0). (7.22)

The expression σeff (P0) for a total cross-section of the form Eq. (7.20) has already been presented in Section 4.3.3. According
to Eq. (4.47), evaluated for a = −2/5, we have

Γtot (P0) = ngas
4πΓ (9/10)
5 sin (π/5)

(
3πC6
2h̄

)2/5
v
3
5
β 1F1

(
−
3
10
,
3
2
;−

(
P0
Mvβ

)2)
. (7.23)

In the experiment, the beam velocity is small compared to the thermal velocities of the gas, P0/
(
Mvβ

)
� 1. The expression

can then be approximated as [39,55,106]

Γtot (P0) = ngas
4πΓ (9/10)
5 sin (π/5)

(
3πC6
2h̄

)2/5
v
3
5
β

[
1+

1
5

(
P0
Mvβ

)2
+ O

((
P0
Mvβ

)4)]
. (7.24)
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Fig. 7.1. Experimentally observed visibility of the interference fringes of C70 fullerenes in an argon gas at room temperature, as a function of the gas
pressure (dots). The solid line gives the prediction of decoherence theory. It is based on Eq. (7.26), but also accounts for gas-induced modifications of the
particular gravitational velocity selection scheme employed in the experiment (Figure taken from [55]).

One can introduce a critical gas pressure for the onset of decoherence in terms of the effective scattering cross-section
introduced in Eq. (7.22),

p0 =
MkBT

P0σeff (P0) t
. (7.25)

One therefore expects an exponential loss of visibility of the interference fringes with growing gas pressure according to

V = V0e−p/p0 . (7.26)

This behavior was observed in the experiments [39,55], in quantitative agreement with theory, see Fig. 7.1.
Finally, we mention that the reduction of interference contrast due to momentum exchange effects was the subject of

several other experimental [158–163] and theoretical [151,164,154,165–167] investigations.While the physicalmechanism
is here the scattering, absorption, or emission of photons, the dynamic effect on themotional state of the interfering particle
can still be described with a master equation of the form (7.5) and (7.11). All that needs to be done is to adjust the rate of
eventsΓtot according to the physical mechanism considered, as well as the decoherence functionΦP for the effect of a single
event [154]. Studies of other environmental decoherence effects in interferometers were presented in [168–171]. These are
based on master equations characteristic of linear coupling models, which are of the form of the Brownian motion master
equation discussed in Section 7.4.

7.3. Decoherence in momentum

As described in the previous section, it is relatively simple to evaluate and to experimentally test the decay of coherence in
superpositions of position eigenstates. The analogous case of superpositions of momentum eigenstates is more involved. On
the theoretical side, the momentum operator of the test particle can no longer be considered a classical label in the limiting
expression of the quantum linear Boltzmann equation, but one deals with amaster equation for the operators X and P of the
test particle. From the experimental point of view, it is difficult to conceive experiments testing decoherence in momentum
space. The source must generate a state showing longitudinal momentum coherences, which requires a non-stationary
beam preparation, as well as an interferometric setup permitting to monitor the presence of such coherences [172,173].
This is complicated by the fact that the decoherence in position discussed in Section 7.2 is always present and may quickly
dominate. It affects superposition states of different momenta, because the free evolution of such states unavoidably leads
to a superposition of spatially separated wave packets.
In order to study the decoherence dynamics of momentum superpositions we exploit the quantum trajectory algorithm

presented in Section 4.3.2, taking as initial condition a coherent superposition of momentum eigenstates. We start with an
initial state of the form

|ψ (0)〉 =
N∑
i=1

αi (0) |Ui (0)〉, (7.27)

where the complex amplitudes αi satisfy the normalization condition
∑N
i=1 |αi (0)|

2
= 1. As discussed in Section 4.3.2, the

state at a later time t will still be in a superposition of N momentum eigenstates, but with different amplitudes αi (t) and



102 B. Vacchini, K. Hornberger / Physics Reports 478 (2009) 71–120

scaled momenta Ui (t)

|ψ (t)〉 =
N∑
i=1

αi (t) |Ui (t)〉. (7.28)

Given a jump into the state Eq. (7.28) occurring at time t , the deterministic time evolution described by Eq. (4.39) only
modifies the amplitudes,

αi (t + τ) =
e−iE(Ui(t))τ/h̄e−Γ̃ (Ui(t))τ/2√
N∑
j=1

∣∣αj (t)∣∣2 e−Γ̃ (Uj(t))τ αi (t) , (7.29)

with E (U) = Mv2βU
2/2 the kinetic energy. The cumulative distribution function F (τ ) of Eq. (4.40) for the waiting time until

the next jump is now given by a sum of exponential functions,

F (τ ) = 1−
N∑
j=1

∣∣αj (t)∣∣2 e−Γ̃ (Uj(t))τ . (7.30)

The jump modifies amplitudes and momenta as

Ui (t)→ Ui (t)+
m∗
M

K (7.31)

αi (t + τ)→ fiαi (t + τ)

with

fi =
e−(K/2+K ·Ui(t))

2/2√
N∑
j=1

∣∣αj (t)∣∣2 e−(K/2+K ·Uj(t))2 . (7.32)

While all momentum eigenstates in the superposition are shifted by the same amount, their different amplitudes are
modified in different ways. The momentum transfer K characterizing the jump is distributed according to Eq. (4.42) with
the state |ψ (t)〉 given by Eq. (7.28). The probability density Eq. (4.55) is therefore replaced by the mixture

P̃ (K , ξ) =
N∑
i=1

λiP (K , ξi) , (7.33)

where the weights λi are given by

λi =
|αi (t)|2 e−Γ̃ (Ui(t))τ Γ̃ (Ui (t))
N∑
j=1

∣∣αj (t)∣∣2 e−Γ̃ (Uj(t))τ Γ̃ (Uj (t)) .
The probability density P (K , ξ) is defined in Eq. (4.55) and ξi = Ui · K/ (UiK) is the cosine of the angle between K and
Ui (t).
We now specialize to a superposition of two momentum eigenstates with equal amplitudes α1 (0) = α2 (0) = 1/

√
2,

|ψ (0)〉 =
1
√
2
(|U1 (0)〉 + |U2 (0)〉) , (7.34)

and evaluate the temporal behavior of the matrix elements in position representation. The off-diagonal elements provide a
measure for the coherence in the state of motion

C (t) = E
[∣∣∣∣ α1 (t) α∗2 (t)α1 (0) α∗2 (0)

∣∣∣∣] . (7.35)

This quantity is plotted in Fig. 7.2 for the choice U1 (0) = −U2 (0) = U0, such that the distance in momentum space is given
by |U1 (0)− U2 (0)| = 2U0. One observes an exponential decay in time in analogy to the behavior (7.13) of the position
coherences.
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Fig. 7.2. Semilogarithmic plot of the coherence C (t) of a superposition of momentum eigenstates, as defined in Eqs. (7.34) and (7.35). One observes a clear
exponential decay, in analogy to the behavior of position superpositions. The plot corresponds to a constant cross section with U0 = 4 and a mass ratio of
m/M = 1; the time is given in units of the inverse total scattering rate (4.28).

Based on this observation we now assume that the decay has the generic form

C (t) = e−Λ(U0)t . (7.36)

We proceed to evaluate how the decay constantΛ depends on the value U0 characterizing the initial momentum separation
and to compare the analytic result with the simulations.
The quantum trajectory method presented in Section 4.3.2 is equivalent to solving the master equation. One can thus

assess the decay constant by noting that for short times C (t) either does not change, with a probability 1 − Γ̃ (U0) t , or it
becomes f1f2 if a jump takes place. Neglecting higher order jump processes one thus has

C (t) ≈ 1−Λ (U0) t ≈ 1− Γ̃ (U0) t + Γ̃ (U0) t〈f1f2〉, (7.37)

where 〈· · ·〉 denotes the average over the different possible momentum transfers. Exploiting the expression Eq. (7.32) and
averaging with respect to Eq. (7.33) one comes to

Λ (U0) ≈ Γ̃ (U0) (1− 〈f1f2〉) . (7.38)

For the case of a constant scattering cross section, it takes the explicit form

Λ (U0) = Γ̃ (U0)− Γβ
erf (U0)
U0

, (7.39)

with Γβ defined in Eq. (4.28). As shown in Fig. 7.3, this prediction is in very good agreement with the values of Λ (U0)
extracted from the numerical simulations for various initial values of the momentum U0. Similar results can be obtained for
different scattering cross-sections, the degree of accuracy of the analytic formula depending on the considered scattering
cross-section.
A direct comparison of relaxation and decoherence rate in momentum space can be made for the case m/M � 1 and

assuming that themomentumseparation is large compared to the thermalmomentumof the gasU0 � 1. The relaxation rate
is then given by η as in Eq. (4.33), while the decoherence rate Eq. (7.39) can be approximated for U0 � 1 byΛ (U0) ≈ ΓβU0.
The ratio of relaxation and decoherence rate

Λ

η
≈
3
√
π

8
M
m
U0 � 1 (7.40)

indicates that momentum decoherence takes place on a much shorter time scale than relaxation effects.
The study of how decoherence takes place in momentum space is relevant also for the description of the transition

from the quantum linear Boltzmann equation to the classical linear Boltzmann equation, already discussed at the end
of Section 4.2. As observed in Section 2.2, the diagonal matrix elements of the quantum linear Boltzmann equation coincide
with the expression of the classical linear Boltzmann equation, provided one considers the quantum scattering cross-section.
The dynamical suppression of the off-diagonal matrix elements in the momentum representation as a consequence of
decoherence thus amounts to the onset of classical dynamics as far as the momentum observable is concerned.
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Fig. 7.3. Plot of the decoherence rateΛ in units of the collision rate Γβ as a function of the initial scaled momentum U0 . The points represent least square
fits of the simulated data for the massm/M = 1, while the line represents the analytic estimate given by Eq. (7.39).

7.4. Decoherence in the quantum Brownian motion limit

Having discussed how the full quantum linear Boltzmann equation can be used to describe decoherence both in position
andmomentum space, let us now address its description in the Brownianmotion limit of the equation. The resultingmaster
equation, which corresponds to approximating the environment by a bath of linearly coupled harmonic oscillators, is most
often used to discuss decoherence effects [145–149,29]. In the simplest case, it leads to an exponential decay rate of the
off-diagonal matrix elements in the position representation, which depends like a Gaussian on the position separation. This
picture corresponds to the common lore, which however obviously cannot cover all interesting physical situations, neither
theoretically [174–177], nor experimentally [158–161,39,162].
We startwith themaster equation obtained by neglecting the friction term in the Eq. (5.15) of quantumBrownianmotion.

Lρ = −
i
h̄
[H0, ρ]−

Dpp
h̄2

3∑
j=1

[
Xj,
[
Xj, ρ

]]
−
Dxx
h̄2

3∑
j=1

[
Pj,
[
Pj, ρ

]]
. (7.41)

Since the friction term in Eq. (5.15) accounts for energy dissipation, one expects that Eq. (7.41) still describes the short time
decoherence phenomena associated with quantum Brownian motion.

7.4.1. Position representation
In the position representation, the general solution of Eq. (7.41) can be most easily expressed in terms of the solution of

the free Schrödinger equation [118,178,179]. Denoting the freely evolved state at time t as ρSt , we have

〈X |ρt |X ′〉 = exp

(
−
Dpp
h̄2

(
X − X ′

)2 t [1− (
Dpp/4M2

)
t2[

Dxx +
(
Dpp/3M2

)
t2
]])

×

(
1

4π
[
Dxx +

(
Dpp/3M2

)
t2
]
t

)3/2 ∫
dY exp

(
i
h̄
Dpp
2M

Y ·
(
X − X ′

)
t[

Dxx +
(
Dpp/3M2

)
t2
])

× exp

(
−

Y 2

4
[
Dxx +

(
Dpp/3M2

)
t2
]
t

)
〈X − Y |ρSt |X

′
− Y 〉. (7.42)

It is easy to recover from Eq. (7.42) the standard result of elementary decoherence models, according to which the loss
of coherence in position space is governed by a Gaussian function in the distance

∣∣X − X ′
∣∣ [180,40]. In the limit of a very

massive particle and short times, the spreading due to the Hamiltonian term can be neglected,
(
Dpp/3M2

)
t2 ' 0. One is

then left with a convolution of the initial statistical operator in position representation with a Gaussian of width 2Dxxt . On
short time scales, and for high temperatures, the Gaussian is strongly peaked. One is then left with the expected expression

〈X |ρt |X ′〉 = exp
(
−
Dpp
h̄2

(
X − X ′

)2 t) 〈X |ρ0|X ′〉. (7.43)
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7.4.2. Momentum representation
In the momentum representation, it is more convenient to directly express the solution with reference to the initial

state ρ0

〈P|ρt |P ′〉 = exp
(
−
Dxx
h̄2
(
P − P ′

)2 t) exp(− 1
12
Dpp
h̄2

(
P − P ′

M
t
)2
t

)
exp

(
−
i
h̄
P2 − P ′2

2M
t
)

×

(
1

4πDppt

)3/2 ∫
dQ exp

(
−
Q 2

4Dppt

)
〈P − Q |ρ0|P ′ − Q 〉. (7.44)

Looking at the position matrix elements Eq. (7.42), one notes that the quantum position diffusion term with coefficient
Dxx mainly corrects the detailed behavior in the exponential suppression of position coherences. In the momentum
representation, one has two distinct decoherence mechanisms instead.
The first factor at the right-hand side of Eq. (7.44) is just due to the

∑3
j=1

[
Pj,
[
Pj, ρ

]]
term in Eq. (7.41), in perfect analogy

with the
∑3
j=1

[
Xj,
[
Xj, ρ

]]
term causing decoherence in position. The remaining part comes from the joint effect of free

evolution and the term causing decoherence in position. As already mentioned, initial superpositions of different momenta
lead to position superpositions as time evolves, such that localization effects also destroy coherences in momentum
representation. This asymmetry between position andmomentum is clearly due to the presence of the kinetic term. Indeed,
Eqs. (7.42) and (7.44) acquire the same functional form in the limit M → ∞, which removes the Hamiltonian term from
the master equation.

7.4.3. Relevance of the quantum correction term
We now estimate the relative weight of the two contributions at the right-hand side of Eq. (7.44), so as to gain an insight

on the relevance of the quantum correction termwith coefficientDxx. In order to do that we recall the expressions (5.18) and
(5.19) for the diffusion coefficients in terms of the characteristic thermal scales. One thus obtains an expression involving
the friction constant η, as well as the temperature and the mass of the test particle,

〈P|ρt |P ′〉 = exp

(
−
β

16

(
P − P ′

)2
M

[
1+

4
3

(
t
βh̄

)2]
ηt

)
exp

(
−
i
h̄
P2 − P ′2

2M
t
)

×

(
β

4πMηt

)3/2 ∫
dQ exp

(
−
βQ 2

4Mηt

)
〈P − Q |ρ0|P ′ − Q 〉. (7.45)

This equation tells us thatmomentumcoherences are exponentially suppressed forP−P ′ exceeding the thermalmomentum
spread 〈P2〉β = 3M/β . The first factor corresponding to the quantum term, however, is the dominating contribution only
for times t . βh̄, while for longer times the effect due to the spatial dispersion dominates and grows very quickly with
elapsing time.

8. The dynamic structure factor

We now assume a slightly different point of view on the classical and the quantum linear Boltzmann equation, by
rewriting it in a way which puts into evidence the statistical properties of the gas, as well as the role of the energy and
momentum transfer. This is achieved by expressing the collision kernel in terms of the dynamic structure factor of the
background gas, a two-point correlation function of its density fluctuations. This quantity, which is popular in the analysis
of experiments where microscopic probes scatter off macroscopic samples, is defined as the Fourier transform of the
time dependent density autocorrelation function of the gas with respect to both the energy transfer and the momentum
transfer of a single collision. Its appearance in the quantum linear Boltzmann equation suggests a natural interpretation of
the ensuing dynamics as driven by the density fluctuations in the medium, in accordance with Einstein’s understanding
of Brownian motion [181]. We emphasize that the results discussed in this section are valid for a Maxwell–Boltzmann
distribution for the gas particles, while they generally rely on further assumptions for more general distributions.

8.1. An alternative formulation of the linear Boltzmann equation

8.1.1. The classical expression
Let us go back to the classical linear Boltzmann equationwritten in terms of an explicit energy conservation as in Eq. (3.1).

In Section 3 it serves as a starting point for the heuristic motivation of the quantum Boltzmann equation, where a decisive
step is the decomposition of the momenta of gas and test particle into components parallel with and perpendicular to the
momentum transfer Q . This permits one to express the energy conserving delta function in the classical linear Boltzmann
equation in terms of the parallel momentum components only. In the scattering cross-section, in contrast, only momentum
components perpendicular to the momentum transfer Q appear, as can be seen in Eq. (A.8).
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We can now observe that the Maxwell–Boltzmann distribution (2.6) is invariant under rotations and that it factorizes in
Cartesian coordinates. This implies that for any fixed direction Q one can write

µβ (p) = µ
(2d)
β

(
p⊥Q

)
µ
(1d)
β

(
p‖Q

)
, (8.1)

where

µ
(2d)
β (p) =

β

2πm
exp

(
−
βp2

2m

)
(8.2)

µ
(1d)
β (p) =

√
β

2πm
exp

(
−
βp2

2m

)
(8.3)

denote probability densities in two and one dimensions, respectively. It follows that also the momentum distribution can
be split into factors depending either on the parallel or the perpendicular components of the gas momenta with respect to
the momentum transfer Q .
Exploiting these facts, one can perform the integral over the parallel component of the gas momentum in the linear

Boltzmann equation (Eq. (A.8)). This can be done without specifying the scattering cross-section since the latter depends
only on the orthogonal components of the gas momenta. One thus obtains the compact expression

∂collt f (P) =
ngas
m2
∗

∫
dQ

∫
Q⊥
dk⊥ µ

(2d)
β (k⊥) σ

(
rel
(
k⊥, P⊥Q

)
−

Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)
× [SMB (Q , P − Q ) f (P − Q )− SMB (Q , P) f (P)] , (8.4)

upon defining

SMB (Q , P) ≡
∫
dk µβ (k) δ

(
(P + Q )2

2M
+
(k − Q )2

2m
−
P2

2M
−
k2

2m

)
=

∫
Q ‖
dk‖ µ

(1d)
β

(
k‖
)
δ

(
Q 2

2m∗
−
1
m∗

Q · rel
(
k‖, P‖Q

))
. (8.5)

The second line follows from the identity Eq. (A.4) and the normalization is fixed in Eq. (8.3). As will be discussed
in Section 8.2, the function SMB (Q , P) is the dynamic structure factor of a gas of Maxwell–Boltzmann particles.
By further introducing an averaged scattering cross-section, involving the two-dimensional distribution (8.2) over the

perpendicular gas momenta,

σav
(
P⊥Q ,Q

)
≡

∫
Q⊥
dk⊥ µ

(2d)
β (k⊥) σ

(
rel
(
k⊥, P⊥Q

)
−

Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)
, (8.6)

Eq. (8.4) assumes the compact form

∂collt f (P) =
ngas
m2
∗

∫
dQ σav

(
P⊥Q ,Q

)
[SMB (Q , P − Q ) f (P − Q )− SMB (Q , P) f (P)] . (8.7)

By exploiting the factorized expression of the gas distribution function Eq. (8.1) we thus obtained an expression of the
classical linear Boltzmann equation which involves only an integral over the momentum transfer Q . Note that if the
scattering cross-section only depends on the momentum transfer, as is the case in the Born approximation, the k⊥-
integration can be done even in the absence of a factorization property like Eq. (8.1). The averaged scattering cross-section
(8.6) then coincides with the proper cross-section.
The integral in Eq. (8.5) can be calculated explicitly, leading to an expression which is best stated in terms of the

momentum Q and the energy E transferred to the test particle, whose momentum prior to the collision is P . We take
these quantities as positive if the test particle gains momentum or energy. According to Eq. (4.11) the energy transfer is
E (Q , P) = Q 2/ (2M)+Q ·P/M , such that it depends only on P‖Q . The function SMB can therefore be expressed equivalently
as a function of Q and P‖Q , or of Q and E (Q , P),

SMB (Q , P) = SMB (Q , E (Q , P)) =

√
βm
2π
1
Q
exp

(
−
β

8m
(Q 2 + 2mE (Q , P))2

Q 2

)
. (8.8)

This exact expression implies in particular

m
Q
µβ

(
p⊥Q +

m
m∗

Q
2
+
m
M

P‖Q

)
= µ

(2d)
β

(
p⊥Q

)
SMB

(
Q , P‖Q

)
, (8.9)

where we stress explicitly that the function SMB depends on P only through P‖Q . Using Eq. (8.9) one immediately finds that
Eqs. (3.2) and (8.4) are two equivalent forms of the same equation.
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8.1.2. Generalization to the quantum case
The particular form (8.4) of the classical linear Boltzmann equation suggests an analogous way of writing the quantum

linear Boltzmann equation [58,42,47,182,183],

Lρ =
ngas
m2
∗

∫
dQ

∫
Q⊥
dk⊥ µ

(2d)
β (k⊥)

×

[
f
(
rel
(
k⊥, P⊥Q

)
−

Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)
eiQ ·X/h̄

√
SMB (Q , P)ρ

×

√
SMB (Q , P)e−iQ ·X/h̄f Ď

(
rel
(
k⊥, P⊥Q

)
−

Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)

−
1
2

{
SMB (Q , P)

∣∣∣∣f (rel (k⊥, P⊥Q )− Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)∣∣∣∣2 , ρ
}]

. (8.10)

This is exactly equivalent to Eq. (2.2) for a gas of Maxwell–Boltzmann particles, described by Eq. (2.6), as can easily be seen
using Eq. (8.9). Note that the square root in Eq. (8.10) is well defined since SMB is positive, which is a general property of the
dynamic structure factor, as discussed in the following section.

8.2. Properties of the dynamic structure factor

8.2.1. Expression in terms of the density correlation function
Let us consider a quantum many-body system, e.g. the gas of free particles considered in the previous paragraph,

described in second quantization by a field operator ψ̂ (x), satisfying canonical commutation or anti-commutation rules.
One can then consider the Fourier transformation of the operator density n̂ (x) = ψ̂

Ď
(x) ψ̂ (x) given by

ρ̂Q =

∫
dx e−iQ ·x/h̄n̂ (x) . (8.11)

The associated spectral function

S (Q , E) =
1
2π h̄

1
N

∫
dt eiEt/h̄〈ρ̂

Ď

Q ρ̂Q (t)〉, (8.12)

with N the total number of particles, is known as dynamic structure factor [184–186], though other names such as ‘‘spectral
density function’’, ‘‘scattering function’’ and ‘‘scattering law’’ are also used in the literature. It can be expressed in general
as the Fourier transform with respect to energy and momentum transfer of the time dependent density autocorrelation
function

G(x, t) =
1
N

∫
dy
〈
n̂ (y) n̂ (x+ y, t)

〉
(8.13)

as

S (Q , E) =
1
2π h̄

∫
dt
∫
dx ei(Et−Q ·x)/h̄G(x, t). (8.14)

By evaluating the dynamic structure factor for the case of a system of free distinguishable particles one obtains, recalling
Eq. (4.11) for the energy transfer,

S (Q , E (Q , P)) =
1
ngas

∫
dp

(2π h̄)3
〈n̂p〉δ

(
E (Q , P)+

(p− Q )2

2m
−
p2

2m

)
. (8.15)

Here 〈n̂p〉 denotes the expectation value of n̂p, i.e. the mean number of particles with momentum p. If we consider a
Maxwell–Boltzmann distribution, such that

〈n̂p〉 → ngas (2π h̄)3 µβ (p) , (8.16)

one comes back to the expression introduced in Eq. (8.8) (see e.g. [47,187]).
It thus appears that the dynamic structure factor SMB, which can be used to express the scattering kernel of the linear

Boltzmann equation (8.10), has an important and transparent physical meaning. It is the Fourier transform of the correlation
function of the density fluctuations in the medium, reflecting the molecular nature of the gas, which determines the
collisional interaction between test particle and gas particles. It thus embodies in a suitable correlation function the original
intuition by Einstein which led to the correct understanding of Brownian motion: the dynamics of the test particle is
driven by collisions taking place due to the discrete nature of the medium, whose density fluctuations provide the coupling
mechanism.
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8.2.2. Connection to the laboratory-frame scattering cross-section
The dynamic structure factor is particularly useful in describing the scattering of microscopic probes off macroscopic

samples, since it allows one to express the energy dependent cross-section in terms of a correlation function of the many-
body system [188,185]. It was in fact first introduced by van Hove in order to describe neutron scattering [189].
Using Fermi’s golden rule and the Born approximation one can show that the laboratory-frame cross-section Σ for the

scattering of a test particle off a many-body system is characterized by the dynamic structure factor S (Q , E) of the many-
body system [131]

d2Σ
dΩP ′dEP ′

=
M2

4π2 h̄4
P ′

P
|Ṽ (Q ) |2S(Q , E) =

M2

m2
∗

P ′

P
|fB (Q )|2 S(Q , E). (8.17)

Here a scattering event is considered in which a particle of massM changes its momentum from P to P ′ = P+Q , absorbing
an energy E according to (4.11), and Ṽ (Q ) is the Fourier transform of the two-body interaction potential

Ṽ (Q ) =
∫
dx eiQ ·x/h̄V (x) , (8.18)

related through Eq. (2.15) to the scattering amplitude in the Born approximation.
More generally, provided multiple scattering effects can be neglected, one has [188]

d2Σ
dΩP ′dEP ′

=
dΣ
dΩP ′

S(Q , E), (8.19)

where dΣ/dΩP ′ describes the single scattering event in the laboratory frame.

8.2.3. Detailed balance and the stationary solution
For a strongly interacting many-body quantum system the dynamic structure factor is no longer analytically tractable as

in Eq. (8.8), but it can only be measured in suitable scattering experiments. However, due to its very definition the dynamic
structure factor acquires many interesting general properties. First of all, it is always positive as a consequence of Bochner’s
theorem [152], because the density autocorrelation function Eq. (8.13) is a positive definite function. This property is to
be expected on physical grounds, since the dynamic structure factor is directly proportional to a scattering cross-section
according to Eq. (8.17). The dynamic structure factor further obeys the so-called detailed balance condition

S (Q , E) = e−βES (−Q ,−E) , (8.20)

which is the crucial property for ensuring the existence of a stationary solution of both the classical and the quantum linear
Boltzmann equation. In order to confirm this property one has to consider Eq. (8.12) and to observe that ρ̂Ď

Q = ρ̂−Q , as
follows directly from the definition Eq. (8.11), and to exploit the fact that the expectation value is obtained with respect
to the equilibrium state of the many-body system ρEQ ∝ e−βH , where H is the full Hamiltonian. The property Eq. (8.20)
therefore holds generally, for any many-body system in a thermal equilibrium state.
In our case, where the energy transfer can be expressed by Eq. (4.11), the detailed balance condition can also be written

as

S (Q , P) = e−βE(Q ,P)S (−Q , P + Q ) . (8.21)

It is now simple to prove that Eq. (8.21) ensures the existence of a stationary solution of the canonical form ρEQ(P) ∝
exp

(
−βP2/ (2M)

)
for both the classical and the quantum linear Boltzmann equation. For f (P)→ ρEQ(P) the expression

SMB (Q , P − Q ) ρEQ (P − Q )− SMB (Q , P) ρEQ (P) (8.22)

is odd in Q , such that Eq. (8.4) implies ∂collt ρEQ(P) = 0. Similarly, in the quantum case the expression Eq. (8.10) for an
operator ρ = ν(P), which is only a function of the momentum operator P, simply reads

Lν(P) =
ngas
m2
∗

∫
dQ

∫
Q⊥
dk⊥ µ

(2d)
β (k⊥)

∣∣∣∣f (rel (k⊥, P⊥Q )− Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)∣∣∣∣2
× [SMB (Q , P− Q ) ν(P− Q )− SMB (Q , P) ν(P)] . (8.23)

For the case ν(P) → νEQ(P) the condition Eq. (8.21) again implies that the integrand is an odd function of Q , such that
LνEQ(P) = 0. Note that the explicit expression Eq. (8.8) of SMB is not relevant for the proof, which relies only on the property
Eq. (8.21), valid for a generic medium.
As expected, also in the quantum case the existence and the form of the stationary solution do not depend on the

scattering amplitude, even though it appears operator-valued. This strong correspondence with the classical case is due to
the fact that the covariance under translations implies that the generatorL leaves the algebra generated by the momentum
operator invariant, as discussed in Section 4.3.
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8.2.4. Fluctuation–dissipation relationship
Let us now discuss the origin of the detailed balance property, beyond its direct calculation based on the definition of

dynamic structure factor in Eq. (8.12). To this end, we have to touch upon the fluctuation–dissipation theorem.
The dynamic structure factor can be directly related to the dynamic susceptibility studied in linear response theory.

Denoting the imaginary part of the dynamic response function as χ ′′ (Q , E), one finds [186]

S (Q , E) =
1
π

1
1− eβE

χ ′′ (Q , E) . (8.24)

Since the imaginary part of the dynamic susceptibility, which describes the dissipative part of the response, is by definition
an odd function of energy, this relationship ensures that the dynamic structure factor obeys the detailed balance condition
Eq. (8.20).We recall that, contrary to the usual perspective in linear response theory,we are here concernedwith the reduced
dynamics of the test particle, thus taking the momentum and energy transferred to the particle as positive.
Introducing the real correlation function of the gas medium

φ+ (Q , t) =
1
h̄N

〈{
ρ̂Q (t) , ρ̂

Ď

Q

}〉
, (8.25)

for the fluctuations of the operator ρ̂Q given by Eq. (8.11), the fluctuation–dissipation relationship can be formulated in
terms of the dynamic structure factor as follows [184,56]

φ+ (Q , t) = −
1
h̄

∫
+∞

−∞

dE exp
(
i
E
h̄
t
)
coth

(
β

2
E
) (
1− eβE

)
S (Q , E) . (8.26)

This is a consequence of the definition of the dynamic structure factor Eq. (8.12) as well as Eq. (8.25). When expressed in
termsof the imaginary part of the dynamic susceptibility according to Eq. (8.24) this identity gives back theusual formulation
of the fluctuation–dissipation theorem, once again taking as positive the energy when transferred to the test particle.
In this spirit, the expression (8.17) for the laboratory-frame cross-section can be viewed as a formulation of the

fluctuation–dissipation relationship. The test particle experiences dissipation due to energy and momentum transfer
processes described by the cross-section on the left-hand side of Eq. (8.17), which is related on the right-hand side to the
equilibrium density fluctuations, characterized by the dynamic structure factor.

8.3. Extension to different reservoirs

In the previous sections, we considered the explicit expression of the dynamic structure factor for an ideal gas described
by the Maxwell–Boltzmann distribution. The latter implies that the gas particles are either distinguishable or that the gas
temperature is sufficiently high such that effects due to their indistinguishability can be neglected. We note that the result
(8.8) is the same in the classical and the quantum calculation [184].
For the case of an ideal gas, one can calculate the exact dynamic structure factor also by taking into account the effect of

quantum statistics. Starting from the density autocorrelation function Eq. (8.13) for a gas of identical bosons or fermions it
takes the form

SBF (Q , E (Q , P)) =
1
ngas

∫
dp

(2π h̄)3
〈n̂p〉BF

(
1± 〈n̂p〉BF

)
δ

(
E (Q , P)+

(p− Q )2

2m
−
p2

2m

)
, (8.27)

which should be compared to Eq. (8.15). Here the upper sign stands for Bose–Einstein and the lower one for Fermi–Dirac
statistics, respectively. The corresponding distribution functions

〈n̂p〉BF =
1

z−1eβ
p2
2M ∓ 1

(8.28)

are characterized by the fugacity z = exp (βµ). The integral (8.27) can be done, leading to [47]

SBF (Q , E (Q , P)) =
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Q 2

)
 . (8.29)

In the limit of small fugacity z → ngas
(
2π h̄2 β/m

)3/2, corresponding to negligible degeneracy, the latter expression goes
back to Eq. (8.15). As one can also check directly, SBF (Q , E) obeys the detailed balance condition (8.20) for both statistics.
Derivations of the quantum linear Boltzmann equation in the weak-coupling limit, in which a thermal reservoir of

identical quantum particles is considered, have been obtained in [58] for the case of a bosonic reservoir, and more generally
in [42], leading to

Lρ =
ngas
m2
∗
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[
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√
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√
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2
{SBF (Q , P) , ρ}

]
. (8.30)
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This result is the quantum counterpart of a classical linear Boltzmann equation, which is modified in order to account
for statistical corrections. The latter can be obtained upon setting µBF (p) = 〈n̂p〉BF/

(
ngas (2π h̄)3

)
and replacing µβ (p)

in Eq. (3.1) by µBF (p) (1± ngas (2π h̄)3 µBF
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), which leads to
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]
. (8.31)

The statistical corrections in this modified classical linear Boltzmann equation are the analogue of the modifications
introduced by Uehling and Uhlenbeck to the original classical equation [9]. They express the fact that quantum correlations
in the gas can be relevant even in the absence of any self-interactions, just because the occupancy of the differentmomentum
states may enhance or suppress the related scattering rates due to statistics.
We mention that a simplified form of the master equation (8.10) was used in [58] to study how the effects of quantum

statistics in a Boltzmann gas affect the reduction of visibility in the interference fringes due to collisional decoherence.
Finally, it is interesting to note that the comparison between Eqs. (8.30) and (8.10) suggests a natural heuristic approach

to extend the quantum linear Boltzmann equation to real, interacting gases. In place of the dynamic structure factor of the
ideal gas one just uses the relevant expression of the interacting gas. Even if an exact analytic evaluation of the dynamic
structure factor is in general impossible for a truly interacting many-body system, one may rely either on experimental
data from scattering experiments or on a phenomenological ansatz, constrained by the requirement of the detailed balance
condition. This strategy is straightforward for theweak-coupling form (8.30) of themaster equation. However, complications
arise if the interaction with the gas is to be treated beyond the Born approximation, as in Eq. (8.10), once the momentum
distribution in the gas no longer factorizes as in Eq. (8.1).

8.4. Inclusion of internal degrees of freedom

The quantum linear Boltzmann equation provides a realistic description for the dynamics of a massive test particle
traveling through a dilute gas of free particles, and its predictions in the quantum framework have been tested in recent
experiments relevant for atom interferometry [37,39,155,38]. It is however natural to consider extensions of the equation,
allowing one to cope with a wider experimental scenario.
In the first instance both test particle and gas particles have been considered as pointlike particles, whose only relevant

degrees of freedom are those connected to the center of mass. This is obviously not necessarily the case and one should
consider a proper quantum treatment of both internal and center of mass degrees of freedom.
A hybrid equation, describing the internal degrees of freedom within quantum mechanics, and the center of mass

degrees of freedom as classical variables, was recently introduced under the name ‘‘Bloch–Boltzmann equation’’ [190,191].
It combines the master equation for the gas-induced incoherent dynamics of a N-level system of internal states with the
classical linear Boltzmann equation. This Bloch–Boltzmann equation thus accounts for the possibility of inelastic collisions
connecting the various possible scattering channels, which can be of relevance e.g. for spectroscopic experiments [192],
transport phenomena, or more refined interferometric experiments testing decoherence.
A microscopic derivation of the effect of the collisional dynamics on the internal degrees of freedom of a very massive

test particle at rest was considered in [69,65]. A fully quantum description of both internal and center of mass degrees
of freedom of a quantum test particle interacting through collisions with a gas has been considered in [193], leading to
an equation called ‘‘quantum Bloch–Boltzmann equation’’. From this equation all the others can be obtained as limiting
situations in which one of the two kinds of degrees of freedom is traced over or treated classically. In this framework, a
rich phenomenology of dynamical situations can be considered, including non-Markovian effects described bymeans of the
so-called generalized Lindblad structure [194–197].
The ‘‘quantum Bloch–Boltzmann equation’’ can be written in Lindblad form in close analogy to the linear Boltzmann

equation (2.1). However, the statistical operator ρ now acts on the Hilbert space describing both internal and centre of mass
degrees of freedom. The correction to the free Hamiltonian, which is the analog of Eq. (2.5), now reads

Hn = −2π h̄2
ngas
m∗

∑
ij

Eij=0

∫
dpµ (p) Re

[
fij (rel (p, P) , rel (p, P))

]
⊗ Eij, (8.32)

where Eij = |i〉〈j| provides a basis of operators in the space of the internal degrees of freedom, and Eij = h̄ωi − h̄ωj are the
possible transition energies. The multi-channel scattering amplitudes, denoted by fij

(
pf , pi

)
≡ f

(
pi, j→ pf , i

)
, describe a

transition from an in-state with labels pi, j to an out-state with labels pf , i.
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The incoherent part of the master equation can be written analogous to Eq. (2.2). It takes the form

Lρ =
∑

E

∫
dQ

∫
Q⊥
dk⊥

[
eiQ ·X/h̄L (k⊥, P;Q , E) ρLĎ (k⊥, P;Q , E) e−iQ ·X/h̄

−
1
2

{
ρ, LĎ (k⊥, P;Q , E) L (k⊥, P;Q , E)

}]
, (8.33)

where, apart from the momentum integrations, there is an additional sum over a discrete index E , labeling the energy
transfer to the internal degrees of freedom in case of inelastic scattering.
The function L, which describes the effect of the single collisions, is given by

L (p, P;Q , E) =
∑
ij

Eij=E

fij

(
rel
(
p⊥Q , P⊥Q

)
−

Q
2
+

Eij

Q 2/m∗
Q , rel

(
p⊥Q , P⊥Q

)
+

Q
2
+

Eij

Q 2/m∗
Q
)

×

√
ngasm
m2
∗
Q
µ

(
p⊥Q +

m
m∗

Q
2
+
m
M

P‖Q +
Eij

Q 2/m
Q
)
⊗ Eij, (8.34)

which should be compared to Eq. (2.3). This implies that the multi-channel scattering amplitudes fij and the distribution
function µ of the gas momenta appear again operator-valued in (8.33).
Eqs. (8.32)–(8.34) represent the natural generalization obtained by combining the twomaster equations for the quantum

motion of a point particle and for the internal dynamics of a system at rest, respectively. It should be emphasized, however,
that a physically stringent derivation of Eqs. (8.32)–(8.34) is still missing. It is a subject of current research whether this can
be achieved by means of the monitoring approach described in [65], which was also instrumental in deriving the quantum
linear Boltzmann equation.

9. Conclusion

In the present report we discussed a Lindblad master equation for the quantum motion of a test particle in an ambient
gas, arguing that it is the natural quantum counterpart of the classical linear Boltzmann equation. This means that the gas-
induced phenomena described by the equation are accounted for not just in a phenomenological sense, but are incorporated
in a non-perturbative fashion by means of the exact scattering amplitudes. This microscopically realistic description of
the individual scattering processes allows one to predict experimentally observable properties such as dissipation and
decoherence rates directly from the microscopic interaction laws. At the same time, it explains why the structure of the
equation is more complicated than most master equations used for the description of open quantum systems.
We presented a fairly straightforward, heuristic motivation for the particular form of the equation, referring the reader

to the literature for a more stringent derivation [32,41]. It is remarkable that already two basic requirements serve to fix
the master equation almost completely, namely the translation–covariance of its Lindblad structure and the compatibility
with the classical linear Boltzmann equation for quantum states which are indistinguishable from classical ones. The
remaining freedom in this heuristic approach can be settled by a plausibility argument, which is corroborated by the fact
that the various limits that can be taken turn the equation into established master equations. In particular, a generalized
Caldeira–Leggett master equation of quantum Brownian motion is obtained in the diffusive limit, whose Lindblad structure
is as close as possible to the classical Kramers equation with microscopically defined friction and diffusion constants.
Some attentionwas devoted to analyzing the general structural features and symmetry properties of the equation, aswell

as the predicted approach to an equilibrium state. We saw that many of the relaxation and dissipation effects are shared
with those of the classical linear Boltzmann equation, while pure quantum phenomena, such as collisional decoherence and
the gas induced index of refraction for matter waves, are genuine results of the quantum version. A remarkable feature of
the equation is that it accounts for the interplay of all relevant gas-induced phenomena, from the short-time decoherence
dynamics to the approach towards equilibrium for asymptotically large times. At the same time, it is clearly impossible to
state the general solution in an explicit form, even in the simplest case of s-wave scatteringwith a constant scattering length.
However, we saw that the Lindblad structure of the master equation admits a stochastic unravelling of the master equation
in terms of quantum trajectories, which is particularly transparent in the momentum basis.
The validity of the quantum linear Boltzmann equation is expected to cease in situations where the medium cannot be

considered an ideal, homogeneous Maxwell–Boltzmann gas, or where the scattering interaction is inelastic. We discussed
an alternative formulation of the master equation in terms of the dynamic structure factor of the gas. Apart from providing
physical insights, it suggests a natural way of incorporating corrections due to quantum degeneracies and self-interactions
in the gas, at least in the framework of the weak-coupling approximation. As for inelastic scattering, we described a natural
multi-channel scattering extension of the equation, capable to account for the presence of internal degrees of freedom in
the test particle.
A further important extension of the equation concerns the treatment of an inhomogeneous background gas, e.g. due to

an external potential. In view of the corresponding classical equation, it seems natural to incorporate this by means of an
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operator-valued gas density ngas (X), rendering the transition rateMin a function of the position operator of the test particle.
However, the non-commutativity of the position and momentum operators complicates this task considerably.
Finally, the limit of a dense and strongly self-interacting gas turns the background medium into a liquid. Clearly, the

interactions with the test particle are then no longer described by statistically independent two-particle collisions, leading
to a breakdown of the Markov assumption. In spite of many years of research, the field of non-Markovian open quantum
dynamics is still in its infancy. However, it will certainly be of central relevance to cope with such non-Markovian effects in
order to describe a truly quantum microscopic dynamics.
The long path leading to the present version of the quantum linear Boltzmann equation suggests that most of these

improvements are still a long way ahead, and possibly will require a different mathematical framework. Nonetheless, they
will be of great importance for a quantitative assessment of quantum transport and decoherence phenomena.
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Appendix A. Classical formulation

A.1. The classical linear Boltzmann equation

The classical linear Boltzmann equation can be written in quite different ways, which reflects its complicated structure
and the many variables appearing in it [2]. The most compact and perhaps well-known form is given by

∂collt f (P) =
∫
dp
∫
dΩ σ

(
rel (p, P) , rel

(
p′, P ′

))
jrel (p, P)

[
µ
(
p′
)
f
(
P ′
)
− µ (p) f (P)

]
, (A.1)

where jrel (p, P) ≡ ngas|rel (p, P) |/m∗ denotes the current density in the relative motion. In this equation, the values of p′

and P ′ are determined implicitly by the conservation ofmomentum, p′+P ′ = p+P , and energy,
∣∣rel (p′, P ′)∣∣ = |rel (p, P)|,

as well as by the angles of rotation Ω which connect the relative momenta appearing in the differential cross section σ .
Moreover, we have only considered the collisional term.
However, it is much more convenient for our purposes to use a more explicit expression. In particular, is permits to

clearly demonstrate the connection between the classical and the quantum version of the equation.
Let us start from the basic expression obtained by turning the original, non-linear Boltzmann equation into the linear

version. By replacing one of the distribution functions f (p) appearing in the bilinear collision term with the equilibrium
distribution µ (p) of the gas particles, one gets an equation

∂collt f (P) =
ngas
m2
∗

∫
dP ′

∫
dp′

∫
dp δ

(
P ′2

2M
+
p′2

2m
−
P2

2M
−
p2

2m

)
δ3
(
P ′ + p′ − P − p

)
× σ

(
rel (p, P) , rel

(
p′, P ′

)) [
µ
(
p′
)
f
(
P ′
)
− µ (p) f (P)

]
, (A.2)

which can be brought into the form Eq. (A.1). Here the dynamics determined by collisions between test particle and gas
particles is put into evidence. The collisions are characterized by a differential scattering cross-section σ

(
pf , pi

)
, together

with the constraints of energy and momentum conservation expressed by the δ-functions.
Exploiting the momentum conservation and introducing the momentum transfer Q = P ′− P , which corresponds to the

momentum gained by the test particle in a collision, we obtain

∂collt f (P) =
ngas
m2
∗

∫
dQ

∫
dp δ

(
(P + Q )2

2M
+
(p− Q )2

2m
−
P2

2M
−
p2

2m

)
× σ (rel (p, P) , rel (p− Q , P + Q )) [µ (p− Q ) f (P + Q )− µ (p) f (P)] . (A.3)

It is now convenient to express the δ-function of energy conservation in terms of the momentum transfer and of the
momentum components parallel with and perpendicular to it. Introducing P‖Q = (P · Q )Q /Q 2 and P⊥Q = P − P‖Q and
further exploiting the definition of relative momenta given in Eq. (2.4) one has

δ

(
(P + Q )2

2M
+
(p− Q )2

2m
−
P2

2M
−
p2

2m

)
= δ

(
Q 2

2m∗
−
1
m∗

Q · rel
(
p‖Q , P‖Q

))
, (A.4)

which implies

rel
(
p‖Q , P‖Q

)
=

Q
2
. (A.5)
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Since the reduced massm∗ obeysm∗/m+m∗/M = 1, one has the useful relation
rel (p, P)+ Q = rel (p+ Q , P − Q ) , (A.6)

which, together with Eq. (A.5), leads to
σ (rel (p, P) , rel (p, P)− Q ) = σ

(
rel
(
p‖Q , P‖Q

)
+ rel

(
p⊥Q , P⊥Q

)
− Q , rel

(
p‖Q , P‖Q

)
+ rel

(
p⊥Q , P⊥Q

))
= σ

(
rel
(
p⊥Q , P⊥Q

)
−
1
2
Q , rel

(
p⊥Q , P⊥Q

)
+
1
2
Q
)
. (A.7)

Eq. (A.3) now becomes

∂collt f (P) =
ngas
m2
∗

∫
dQ

∫
dp σ

(
rel
(
p⊥, P⊥Q

)
−
1
2
Q , rel

(
p⊥, P⊥Q

)
+
1
2
Q
)

× δ

(
Q 2

2m∗
−
1
m∗

Q · rel
(
p‖Q , P‖Q

))
[µ (p− Q ) f (P + Q )− µ (p) f (P)] . (A.8)

By means of the shift of coordinates

p→ p+
m
m∗

Q
2
+
m
M

P‖Q , (A.9)

which leaves p⊥ invariant, the argument of the delta function simplifies to Q · p, such that it can be evaluated explicitly
leading to

∂collt f (P) =
ngasm
m2
∗

∫
dQ
Q

∫
Q⊥
dk⊥ σ

(
rel
(
k⊥, P⊥Q

)
−

Q
2
, rel

(
k⊥, P⊥Q

)
+

Q
2

)
×

[
µ

(
k⊥ +

m
m∗

Q
2
+
m
M

(
P‖Q − Q

))
f (P − Q )− µ

(
k⊥ +

m
m∗

Q
2
+
m
M

P‖Q

)
f (P)

]
. (A.10)

This is the explicit expression allowing one to straightforwardly see the connection between the classical and the quantum
linear Boltzmann equation. Another useful form is given by Eq. (A.14).

A.2. Approach to equilibrium

We now prove that the relative entropy of a solution of the classical linear Boltzmann equation with respect to its
stationary solution is a monotonically decreasing function, equal to zero if and only if the solution is at equilibrium. Let
us first consider the explicit derivative of the relative entropy (4.16),

dH
(
f |fEQ

)
dt

=

∫
dP ∂collt f (P)

[
1+ log

f (P)
fEQ (P)

]
. (A.11)

Exploiting the relations Eqs. (2.12) and (2.11) for the loss and gain rates, the classical linear Boltzmann equation (3.3) reads

∂collt f (P) =
∫
dP ′

[
Mcl

(
P ′ → P

)
f
(
P ′
)
−Mcl

(
P → P ′

)
f (P)

]
. (A.12)

The fact that the transition rates obey the detailed balance condition Eq. (4.9) implies that the quantity

W
(
P, P ′

)
= Mcl

(
P ′ → P

)
eβ

P2
2M (A.13)

is symmetric in its arguments. We thus obtain an expression

∂collt f (P) =
∫
dP ′W

(
P, P ′

) [
fEQ (P) f

(
P ′
)
− fEQ

(
P ′
)
f (P)

]
, (A.14)

that puts into evidence that the integrand is a product of functions which are symmetric and antisymmetric under the
exchange of P and P ′. Using this form, the time derivative of the relative entropy therefore reads as

dH
(
f |fEQ

)
dt

=
1
2

∫
dP
∫
dP ′W

(
P ′ → P

) [
fEQ (P) f

(
P ′
)
− fEQ

(
P ′
)
f (P)

]
×
[
log

(
fEQ
(
P ′
)
f (P)

)
− log

(
fEQ (P) f

(
P ′
))]
. (A.15)

By noting that
(X − Y ) (log Y − log X) 6 0, (A.16)

where the equal sign holds if and only if X = Y , this proves that the time derivative of the relative entropy is equal to zero
if and only if one considers the equilibrium solution.
Moreover, since ∂collt f (P) = 0 implies dH

(
f |fEQ

)
/dt = 0, it follows that dH

(
f |fEQ

)
/dt = 0, or equivalently f = fEQ, is

a necessary condition for a stationary solution. But we already know that f = fEQ is a sufficient condition for stationarity,
such that the stationary solution is unique.
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A.3. The friction coefficient of classical Brownian motion

We now explicitly derive the microscopic expression for the friction coefficient appearing in the classical Kramers
equation (5.1). Let us start from the classical linear Boltzmann equation written as in Eq. (A.1), with the constraint
|rel (p, P)| =

∣∣rel (p′, P ′)∣∣. keeping track of energy conservation in each collision. We put f (P) = νEQ (P) χ (P), where
νEQ (P) has the form Eq. (4.7) of a Maxwell–Boltzmann distribution of the test particle. Exploiting energy conservation
Eq. (A.1) now takes the more explicit form

∂t f (P) =
ngas
m∗

νEQ (P)
∫
∞

0
dp p2µβ (p)

∫ 2π

0
dΦ

∫ π

0
dΘ sinΘ

∫ 2π

0
dϕ
∫ π

0
dϑ sinϑ

× |rel (p, P) |σ (ϑ; |rel (p, P) |)
[
χ
(
P ′
)
− χ (P)

]
, (A.17)

where (ϑ, ϕ) denote the polar angles of rel
(
p′, P ′

)
with respect to rel (p, P), and (Θ,Φ) the polar angles of pwith respect

to P .
As discussed in Section 5, in the Brownian motion limit one considers a test particle much heavier than the gas particles,

such that m/M � 1, and the test particle is assumed to be close to thermal equilibrium. Under these assumptions the
momentum transfer in a single collision, given by

Q = P ′ − P = −
[
rel
(
p′, P ′

)
− rel (p, P)

]
, (A.18)

can be considered small. We therefore expand the function χ
(
P ′
)
in a Taylor series, thus obtaining up to second order

∂t f (P) =
ngas
m∗

νEQ (P)
∫
∞

0
dp p2µβ (p)

∫ 2π

0
dΦ

∫ π

0
dΘ sinΘ

∫ 2π

0
dϕ
∫ π

0
dϑ sinϑ

× |rel (p, P) |σ (ϑ; |rel (p, P) |)

×

[
3∑
i=1

(
P ′ − P

)
i

∂

∂Pi
χ (P)+

1
2

3∑
i,j=1

(
P ′ − P

)
j

(
P ′ − P

)
i

∂2

∂Pj∂Pi
χ (P)

]
. (A.19)

Thanks to the identity Eq. (A.18) and to the fact that the scattering cross-section only depends on the angles ϑ and Θ , one
can perform the integration over the azimuthal angle ϕ appearing only in P ′ − P . It is done by exploiting the integrals∫ 2π

0
dϕ
(
K ′ − K

)
i = 2π

(
K ′

K
cosϑ − 1

)
Ki (A.20)∫ 2π

0
dϕ
(
K ′ − K

)
j

(
K ′ − K

)
i = 2π

[
1
2
sin2 ϑK 2δij −

1
2
(3 cosϑ − 1) (1− cosϑ) KjKi

]
, (A.21)

which are valid whenever (ϑ, ϕ) denote the polar angles of K ′ with respect to K .
To obtain Eq. (A.20) let us denote by e1, e2, and e3 the unit basis vectors for the Cartesian coordinates, such that Ki = ei ·K ,

and consider another set of basis vectors e′1, e
′

2ande
′

3 such that e
′

3 is in the direction of K . One then has(
K ′ − K

)
i = ei ·

(
K ′ − K

)
= ei ·

[
K ′ sinϑ cosϕe′1 + K

′ sinϑ sinϕe′2 +
(
K ′ cosϑ − K

)
e′3
]
. (A.22)

Eq. (A.20) is obtained by integrating the azimuthal angle ϕ and recalling K = Ke′3. A similar, but much longer calculation
leads to Eq. (A.21).
We are left with contributions in the integrand proportional to rel (p, P)i and rel (p, P)j rel (p, P)i , such that the

integrals (A.20) and (A.21) can be applied once more to perform the integrations over Φ . The result of the integration over
the azimuthal angles reads

∂t f (P) = 4π2
ngas
m∗

νEQ (P)
∫
∞

0
dp p2µβ (p)

∫ π

0
dΘ sinΘ

∫ π

0
dϑ sinϑ (1− cosϑ) |rel (p, P) |

× σ (ϑ; |rel (p, P) |)

{(
M
m
p
P
cosΘ − 1

)
m∗
M

3∑
i=1

Pi
∂

∂Pi
χ (P)

+
1
4

[
(1+ cosϑ) |rel (p, P) |2 +

1
2
(1− 3 cosϑ)

m2
∗

m2
p2 sin2Θ

] 3∑
i=1

∂2

∂P2i
χ (P)

+
1
4
(1− 3 cosϑ)

[(
M
m
p
P
cosΘ − 1

)2
−
1
2

(
M
m
p
P
sinΘ

)2] m2
∗

M2

3∑
i,j=1

PjPi
∂2

∂Pj∂Pi
χ (P)

}
. (A.23)
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To proceed we exploit the fact that the test particle is assumed to be close to equilibrium, such that p/P ≈
√
m/M , and

m/M � 1. We expand the expression of |rel (p, P) | in this small ratio, thus obtaining up to order
√
m/M

|rel (p, P) | ≈ p
[
1−

m
M
P
p
cosΘ

]
, (A.24)

and therefore in particular

|rel (p, P) |σ (ϑ; |rel (p, P) |) ≈ p
[
σ (ϑ; p)−

m
M
P
p
cosΘ

(
σ (ϑ; p)+ p

∂

∂p
σ (ϑ; p)

)]
. (A.25)

As a result of this approximation one can perform the integral over Θ , without explicit knowledge of the scattering cross-
section, which only depends on p and ϑ for an isotropic interaction potential. Inserting Eqs. (A.25) and (A.24) in Eq. (A.23)
and performing the angular integral one obtains after lengthy but straightforward calculations

∂t f (P) = −
8
3
π2
ngas
m
νEQ (P)

β

M

∫
∞

0
dp p5µβ (p)

∫ π

0
dϑ sinϑ (1− cosϑ) σ (ϑ; p)

×

3∑
i=1

[
Pi
∂

∂Pi
χ (P)−

M
β

∂2

∂P2i
χ (P)

]
. (A.26)

Here, an integration by parts has been exploited,

∫
∞

0
dp p4µβ (p)

∂

∂p
σ (ϑ; p) = −

∫
∞

0
dp

(
4p3 −

2
p2β
p5
)
µβ (p) σ (ϑ; p) . (A.27)

As a last step, we return to an equation for the original distribution f (P) = νEQ (P) χ (P). We recall that the equilibrium
solution νEQ (P), as defined in Eq. (4.7), is a null eigenvector of the Fokker–Planck operator

D [g (P)] =
3∑
i=1

[
∂

∂Pi
(Pig (P))+

M
β

∂2

∂P2i
g (P)

]
, (A.28)

such that in particular

D
[
νEQ (P) χ (P)

]
= −νEQ (P)

3∑
i=1

[
Pi
∂

∂Pi
χ (P)−

M
β

∂2

∂P2i
χ (P)

]
. (A.29)

We are thus left with

∂t f (P) =
8
3
π2
ngas
m

β

M

∫
∞

0
dp p5µβ (p)

∫ π

0
dϑ sinϑ (1− cosϑ) σ (ϑ; p)

3∑
i=1

[
∂

∂Pi
(Pif (P))+

M
β

∂2

∂P2i
f (P)

]
. (A.30)

Switching to dimensionless variables u = p/pβ and using Eq. (2.6) for µβ (p), one finally has

∂t f (P) = η
3∑
i=1

[
∂

∂Pi
(Pif (P))+

M
β

∂2

∂P2i
f (P)

]
(A.31)

with

η =
16
3
√
π
m
M
ngas

√
2
βm

∫
∞

0
du u5e−u

2
∫ π

0
dϑ sinϑ (1− cosϑ) σ

(
ϑ; upβ

)
, (A.32)

as in Eq. (5.2).
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Appendix B. List of symbols

β inverse temperature, β = 1/ (kBT )
Dpp diffusion coefficient, see (5.16)
Dxx diffusion coefficient, see (5.17)
η friction coefficient, see (4.33) and (5.13)
erf(x) error function [198]
E (Q , P) energy transfer to test particle, see (4.11)
ΦP characteristic function of momentum transfer distribution, see (7.12) and (7.15)
f (P) distribution function of the test particle momentum
f
(
pf , pi

)
elastic scattering amplitude

f0 (p) forward scattering amplitude, f0 (p) = f (p, p)
fB (Q ) scattering amplitude in Born approximation, see (2.15)
1F1 confluent hypergeometric function [198]
Γ (x) gamma function [198]
Γtot total scattering rate, see (7.4)
Γβ thermal scattering rate, see (4.28)
Γ̃ (U) dimensionless loss rate, see (4.54)
H0 kinetic energy operator of test particle, H0 = P2/ (2M)
Hn gas induced energy shift, see (2.5) and (6.2)
K scaled momentum transfer, see (4.52)
λth thermal de Broglie wave length of test particle, λth =

√
2π h̄2 β/M

L (p, P;Q ) non-unitary part of Lindblad operator, see (2.3)
LB (P;Q ) non-unitary part of Lindblad operator in the Born approximation, see (2.17)
L superoperator of the dissipative part of the quantum linear Boltzmann equation,

see (2.1)
µ (p) distribution function of gas momenta
µβ (p) Maxwell–Boltzmann distribution, see (2.6); for µ(1d,2d)β see (8.2) and (8.3)
m mass of gas particle
m∗ reduced mass,m∗ = mM/ (m+M)
M mass of test particle
Mclin (P;Q ) classical gain rate, see (2.11)
Mclout (P) classical loss rate, see (2.12)
M superoperator of the quantum linear Boltzmann equation, see (2.1)
ngas density of gas particles
n ≡ n1 + in2 index of refraction, see (6.14)
νEQ (P) Maxwell–Boltzmann distribution for the test particle, see (4.7)
pβ most probable momentum in thermal gas distribution, pβ =

√
2m/β

P ≡ (P1, P2, P3) momentum operator of test particle
Q momentum transfer to test particle
Q⊥ set of all momenta perpendicular to Q , i.e., Q⊥ =

{
p ∈ R3 : p · Q = 0

}
ρ quantum state of motion of test particle
rel (p, P) relative momentum, see (2.4)
σ
(
pf , pi

)
differential cross section, σ

(
pf , pi

)
=
∣∣f (pf , pi)∣∣2

σ (ϑ; pi) differential cross section (isotropic potential), cosϑ = pi · pf /p2i , pi = |pi|
σtot total elastic scattering cross section, see (6.4) and (7.20)
σB (Q ) differential cross section in Born approximation, σB (Q ) = |fB (Q )|2
S (Q , E) dynamic structure factor, see (8.12)
U scaled momentum, see (4.51)
vβ most probable velocity in thermal gas distribution, vβ = pβ/m
V (X − x) interaction potential between test and gas particle
Vopt optical potential, see (6.8)
X ≡ (X1,X2,X3) position operator of test particle
X‖Q vector component parallel with Q , i.e., X‖Q = (X · Q )Q /Q 2
X⊥Q vector component orthogonal to Q , i.e., X⊥Q = X − X‖Q .
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