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Abstract
Designing experiments which delocalize ever more complex and more massive particles requires
a quantitative assessment of new interferometer configurations. Here, we introduce a figure of
merit which quantifies the difference between a genuine quantum interference pattern and a
classical shadow and use it to compare a number of near-field interferometer schemes. This
allows us to identify the most promising setups for future tests of the quantum superposition
principle, and to discuss the perspectives of interferometry with complex molecules and clusters.
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1. Introduction

Matter-wave interference is a prominent example of funda-
mental quantum physics, with applications in quantum sen-
sing and metrology [1, 2]. On the fundamental side, it is a
direct test of the universality of the superposition principle
and its possible breakdown beyond a certain mass and com-
plexity limit [3–5]. Matter-wave interferometry has been used
for quantum-enhanced measurements of gravitational effects
[6–11] and in the search for dark energy [12]. Nanoparticle
interferometry can enable new quantum tests of the weak
equivalence principle [7, 13–15] in a range of internal particle
properties and masses that cannot be compared in any other
device so far [16]. Moreover, it has been suggested that cer-
tain candidates for dark matter might be best detected in
nanoparticle interferometry [17, 18]. Matter-wave interference

experiments of the future aim to probe gravity-induced
dephasing and decoherence [19–22, 26], and to test predic-
tions of the Newton–Schrödinger equation [23] or the
quantum nature of gravity [24, 25]. Interestingly, the influ-
ence of these phenomena tends to grow with the square of the
mass of the delocalized particle. This also holds for a recent
definition of macroscopicity, which quantifies the degree to
which nonlinear extensions of quantum mechanics can be
excluded [27].

On the applied side, a matter-wave interference pattern
can be thought of as a free-flying nanometric ruler, the dis-
placement of which can be measured with high sensitivity. In
atom interferometry, this enables precise measurement of
accelerations, such as those arising due to rotation or gravity
[28–30]. Based on the same principle, macromolecule and
nanoparticle interferometry can be developed for force sen-
sing and used to measure molecular properties [31, 32]. This
has been used to probe optical [33] and static [34] molecular
polarizability, dipole moments [35], absolute optical absorp-
tion cross sections [36], and to distinguish molecular con-
formers [37, 38]. Extended to large peptides and proteins,
such techniques can become a valuable tool for biophysical
chemistry.
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The instruments representing the state of the art in high-
mass matter-wave physics are the Kapitza–Dirac–Talbot–Lau
interferometer (KDTLI) [39] and the optical time-domain
matter interferometer (OTIMA). KDTLI demonstrated
quantum interference of bio-dyes, vitamins [34], and hot
molecules with masses beyond 10 000 Da [40]. It was also
used for many of the metrological applications mentioned
above [33, 35, 37, 38]. OTIMA has demonstrated interference
with molecular clusters [41, 42] and recently of molecules
with masses beyond 6000 Da [16].

Both KDTLI and OTIMA rely on the near-field self-
imaging of a diffractive element known as the Talbot–Lau
effect [43, 44]. It is a two-grating phenomenon, in which the
first grating prepares spatial coherence and the subsequent
grating acts as the diffractive element. The Talbot–Lau
scheme is especially suitable for high-mass interference
because of the lack of bright coherent sources for molecules
and clusters. Talbot–Lau interference is well-known in optics
[45–47], has been demonstrated with atoms [48], and is also
the basis for our present discussion. For a diffractive element
with period d, the self-images occur at integer multiples of the
Talbot length, l=L dT

2
dB, where λdB is the de Broglie

wavelength of the particle. The definition of LT implies that
pushing towards higher masses requires developments in
slowing and cooling of heavy particles, but also an increase of
the interferometer length. This motivates the present study of
the long-baseline universal matter-wave interferometer, an
instrument that is ten times longer than the current mass-
record holder, the KDTLI. The goal of the new interferometer
is to probe de Broglie wavelengths down to λdB=20–30 fm
and demonstrate interference of masses beyond 105 Da.

The article is structured as follows: in section 2 we
review the phase-space description of near-field interference,
and derive a figure of merit that is later used to compare
different interferometer setups. In section 3 we identify and
discuss the most promising interferometer schemes for
organic molecules, proteins, and atomic and molecular clus-
ters. We end with a summary in section 4.

2. Phase-space description of near-field matter-wave
interferometry

In this section, we describe the propagation of matter waves
through a near-field interferometer and quantify the resulting
interference pattern. We consider two- and three-grating set-
ups and provide both a quantum and a classical description.
Comparing these predictions is necessary to identify para-
meter ranges where quantum interference fringes are clearly
distinguishable from a classical shadow [49].

Both descriptions are performed in the phase space (x, p)
of the particle’s motion in the direction perpendicular to the
grating slits and the particle beam. We assume that the par-
ticle’s forward motion can be separated and is thus constant,
with velocity v. We further assume that the gratings are
aligned to gravity, so that the particle falls freely along the
grating slits. Gravity then only shifts the vertical position of
the pattern, but does not reduce the fringe contrast.

The phase-space description allows us to derive the
classical and quantum predictions based on the same
approximations, and to insert the various beam-splitting
components discussed in section 3. The phase-space
description can also be extended to include decoherence
events during free flight [50], measurement-induced beam
splitting [51], and various metrological agents such as
externally applied fields [34].

2.1. Quantum description

The transverse motional quantum state r̂ of the particle of
mass m is represented with a Wigner function defined as [52]
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Assuming that the source uniformly illuminates an X0-wide
area of the first grating and that the momentum distribution in
the beam is D(p), the initial state can be written as
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where θ(x) is the Heaviside step function. After traversing the
first grating, the state becomes

ò= -( ) ( ) ( ) ( )w x p p x p p w x p, d , , , 31 0 1 0 0 0

where the transformation kernel  ( )x p,1 is a Wigner trans-
form of the first grating’s transmission function t1(x) calcu-
lated using the eikonal approximation [53]
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Between the first and second grating, the molecule propagates
for a time T1 under the influence of an external force causing
transverse acceleration a. This corresponds to a transforma-
tion of the form
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For the second grating and second propagation, analogous
transformations are performed, yielding ¢( )w x p,2 .

In a two-grating interferometer the particle is then
detected using a spatially-resolving detector. The probability
density of detection at position x is

ò= ¢( ) ( ) ( )P x p w x pd , . 62

In the wide-illumination limit  ¥X0 , the probability den-
sity P(x) approaches a periodic function with a Fourier
decomposition
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The Pn can be expressed in terms of the Fourier coefficients
x( )( )Bn

i of the transformation kernels  ( )x p,i . For the ith
grating with period di and În , these coefficients are
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and taken to be 0 for Ïn . Assuming that the width of D(p)
is much greater than the grating momenta h/di (and that

 ¥X0 ), Pn can be expressed as [53]
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where h is the Planck constant and the phase shift due to
external force is
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In all cases considered in this paper the acceleration will be
due to the Coriolis force

= W ( )a v2 , 11

whereW is the vertical component of Earth’s angular velocity
at the lab’s latitude and v is the forward velocity of the
molecule3.

A three-grating interferometer has one more grating after
the second propagation, which can be moved perpendicularly
to the fringes. This allows one to detect the presence of the
pattern by measuring the flux of the transmitted particles as a
function of the transverse position xS of the last grating. This
is useful because many detection techniques lack the spatial
resolution sufficient for direct imaging of the interference
pattern.

The probability that the molecule transverses a three-
grating interferometer is

ò= - - ¢( ) ( ) ( ) ( )S x x p p x x p p w x pd d d , , . 12S S2 3 2 2 2

In the wide-illumination limit  ¥X0 , the signal approaches
a periodic function with a Fourier decomposition
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2.2. Classical description

In the classical description, the state of the particle is
described with a phase-space probability distribution f (x, p).
Before the first grating, f coincides with w0, given in
equation (2). Upon traversing a grating, f undergoes a trans-
formation of the same form as given in equation (3), but with
a classical kernel  ( )x p,1 instead of  ( )x p,1

 d= -( ) ∣ ( ) ∣ ( ( )) ( )x p t x p q x, , 151 1
2

1

where q1(x) is the momentum kick experienced by the particle
traversing the first grating at position x [53].

Using a decomposition of  ( )x p,i analogous to
equation (8) with coefficients denoted ( )Cn

i , we can express the
Fourier coefficients of the classical pattern and signal in a
form analogous to equations (9) and(14), but with ( )Bn

i

replaced by ( )Cn
i [50]. These coefficients will be denoted Pn

cl

and Sn
cl, respectively.

2.3. Figure of merit

A primary goal of an interference experiment with massive
particles is to demonstrate their quantum behavior by pro-
ducing a fringe pattern significantly more pronounced than
predicted by classical theory. To quantify how well an
interferometer performs at this task, we will calculate the
difference between the quantum and the classical fringe
modulation and compare it to the relevant noise scale4.

We assume that the particle detection rate in the absence
of gratings is constant and equal to N/T, where T is the total
data-taking time. In a two-grating interferometer, the mean
number of counts registered in a pixel of size Δx is then

D á ñ( ) ( )N x P x . 16

The averaging of the probability density P(x) is done over the
distribution of the velocities in the beam, and we have
assumed that Δx is smaller than the length scale at which P(x)
varies appreciably. Using equation (7) to expand P(x) we find
that the difference between the amplitude of nth order fringes
as predicted by quantum and classical theory is

D
á ñ - á ñ(∣ ∣ ∣ ∣) ( )N x

X
P P

2
. 17n n

0

cl

The noise in our measurements is due to Poissonian counting
statistics and its standard deviation can be estimated as5

D ( )x

X
NP . 18

0
0

This noise is identical in the quantum and classical models
and velocity-independent, hence no averaging is necessary.

We define our figure of merit as the number of counts N
for which the amplitudes of the lowest-order quantum and
classical fringes differ by two shot noise amplitudes. N can
then be obtained by equating the ratio of expressions(17)
and(18) to 2, yielding

=
á ñ - á ñ(∣ ∣ ∣ ∣)

( )N
P

P P
, 19

n n

0
cl 2

where n is the smallest index such that ¹P 0n . In a three-
grating interferometer, the integration is done in time bins,

3 The horizontal component of Earth’s rotation, which depends on the
azimuthal orientation of the interferometer, gives rise to a Coriolis force
acting along the grating slits and therefore can be neglected.

4 It should be noted that for purely metrological purposes this figure of merit
is less relevant. In that case the key parameters are fringe visibility and
count rate.
5 The standard deviation of the number of counts in a single pixel is
approximately DN xP X0 0 . Since we have X0/Δx independent pixels, the
noise is reduced by a factor of DX x0 , which gives equation (18).
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between which the third grating is moved. By reasoning
analogously as above, we arrive at an expression for N of the
same form as equation (19), but with P P,n n

cl replaced
by S S,n n

cl.
The main purpose of the figure of merit N is to compare

the performance of interferometer setups. However, we can
also use it as a guide when estimating the number of counts
each scheme requires in order to produce a manifestly
quantum fringe pattern. These experimentally relevant count
numbers are most likely one to two orders of magnitude
higher than N. The additional counts are necessary to offset
the imperfections which we neglected in this analysis, such as
residual grating vibration and misalignment or non-ionizing
photon absorption for biomolecules. Also, a signal-to-noise
ratio significantly higher than two is often desired, especially
if the experiment is to exclude modifications of quantum
mechanics despite significant uncertainty in molecular
parameters.

3. Long-baseline interferometers for molecules and
clusters

In this section, we compare the most promising configurations
of a two meter long interferometer for the diffraction of
proteins, as well as of metal and amino acid clusters, using the
figure of merit N of section 2.

3.1. Grating types

We consider three types of diffraction gratings: nano-
machined masks, optical phase gratings, and optical depletion
gratings (see figure 1). The Talbot coefficients Bn and Cn (see
equation (8)) for these grating types can be found in [53].

3.1.1. Material masks. A material grating (M) is a thin
nanostructured membrane, which serves to modulate the
matter wavefront of atoms, molecules, and clusters alike. This
type of grating is the most universal, but suffers from the
dispersive influence of the Casimir–Polder (CP) interaction
between the particles and the slit wall6. When the material
mask is used as the middle grating, this leads to strong
blurring of the interference pattern [56]. Therefore, we will
only consider material masks for the outer gratings, for which
the CP-interaction can be approximated as a reduction of the
effective slit width [57, 58], as discussed in appendix B.
Motivated by previous high-mass experiments [36], we will
assume silicon nitride gratings with a period of d=266 nm.

3.1.2. Optical phase gratings. A phase grating (P) can be
realized as a standing wave of laser light, which imprints a
periodic phase onto the matter-wave via the dipole interaction
[39, 59]. This type of grating is perfectly transmissive, does
not clog, and is compatible with high-mass interference
despite the dependence of the imprinted phase on the
particle’s velocity [60]. However, the outer gratings will

always be assumed to be absorptive masks, as required to
prepare coherence (G1) and to analyze the resulting density
pattern (G3).

In our analysis, we assume 532 nm light for a phase
grating with period d=266 nm. For highly transparent
dielectric materials, such as SiO2 spheres, this period could be
further reduced by a factor of two by using UV light.

3.1.3. Optical depletion gratings. A photo-depletion grating
(D) can be implemented as a standing light wave which ionizes
[41] or dissociates [61] the particles passing near its anti-nodes.
Provided that only the neutral or intact particles are counted,
these photo-processes lead to periodic molecular beam
depletion. This idea can be applied to tryptophan clusters [62],
a vast range of biomolecules [63], and many metal clusters [64].
In cases where the ionization energy exceeds the available
photon energy, photo-cleavage ionization can be implemented
by appropriate functionalization of the molecules [54].
Photo-fragmentation gratings are also expected to work for
beams of native RNA and DNA [65], which undergo intense
fragmentation upon UV irradiation. Depletion gratings may also
be realized via optical transfer of the particles to undetectable
internal states, which removes them from the detected ensemble
without actually depleting the molecular beam [66, 67]. In our
analysis, we assume a 266 nm UV-light depletion grating, which
yields a period of 133 nm.

Figure 1. The interferometer configurations in this survey consist of
up to three gratings, based on up to three different mechanisms. The
first grating (G1) must be absorptive to establish spatial coherence. It
can be realized as material mask (M) or a standing light wave
depleting the molecular beam (D). The second grating (G2) can be a
pure phase grating (P). Interference detection can be achieved either
by scanning an absorptive grating (G3), or by direct imaging (I) of
the molecules deposited on a surface. In our study M and P gratings
are defined to have a period of 266 nm, while D gratings have half
the period.

6 In naming the dispersion forces, we follow the nomenclature of [55].
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3.2. Particle species, sources, and detectors

We analyze various interferometer configurations in combi-
nation with seven prototypical biomolecules, amino acid
clusters and metal clusters (see table 1). This is an exemplary
and certainly not exhaustive list of potential candidates up to
300 000 Da. Biomolecules are especially interesting for
metrological purposes, while metal clusters or certain di-
electric nanoparticles promise the simplest implementation of
photo-depletion gratings and are suitable for high-mass
interference.

One of the greatest challenges in matter-wave experi-
ments is preparing a sufficiently intense, mass-selected, cold,
and directed particle beam. While many native and functio-
nalized organic molecules—from fullerenes and tailored tri-
peptides [69] to native vitamins [34]—can still be evaporated
in a Knudsen cell, molecular beams of complex amino acid
clusters and high-mass polypeptides can be prepared by laser
desorption into a noble gas jet [70]. We expect that photo-
neutralization of singly charged biopolymers [54] and
aggregated metal clusters [71] will facilitate the preparation of
neutral particle beams.

On the detector side, a key challenge is to efficiently ionize
neutral massive particles. While hot-wire detection [72] is a
simple and efficient tool for metal clusters with a low work
function, single-photon ionization offers high efficiency for a
larger range of metals and allows for excellent time resolution.
Post-ionization of large amino acid clusters [62] has been
observed but the detection of neutral proteins has remained a
grand challenge in physical chemistry [73]. This is being tackled
using functionalization and photo-cleavage [54].

In most molecule interferometers to date, ionizing
detectors count the molecules transmitted through the inter-
ferometer and the required spatial resolution is provided by
scanning a grating across the interference pattern. For some
setups in this study, we propose instead the adsorption of the
interferogram on a transparent surface, followed by high
resolution imaging using electron or optical super-resolution
microscopy [74–76].

3.3. Survey results

In order to compare the interferometer setups we numerically
compute and optimize the figure of merit N (see

equation (19)) for each combination of grating configuration
and particle species. The optimization is carried out over the
average velocity of the particles and the powers of the laser
gratings. For configurations with multiple laser gratings, the
powers of the outer gratings are held equal. The results are
summarized in figure 2.

For the biomolecules in our list, we find that all of the
setups considered offer similar performance. The greatest
difference can be seen between the imaging and the inte-
grating-detection setups, the latter typically requiring about an
order of magnitude7 more counts to achieve the same degree
of distinguishability between the classical and the quantum
model. Within both groups, optimal performance is offered by
the material-depletion setups (MDM and MDI), followed
closely by the material-phase (MPM and MPI) and the
asymmetric depletion-phase configurations (DPM 1:2 and
DPI 1:2). The MPM configuration is close to optimal among
these setups. The DPM 1:2 and DPI 1:2 setups are the best
alternatives should clogging of the material grating become a
problem. The calculated values of N suggest that all proposed
setups are viable with biomolecules if one can detect and
accumulate a total of several ten thousand molecular counts.

For 100 kDa metal clusters we find that, similar to bio-
molecules, the material-depletion setups offer the best per-
formance. Also, replacing the last grating with a spatially-
resolving detector has again the effect of lowering the
required numbers of counts by about an order of magnitude.
We find that some configurations are better for silver than for
cesium, because of the high polarizability of the cesium
cluster at 532 nm. In that case the best discrimination between
the quantum and the classical model would nominally be
achieved at low velocities, where for the same reason a
material grating becomes almost opaque. This is especially
pronounced for the setups MPM and MPI with a material
grating in G1 and a phase grating in G2. All considered setups
are viable with 100 kDa silver clusters for a few hundred

Table 1. Molecules and clusters used in this study and their parameters: polarizability volumes α and absorption cross sections σ at 266 and
532 nm. The absorption cross sections of insulin and GFP correspond to that of the photo-cleavable group [54]. The remaining values are
estimated as described in appendix A.

( )m kDa a (Å)266
3 s ( )cm266

2 a (Å)532
3 s ( )cm532

2

Insulin 5.8 600 4×10−17 600 0
Trp50 [68] 10 1000 9.1×10−16 1000 0
GFPa 27 2700 4×10−17 2700 0
Silver 100 2500 6.9×10−15 5200 2.1×10−16

Cesium 100 −2200 6.5×10−15 −22000 2.4×10−14

Silver 300 7400 2.1×10−14 15400 6.2×10−16

Cesium 300 −6700 1.9×10−14 −65000 7.2×10−14

a

Green fluorescent protein.

7 The exact factor can be estimated analytically in the following way. Note
that the removal of the last grating improves the transmission of the
interferometer by ( )( )B1 00

3 , while the pattern amplitude changes by
( )( )

( )B1 0nT d T d
3
1 3 2 1

in the quantum and by ( )( )
( )C1 0nT d T d
3
1 3 2 1

in the classical
model (see equation (14)). One can show that =( ) ( )( ) ( )B C0 0k

i
k

i and therefore,
when ( )Bk

3 is velocity-independent or when the velocity spread is small, N
changes by a factor [ ( )] ( )( )

( ) ( )B B0 0nT d T d
3 2

0
3

1 3 2 1
.
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thousand counts. This also holds for 100 kDa cesium clusters
if G2 is a depletion grating.

For clusters with a mass of 300 000 Da an imaging
interferometer can achieve the same discrimination between a
quantum and a classical model as a non-imaging scheme, but
it achieves that feat with ten times fewer counts. The high
polarizability of the cesium clusters is even more apparent
here, significantly affecting the performance of all config-
urations with a phase grating in G2. For 300 kDa silver
clusters a few million counts will be required, when the
Coriolis force is not compensated.

In all cases considered, the asymmetric depletion-phase-
material (DPM 1:2) performs better than its symmetric
counterpart. Because of the longer distance between G2 and
G3, low-order diffraction at G2 is already sufficient to close
the interferometer paths at G3. This is true for all Talbot–Lau
interferometers with unequal grating periods.

Figure 2 suggests that the minimal number of counts
required to verify the quantumness of the fringe pattern
increases with the mass of the particle. This is due to the
dephasing caused by the Coriolis force, which is proportional
to mass if the interferometer length is fixed. This can be seen
from equations (10) and(11) assuming the total transit time is
proportional to the Talbot time =T md hT

2 . If the Coriolis
force is compensated, the particle mass can be increased

without loss of distinguishability as long as the laser power
and the particle’s polarizability and velocity are adjusted
accordingly.

In the discussion above we assumed that for each setup
the optimal laser intensity can be reached. For insulin and
GFP we require more than 20 W of UV light for a laser beam
focused to a 1/e2 waist of w=150 μm. This is challenging
but within reach of intracavity UV power enhancement. For
metal clusters, laser intensities as low as 1 W at 266 nm or 15
W at 532 nm are sufficient, even at a waist of 750 μm. These
power levels are readily available from commercial light
sources.

4. Summary and outlook

Our results suggest that the MPM configuration, as used in
the earlier KDTLI interferometer [77] can be suitable for
quantum interference of biomolecules as complex as the
green fluorescent protein at 27 000 Da (see figure 3) or even
silver clusters beyond 300 000 Da, if the interferometer is
stretched by a factor of ten to L1=L2=1m. The arguments
in favor of metal clusters also hold for silicon nanoparticles,
which may eventually even be prepared by advanced cavity
cooling methods in a mass range of 106–107 Da [78].

Figure 2. Distinguishability of the quantum and the (hypothetical) classical pattern for various interferometer configurations and particle
species, as quantified by the count number N of equation (19) (smaller is better). D,M, and P stand for depletion, material, and phase grating,
respectively, and the letter I denotes spatially-resolving detection; e.g. by fluorescence imaging of surface-adsorbed molecules. The numbers
following the setup names specify the ratio of distances between the gratings, =L G G1 21 and =L G G2 32 , with L1:L2=1:1 if not otherwise
mentioned. These results are obtained assuming a Gaussian velocity spread in the particle beam with a standard deviation equal to 5% of the
average velocity. The latter is optimized for minimal N over the 30–600 m s−1 range.
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The survey also allows us to identify alternative schemes
to overcome foreseeable experimental challenges en route to
those goals. The alternative setups include the asymmetric
depletion-phase configurations (DPM 1:2 and DPI 1:2), where
the nanomask in G1 is substituted by a UV standing light wave
and G3 can either be a mechanical grating or an adsorptive
surface which is subsequently imaged. Photo-depletion grat-
ings are advisable when clogging of the material mask
becomes a limitation. The DDD and DDI configurations are
furthermore advantageous over MPM and MDM for high-mass
interference, for instance with cesium.

A major constraint to high-mass interference is the
dephasing due to the Coriolis force, which can be mitigated in
a figure-eight setup, as demonstrated for atoms [79, 80].

For each interferometer setup, we have found the molecular
velocity and laser power that minimize the number of counts
required to distinguish a quantum fringe pattern from a classical
moire effect. Optimal performance can be achieved when the last
grating is replaced by a single-particle imaging detector based on
fluorescence [76], STED [81], or highly sensitive scattering
imaging for particles beyond about 10 000 Da [82, 83].

These findings will guide future experimental efforts in
high-mass interferometry.
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Appendix A. Polarizabilities and cross sections of
biomolecules and clusters

In the following, we briefly describe how we estimate the
polarizability volumes and absorption cross sections shown in
table 1. These quantities enter the coefficients ( )Bn

i and ( )Cn
i

describing the particle-grating interaction.
For biomolecules, we use their static polarizabilities,

which we estimate by summing the contributions of aromatic
amino acids (including histidine), assuming that each con-
tributes 20Å3, and non-aromatic amino acids, assuming that
each contributes 10Å3. To estimate the absorption cross
section, we first estimate the molar absorption coefficient ε as
in [84]. The cross section is then obtained as

s
e

= ( )
N

log 10
, A1

A

where NA is the Avogadro number.
Polarizabilities for clusters are estimated based on the

experimental values of the real and imaginary part of the
complex refractive index [85, 86]. Using those, we calculate
the relative permittivity ò and then the polarizability volume
and absorption cross section using the formulas for a sub-
wavelength dielectric sphere [53]




a =
-
+

( )r Re
1

2
, A23




s
p
l

=
-
+

( )r8
Im

1

2
. A3

2 3

where λ is the wavelength and r is the radius of the cluster
estimated using the number of atoms and the Wigner–Saitz
radii taken from [87, 88].

Appendix B. Effective opening fraction of material
gratings

To estimate the effective slit width in the presence of particle-
grating interaction, we assume that the particles which get
deflected by more than a fixed angle θc remain undetected. If
the interaction potential is V(x) and b is the grating’s thick-
ness, the deflection angle to first order in the grating transit
time is

q » -
¢( ) ( )V x b

mv
. B1

2

Figure 3. Visibility of green fluorescent protein (GFP) interference
fringes in a material-phase-material grating interferometer, as
predicted by the quantum model. In the notation of equation (13), the
visibility is defined as ∣ ∣S S2 n 0, where n is the smallest value for
which ¹S 0n . The velocity distribution in the beam is assumed to
be Gaussian with mean v and 0.05v standard deviation. ā is a
measure of the strength of particle-grating interaction, defined as
a pa=¯ ( )P hcw8 2 z , where α is the polarizability volume, P is
laser power, wz is the 1/e2 intensity radius of the beam in the
direction of the molecules’ propagation, and h, c are the Planck
constant and the velocity of light. The phase acquired by particles
moving with velocity v through the antinode of the standing laser
wave is then pā v2 . Note, that GFP does not fluoresce in the
unsolvated vacuum state, nor can it be photo-ionized using standard
techniques. We thus assume that UV photo-cleavage ionization of a
small tag can be used [54].
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Equation (B1) is a good approximation as long as the higher
order term is negligible; that is, as long as

 - ¢ ⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )V x v m V x

m v

b

v6
1. B2

2 2

2 2

2

Substituting the CP potential for V(x) yields the cutoff
distance for a particle with static polarizability volume α0

 a
p q

= e⎛
⎝⎜

⎞
⎠⎟ ( )x

C c b

mv

12

8
, B3c

c

0
2

1
5

where [55]

ò n
n n

en em n

en em n

n
mn em n

mn em n
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- - +

+ - +

-
- - +

+ - +

e
¥

⎜ ⎟
⎡
⎣
⎢⎢
⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥ ( )

C d
2 1 1

1

1 1

1
B4

1 2 4

2

2

4

2

2

is a constant depending on the static relative permittivities ε
and μ of the grating material. Knowing xc, we can calculate
the effective opening fraction ¢f from the physical value f.

¢ = - ( )f f
x

d

2
. B5c

Using ¢f , we can express the Talbot coefficients of the
material gratings as [53]

p= = ¢ ¢( ) ( ) ( ) ( )B C f nf0 0 sinc . B6n n

Many molecules also possess permanent electric dipole
moments. Their influence can be estimated using the orien-
tation-averaged, non-retarded potential of a dipole D in the
vicinity of a dielectric half-space

e
e pe

= -
-
+

e( ) ( )V x
D

x

1

1 48

1
. B7D

2

0
3

To do this, we take the potential in equation (B1) to be the
sum of the dipole potential(B7) and the CP potential.

Assuming parameters similar to those used in previous
high-mass experiments [36] ( f=0.42, ε=7.5 and μ=1 for
silicon nitride, b=100 nm, and θc=0.5 mrad) and the
prototypical particles listed in table 1, we find that the influ-
ence of the CP interaction is significant at slow velocities
(v≈100 m s−1), often reducing the opening fraction by a
factor of two. We further find that, although the dipole and the
CP potentials can be comparable, including the former
changes ¢f only by few percent points. This is because of the
very steep dependence of both forces, and thus the deflection
angle θ, on the particle-grating distance. The contribution of
the permanent dipole moments to the particle-grating inter-
action is therefore neglected in the present analysis.
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