
PHYSICAL REVIEW A 85, 042513 (2012)

Casimir-Polder interaction of fullerene molecules with surfaces
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We calculate the thermal Casimir-Polder potential of C60 and C70 fullerene molecules near gold and silicon
nitride surfaces, motivated by their relevance for molecular matter-wave interference experiments. We obtain the
coefficients governing the asymptotic power laws of the interaction in the thermal, retarded, and nonretarded
distance regimes and evaluate the full potential numerically. The interaction is found to be dominated by electronic
transitions and hence independent of the internal temperature of the molecules. The contributions from phonon
transitions, which are affected by the molecular temperature, give rise to only a small correction. Moreover,
we find that the sizable molecular line widths of thermal fullerenes may modify the nonretarded interaction,
depending on the model used. Detailed measurements of the nonretarded potential of fullerene thus allow one to
distinguish between different theories of incorporating damping.
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I. INTRODUCTION

It is a remarkable feature of fullerene buckyballs that they
can exist as delocalized quantum waves [1], as is proven
almost routinely in matter-wave interference experiments [2].
Such interferometer setups involve nanomechanical grating
structures, typically made of gold or silicon nitride. As the
molecules pass through the grating slits they experience an
attractive dispersion force between the polarizable molecule
and the grating wall. Even though this Casimir-Polder (CP)
interaction is weak, it must be accounted for in predictions of
the interference fringes [3,4].

The influence of dispersion forces is particularly strong in
modern near-field interference setups where many different
interference orders contribute resonantly, implying that even
tiny distortions of the molecular wave fronts affect the fringe
pattern [4]. In these experiments, it is the presence of the
Casimir-Polder interaction which impedes the demonstra-
tion of interference with even larger and more polarizable
particles [5]. At the same time, this strong sensitivity of
the fullerene matter waves provides a means of verifying
the precise value and functional form of the dispersion
forces. It is therefore important to have a reliable description
of the expected CP potential available, which should also
account for molecules not in thermal equilibrium with their
environment, given that the beam is usually produced by
thermal sublimation. The need for accurate CP potentials
was recently stressed for the related phenomenon of quantum
reflection [6].

Casimir-Polder interactions have been studied intensively
in recent years, though mainly focused on atoms [7–10]. Such
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studies include thermal nonequilibrium situations in which
the substrate temperature [11] or the internal temperature of
the microscopic (atomic or molecular) system [12,13] can be
vastly different from that of the macroscopic environment.
Carbon-based nanostructures have been of particular interest
due to applications. In this context, the interaction of a carbon
nanotube with a surface has been studied [14].

Motivated by the mentioned matter-wave interference
experiments, we now discuss and evaluate in detail the CP
interaction of C60 and C70 fullerenes with planar surfaces
made of gold or silicon nitride (SiNx or Si3N4). In Sec. II, we
summarize the basic equations that govern the CP potential,
determine the molecular polarizabilities of the fullerenes from
spectroscopic data, and list the material parameters of the
surface materials. In Sec. III, we calculate the CP potentials by
both numerical and analytical means and discuss our results.
A short summary is given in Sec. IV.

II. BASIC EQUATIONS AND PARAMETERS

We begin by presenting the theory of the thermal CP po-
tential and by recording the molecular and material properties
as obtained from optical data.

A. Thermal Casimir-Polder potential

We consider a nonmagnetic, isotropic molecule of internal
temperature Tm placed at a distance z from a plane non-
magnetic surface of permittivity ε(ω), with both surface and
environment being held at uniform temperature T . As shown
in Refs. [13,15], the thermal CP potential of the molecule can
be given as a sum of nonresonant and resonant contributions,

U (z) = Unres(z) + Ures(z). (2.1)
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The nonresonant contribution is due to virtual photons and
it is given by a sum

Unres(z) = μ0kBT

8π

∞∑
j=0

′
[αTm (iξj ) + αTm (−iξj )]

×
∫ ∞

ξj /c

dκ⊥ e−2κ⊥z
[
ξ 2
j rs(ξj ,κ

⊥)

− (
2 κ⊥2c2 − ξ 2

j

)
rp(ξj ,κ

⊥)
]

(2.2)

over the purely imaginary Matsubara frequencies iξj with
ξj = (2πkBT/h̄)j , where the prime indicates that the j = 0
term carries half-weight. The properties of the molecule are
represented by its thermal polarisability

αTm (ω) =
∑

n

pn(Tm)αn(ω), (2.3)

where

pn(Tm) = e−En/(kBTm)∑
k e−Ek/(kBTm)

(2.4)

denotes the populations of the molecular eigenstates with
energies En and

αn(ω) = lim
ε→0+

2

3h̄

∑
k

ωkn|dnk|2
ω2

kn − ω2 − iω(	n + 	k)/2
(2.5)

[ωkn = (Ek−En)/h̄, molecular transition frequencies; dnk ,
electric dipole matrix elements; 	n, level widths/damping
constants; 	0 = 0] are the associated polarizabilities. The
material properties of the surface enter via the reflection
coefficients for s- and p-polarized waves

rs(ξ,κ⊥) = κ⊥ − κ⊥
1

κ⊥ + κ⊥
1

, rp(ξ,κ⊥) = ε(iξ )κ⊥ − κ⊥
1

ε(iξ )κ⊥ + κ⊥
1

(2.6)

with κ⊥
1 =

√
κ⊥2+[ε(iξ )−1]ξ 2/c2.

The resonant contribution to the potential is due to the
absorption and stimulated emission of real photons; it reads

Ures(z) = μ0

12π

∑
n

pn(Tm)

{∑
k<n

[nT (ωnk) + 1]−
∑
k>n

nT (ωkn)

}

×ω2
nk|dnk|2

∫ ∞

0
dk‖ k‖

k⊥

{
Im

[
e2ik⊥zrs(|ωkn|,k‖)

]
−

(
2

k⊥2c2

ω2
nk

− 1

)
Im

[
e2ik⊥zrp(|ωkn|,k‖)

]}
, (2.7)

with

nT (ω) = 1

eh̄ω/(kBT ) − 1
(2.8)

denoting the thermal photon number. The reflection coeffi-
cients for real frequencies can be given as

rs(ω,k‖) = k⊥ − k⊥
1

k⊥ + k⊥
1

, rp(ω,k‖) = ε(ω)k⊥ − k⊥
1

ε(ω)k⊥ + k⊥
1

, (2.9)

with k⊥ =
√
ω2/c2−k‖2 if k‖ �ω/c, k⊥ = i

√
k‖2−ω2/c2 if

k‖ �ω/c, and k⊥
1 =

√
ε(ω)ω2/c2 − k‖2 with Im k⊥

1 > 0.
We stress that the molecule is out of thermal equilibrium

with its environment whenever Tm �= T . Here, the thermal
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FIG. 1. (Color online) Nine-oscillator fit (solid line) to the
spectroscopic data (dashed line) of the permittivity of a thin C60

film.

polarizability as well as the internal-state populations of the
molecule depend on its internal temperature Tm, while the
Matsubara frequencies and thermal photon numbers are given
in terms of the environment temperature T .

B. Molecular and material properties

The dielectric permittivity ε(ω) of thin fullerene films in
the optical regime has been measured by means of electron
energy-loss spectroscopy [16] as well as in the gas phase [17].
The frequencies and dipole matrix elements of the corre-
sponding electronic transitions of single fullerene molecules
can be deduced from the data in Ref. [16] in a two-step
procedure.

We first apply a simultaneous least-squares fit of an n-
oscillator model

ε(ω) = ε∞ +
n∑

i=1

fi

2
i


2
i − ω2 − iγiω

(2.10)

to the measured data for the real and imaginary parts of the
permittivity as taken from Ref. [16]. The fits with n = 9
oscillators for C60 and n = 7 for C70 are illustrated in Figs. 1
and 2. The obtained fit parameters 
i , fi , and 	i are given in
Tables I and II.

Next, we relate the fitted permittivity to the molecular
polarizability by means of the Clausius-Mosotti law

α(ω) = 3ε0

η

ε(ω) − 1

ε(ω) + 2
, (2.11)

where η is the number density of fullerene molecules in the
film. For a face-centred-cubic crystal structure of the fullerene
molecules in the thin film, one has η = 4/a3 with lattice
constants a=1.42 × 10−9 m for C60 and a=1.51 × 10−9 m
for C70 [16]. We employ a decomposition of the resulting
expression into partial fractions to write it in the form

α0(ω) = 2

3h̄

∑
k

ωk0|d0k|2
ω2

k0 − ω2 − iω	k/2
, (2.12)
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FIG. 2. (Color online) Seven-oscillator fit (solid line) to the
spectroscopic data (dashed line) of the permittivity of a thin C70

film.

from which the transition frequencies ωk0, dipole matrix
elements d0k , and excited-state widths 	k can be read off.
They are given in Tables III and IV. Note that we have
used the ground-state polarizability α0(ω) rather than its
thermal counterpart (2.3). This is a good approximation for
the considered electronic transitions whose frequencies are
much higher than the thermal frequency kBTm/h̄ = 3.93 ×
1013 rad/s corresponding to the temperature of the molecules
in the experiment [16], Tm = 300 K.

In addition to the optical transitions, four phonon transitions
have been identified for C60 in the infrared frequency regime.
The respective permittivity data obtained from Fourier trans-
form infrared experiments have been fitted to a model of the
kind given by Eq. (2.10) [18], with the parameters being listed
in Table V. To obtain the respective molecular polarizability,
we make use of the Clausius-Mosotti law (2.11). As the
measurements have been performed at room temperature
(Tm = 300 K) where the phonons are excited to a considerable
degree, we have to employ the thermal polarizability (2.3).
According to Eqs. (2.4) and (2.5), the latter can be written in

TABLE I. Fit parameters obtained for the permittivity of C60 films
in the optical regime. ε∞ = 1.0463.


i (rad/s) fi γi (rad/s)

4.10 × 1015 0.120 5.44 × 1014

5.47 × 1015 0.663 1.14 × 1015

6.99 × 1015 0.664 1.28 × 1015

8.51 × 1015 0.348 1.60 × 1015

1.35 × 1016 0.0270 1.72 × 1015

1.52 × 1016 0.0471 1.33 × 1015

1.85 × 1016 0.554 6.29 × 1015

2.54 × 1016 0.403 9.28 × 1015

3.27 × 1016 0.229 9.31 × 1015

TABLE II. Fit parameters obtained for the permittivity of C70

films in the optical regime. ε∞ = 1.0827.


i (rad/s) fi γi (rad/s)

3.76 × 1015 0.245 9.91 × 1014

4.97 × 1015 0.170 1.70 × 1015

7.92 × 1015 1.39 4.05 × 1015

1.58 × 1016 0.276 4.05 × 1015

1.98 × 1016 0.502 6.17 × 1015

2.51 × 1016 0.393 8.19 × 1015

3.34 × 1016 0.186 8.45 × 1015

the form

αTm (ω) = 2

3h̄

∑
n,k

pn(Tm)
ωkn|dnk|2

ω2
kn − ω2 − iω(	n + 	k)/2

= 2

3h̄

∑
n<k

pnk(Tm) tanh

(
h̄ωkn

2kBTm

)

× ωkn|dnk|2
ω2

kn − ω2 − iω(	n + 	k)/2
(2.13)

with pnk(T )=pn(T )+pk(T ). Assuming that all observed
phonon transitions are from the ground state (n=0), we have

αTm (ω) = 2

3h̄

∑
k

p0k(Tm) tanh

(
h̄ωk0

2kBTm

)

× ωk0|d0k|2
ω2

k0 − ω2 − iω	k/2
. (2.14)

The transition frequencies and dipole matrix elements can then
be readily obtained by comparing with the fit for Eq. (2.11),
with the results being given in Table VI.

We are going to study the interaction of fullerene molecules
with Au, SiNx , and Si3N4. The permittivity of Au can be given
as

ε(ω) = 1 − 
2
0

ω(ω + iγ0)
+

6∑
i=1

fi

2
i


2
i − ω2 − iγiω

, (2.15)

where the first term is the response of the conduction electrons
as described by a Drude model [19] and the Lorentz-type
contributions are due to atomic transitions (six-oscillator fit
[20] based on data from Ref. [21]). Values for the model

TABLE III. Transition frequencies, dipole matrix elements, and
widths of the electronic transitions of C60.

ωk0 (rad/s) d0k (Cm) 	k (rad/s)

4.14 × 1015 7.93 × 10−30 1.10 × 1015

5.73 × 1015 2.36 × 10−29 2.32 × 1015

7.43 × 1015 3.58 × 10−29 2.65 × 1015

8.97 × 1015 4.93 × 10−29 3.23 × 1015

1.36 × 1016 1.09 × 10−29 3.47 × 1015

1.53 × 1016 1.65 × 10−29 2.73 × 1015

1.98 × 1016 7.28 × 10−29 1.28 × 1016

2.70 × 1016 9.42 × 10−29 1.83 × 1016

3.43 × 1016 1.11 × 10−28 1.85 × 1016
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TABLE IV. Transition frequencies, dipole matrix elements, and
widths of the electronic transitions of C70.

ωk0 (rad/s) d0k (Cm) 	k (rad/s)

3.83 × 1015 1.40 × 10−29 2.01 × 1015

5.03 × 1015 1.50 × 10−29 3.43 × 1015

9.04 × 1015 6.91 × 10−29 8.12 × 1015

1.63 × 1016 4.03 × 10−29 8.28 × 1015

2.10 × 1016 7.90 × 10−29 1.25 × 1016

2.69 × 1016 1.15 × 10−28 1.60 × 1016

3.48 × 1016 1.13 × 10−28 1.68 × 1016

parameters as taken from the above mentioned references are
listed in Table VII.

Diffraction experiments frequently use gratings made of
low-pressure chemical vapor deposited silicon nitride. The
imaginary part of the permittivity of this (nonstoichiometric)
SiNx has been determined from optical measurements. As
reported in Ref. [22], one has

Imε(ω) = (ω − 
T )
f 
γ (ω − 
T )2

[(ω2 − 
2)2 − γ 2ω2]ω
(2.16)

with parameters 
T =3.48 × 1015 rad/s, 
=1.09 ×
1016 rad/s, f =1.13 × 1017 rad/s, and γ =1.16 × 1016 rad/s.
The permittivity at imaginary frequencies as required for
the nonresonant CP potential can be obtained from the
Kramers-Kronig relation

ε(iξ ) = 2

π

∫ ∞

0
dω

ωImε(ω)

ω2 + ξ 2
. (2.17)

In particular, ε(0) = 3.87.
Alternatively, we also consider noncrystalline Si3N4. The

real and imaginary parts of its permittivity have been reported
over a wide frequency range [23]. We have fitted this data with
a single-resonance four-parameter semiquantum model [24],

ε(ω) = 
2
L − ω2 − iωγL


2
T − ω2 − iωγT

. (2.18)

The fit, as displayed in Fig. 3, yields the parameters

L =2.69 × 1016 rad/s, 
T =1.33 × 1016 rad/s, γL =3.05 ×
1016 rad/s, and γT =6.40 × 1015 rad/s. This yields a static
permittivity ε(0) = 4.10.

III. CASIMIR-POLDER POTENTIAL OF FULLERENES

Using the basic formulas from Sec. II A together with the
molecular and material parameters from Sec. II B, we can now
evaluate the CP potential. We begin by calculating the CP

TABLE V. Fit parameters for the permittivity of C60 films in the
infrared regime.


i (rad/s) fi γi (rad/s)

9.91 × 1013 0.024 4.33 × 1011

1.08 × 1014 0.007 6.03 × 1011

2.23 × 1014 0.0011 5.46 × 1011

2.69 × 1014 0.001 6.40 × 1011

TABLE VI. Transition frequencies, dipole matrix elements, and
widths of the phonon transitions of C60.

ωk0 (rad/s) d0k (Cm) 	k (rad/s)

9.95 × 1013 1.69 × 10−30 8.67 × 1011

1.09 × 1014 1.00 × 10−30 1.21 × 1012

2.23 × 1014 5.33 × 10−31 1.09 × 1012

2.69 × 1014 5.58 × 10−31 1.28 × 1012

potential associated with electronic transitions. As seen from
Tables III and IV, the electronic transition frequencies of C60

and C70 are much larger than the respective thermal frequency
kBT/h̄ = 3.93 × 1013 rad/s even at room temperature. As
a consequence, the thermal photon numbers nT (ωnk) are
extremely small. The molecules have shown interference at
internal temperatures of 2500 K [25,26], and they are stable
up to 6000 K [27]. Even at the latter temperature, the thermal
frequency kBTm/h̄ = 7.86 × 1014 rad/s is much smaller than
the molecular transition frequencies, so the molecule is
essentially in its electronic ground state, pn(Tm)=δn0. As a
result, the resonant CP potential (2.7) vanishes and the CP
potential (2.1) is entirely given by the nonresonant contribution
(2.2), which simplifies to

U (z) = μ0kBT

8π

∞∑
j=0

′
ξ 2
j [α0(iξj ) + α0(−iξj )]

×
∫ ∞

ξj /c

dκ⊥ e−2κ⊥z

[
rs −

(
2

κ⊥2c2

ξ 2
j

− 1

)
rp

]
.

(3.1)

As first shown in Ref. [28], we may distinguish three
asymptotic regimes where the potential reduces to simple
power laws. At distances much larger than the wavelength
of the predominant thermal photons, z	h̄c/(kBT ), the
Matsubara sum is dominated by its first term. Using Eq. (2.6)
and carrying out the κ⊥ integral, we have

U (z) = −C3T

z3
(3.2)

with [α0(0)≡α0]

C3T = kBT α0

16πε0

ε(0) − 1

ε(0) + 1
. (3.3)

TABLE VII. Model parameters for the permittivity of Au.

i 
i (rad/s) fi γi (rad/s)

0 1.37 × 1016 5.32 × 1013

1 4.63 × 1015 0.762 1.14 × 1015

2 6.30 × 1015 2.41 2.81 × 1015

3 8.20 × 1015 0.0926 1.52 × 1015

4 1.29 × 1016 2.14 1.06 × 1016

5 2.05 × 1016 0.244 9.12 × 1015

6 3.27 × 1016 0.670 1.37 × 1016

042513-4



CASIMIR-POLDER INTERACTION OF FULLERENE . . . PHYSICAL REVIEW A 85, 042513 (2012)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

4

6

8

ω [1016 rad/s]

Re
 ε

(ω
) 

 

 
Fit
spectroscopic data

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

4

6

8

ω [1016 rad/s]

Im
 ε(

ω
)

 

 
Fit
spectroscopic data

FIG. 3. (Color online) Four-parameter semiquantum model fit
(solid line) to the spectroscopic data (dashed line) of the permittivity
Si3N4.

For smaller distances z�h̄c/(kBT ), the Matsubara sum is well
approximated by an integral, so that

U (z) = h̄μ0

16π2

∫ ∞

0
dξ ξ 2[α0(iξ ) + α0(−iξ )]

×
∫ ∞

ξ/c

dκ⊥ e−2κ⊥z

[
rs −

(
2

κ⊥2c2

ξ 2
− 1

)
rp

]
. (3.4)

This distance region can be further divided into the retarded
and nonretarded regimes. At retarded distances c/ωk0 �z�
h̄c/(kBT ), the approximations α0(iξ )�α0 and ε(iξ )�ε(0)≡ε

lead to

U (z) = −C4

z4
(3.5)

with

C4 = 3h̄cα0

64π2ε0

∫ ∞

1
dv

[(
2

v2
− 1

v4

)
εv − √

ε − 1 + v2

εv + √
ε − 1 + v2

− 1

v4

v − √
ε − 1 + v2

v + √
ε − 1 + v2

]
, (3.6)

where we have introduced the new integration variable
v = κ⊥c/ξ . An explicit formula for C4 and some of its
limits are found in the appendix. The values of α0 are
9.72 × 10−39 C2 m2/J and 1.19 × 10−38 C2 m2/J for C60 and
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C
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1

FIG. 4. (Color online) Dependence of the retarded CP coefficient
C4 of C60 on the static permittivity.

C70, respectively. For nonretarded distances z�c/ωk0, an
asymptotic expansion in terms of z leads to

U (z) = −C3

z3
(3.7)

with

C3 = h̄

32π2ε0

∫ ∞

0
dξ [α0(iξ ) + α0(−iξ )]

ε(iξ ) − 1

ε(iξ ) + 1
. (3.8)

Using the parameters of Sec. II B, we have calculated the
values of the coefficients C3, C4, and C3T for C60 and C70

molecules interacting with a perfectly conducting surface as
well as gold and silicon nitride surfaces. The results are given in
Table VIII. Due to its larger dipole moments, all coefficients are
larger for C70 than they are for C60. The difference is most pro-
nounced in the nonretarded regime. Comparing the coefficients
for the different materials, we note that Au can be considered
a perfect metal in the retarded and thermal regimes, but
corrections due to finite reflectivity are quite significant at non-
retarded distances, leading to a reduction of C3 by more than a
factor of 2. This is due to the fact that the molecular transition
frequencies are a sizable fraction of the Au plasma frequency.
The silicon nitride potentials are smaller than those of Au
due to their smaller permittivity. This difference is most pro-
nounced at large distances. Comparing the two different silicon
nitride species reveals that the coefficients for Si3N4 are larger
than those of SiNx by up to 40% in the nonretarded regime.

The dependence of the retarded CP coefficient C4 on the
static permittivity of the surface material is displayed in Fig. 4.
The figure shows that the close similarity of the C4 coefficients
for the two silicon nitride species is due to their similar static
permittivities. It also reveals that the asymptotic C4 value of

TABLE VIII. Coefficients for the asymptotic power laws of the CP potential of fullerene (T = 300 K).

C3 (Jm3) C4 (Jm4) C3T (Jm3)

Material C60 C70 C60 C70 C60 C70

Perfect conductor 2.4 × 10−47 3.0 × 10−47 3.3 × 10−55 4.0 × 10−55 9.0 × 10−50 1.1 × 10−49

Au 1.0 × 10−47 1.3 × 10−47 3.3 × 10−55 4.0 × 10−55 9.0 × 10−50 1.1 × 10−49

Si3N4 8.4 × 10−48 1.1 × 10−47 1.5 × 10−55 1.9 × 10−55 5.5 × 10−50 6.7 × 10−50

SiNx 6.3 × 10−48 7.9 × 10−48 1.4 × 10−55 1.8 × 10−55 5.3 × 10−50 6.5 × 10−50

042513-5



BUHMANN, SCHEEL, ELLINGSEN, HORNBERGER, AND JACOB PHYSICAL REVIEW A 85, 042513 (2012)

10−9 10−8 10−7 10−6 10−5 10−4
−1014

−1012

−1010

−108

−106

−104

−102

−100

−10−2

−10−4

−10−6

Separation from wall (m)

Po
te

nt
ia

l (
Hz

)

Retarded
regime

C4
z4U =

Non-
retarded
regime

C3
z3U =

High temperature
regime

C3T
z3U =

FIG. 5. (Color online) CP potential of C60 in front of an Au surface at room temperature and its asymptotes.

a metal (ε→∞) is only reached for very large permittivities,
hence the large difference compared to Au.

The full potential of C60 in front of an Au surface has
been calculated numerically and is displayed in Fig. 5.
The tabulated results of all CP potentials discussed in this
article can also be found in the supplementary material [29].
The figure shows that the potential is faithfully represented by
the asymptotic power laws (3.2), (3.5), and (3.7) over a large
part of the displayed distance range (as indicated by the shaded
areas). However, there is a large gap between the nonretarded
and retarded regions (between 2 × 10−8 m and 10−7 m) where
neither limit applies. The potentials for C70 and for different
surfaces show a similar qualitative behavior.

The environment temperature T affects the CP potential at
distances larger than the thermal wavelength where thermal
photons lead to softening of the potential decay. This temper-
ature dependence is demonstrated in Fig. 6, where we display
the CP potential for different environment temperatures. As
seen, thermal photons begin to affect the potential at smaller
distances for higher environment temperatures, resulting in

10−7 10−6 10−5 10−4−108

−106

−104

−102

−100

−10−2

−10−4

−10−6

Separation (m)

Po
te

nt
ia

l (
Hz

)

T =
 0K

T = 300K

T = 600K

FIG. 6. (Color online) CP potential of C60 in front of an Au
surface at different temperatures.

larger long-distance potentials. The potentials for 300 K and
600 K begin to differ from the zero-temperature result at
distances larger than about 2 μm or 4 μm, respectively.

In Fig. 7, we compare the potentials of the two different
types of fullerenes. The C70 potential is larger than that of
C60 by a factor which ranges between 1.3 at small distances
and 1.2 at large distances. This difference is due to the larger
dipole moments of C70; recall Eqs. (3.8) and (3.6) for the C3

and C4 coefficients and (2.5) for the atomic polarizability. The
ratio of the potentials drops in the transition region between
the nonretarded and retarded regimes. This is because the
transition frequencies of C70 are slightly larger than those
of C60.

The potentials of the two silicon nitride species are
compared to that of Au in Fig. 8. Note that the curves for
the two different fullerene molecules are indistinguishable in
this plot. We see that the ratio is roughly 60% for both silicon
nitride species at large distances. This similarity is due to
their very similar static permittivities. At smaller distances, the
potential of Si3N4 is larger than that of SiNx by 30%, because
its reflection coefficient falls off less rapidly with frequency.
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FIG. 7. (Color online) Comparison of the CP potentials of C60 and
C70 in front of gold and silicon nitride surfaces at room temperature.
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FIG. 8. (Color online) Comparison of the CP potentials of
fullerene in front of Si3N4 and SiNx surfaces at room temperature,
normalized with respect to the corresponding Au potentials.

As seen from Tables III and IV, the line widths of the
optical transitions are almost comparable to the transition
frequencies. In our theory, the impact of the line widths is
accounted for microscopically [30]: First, one explicitly solves
the internal dynamics of the molecules, which depends on
the transition frequencies and line widths. In a second step,
this solution is used to determine the CP potential (3.1),
where the dependence on the molecular parameters can be
expressed via the molecular polarizability in a symmetrized
form, 1

2 [α0(iξ ) + α0(−iξ )] [30]. As seen from Eq. (2.5), the
line widths affect the imaginary-frequency polarizability most
strongly at large frequencies. The largest impact on the CP
potential is hence expected at small distances. In Table VIII,
we compare the C3 coefficients including the finite line widths
with those one would obtain for zero line widths. We note
that the line widths have practically no influence on the
nonretarded potential, with differences of about 1%. This tiny
change is quadratic in the line widths and unobservable in an
experiment.

In an alternative approach based on linear-response theory
[11], the atomic properties enter by means of the fluctuation-
dissipation theorem. The resulting CP potential depends on the
atomic polarizability in its unsymmetrized form,

C3,LRT = h̄

16π2ε0

∫ ∞

0
dξ α0(iξ )

ε(iξ ) − 1

ε(iξ ) + 1
. (3.9)

The atomic transition frequencies and line widths are not
considered explicitly, but only appear at the end of the
calculation when specifying the polarizability. In particular,
the line widths now affect the potential already to linear order.
As seen from Table IX, this leads to a prediction of a reduction

of the C3 coefficient by about 10% due to absorption. This
effect could be visible in sufficiently accurate C3 experiments,
making it possible to distinguish between the macroscopic,
linear response model for absorption and our microscopic
model (which predicts that the effect of absorption on ground-
state potentials is negligible). This possibility makes fullerenes
most attractive for CP-potential studies. In contrast, atomic
systems are unable to resolve the difference between the effects
of symmetrized versus unsymmetrized polarizabilities (or the
neglect of line widths altogether).

Finally, let us discuss the impact of the infrared resonances
on the C60 potential. As seen from Table VI, their dipole
moments are much smaller than those of the optical transitions
(Table III). On the other hand, because their transition wave-
lengths are much longer than those of the optical transitions,
the nonretarded limit applies over a larger range of distances.
In addition, the thermal photon numbers can take large values
even at room temperature, so that resonant potentials (2.7)
come into play.

At distances up to about 10 μm, the CP potential due
to phonon resonances is strongly nonretarded. As shown in
Ref. [31], the potential in this regime is well approximated by

UPhonon(z) = −C3,Phonon

z3
, (3.10)

with

C3,Phonon = 1

48πε0

∑
n,k

pn(Tm)|dnk|2, (3.11)

where the sum only runs over phonon transitions. This
result holds regardless of the environment temperature for all
materials of sufficiently large permittivity. The corresponding
C3 coefficient depends on the internal temperature of the
molecule, and it ranges from C3,Phonon = 3.4 × 10−51Jm3

at zero temperature to C3,Phonon = 2.6 × 10−51Jm3 at Tm =
300 K. A comparison with the C3 coefficients listed in
Table VIII reveals that the potential contribution from infrared
phonon transitions is smaller than the discussed potential from
optical transitions by more than two orders of magnitude.

At larger distances, corrections due to imperfect reflectivity
manifest themselves [32]. However, they do not affect the
order of magnitude of the phonon CP potential, which remains
insignificant. As we have numerically verified, the phonon
contributions only become relevant at very large distances,
well beyond 100 μm.

TABLE IX. Impact of absorption on the C3 coefficients (Jm3) for the CP potential of fullerene.

C60 C70

Material C3 C3,	k→0 C3,LRT C3 C3,	k→0 C3,LRT

Perfect conductor 2.36 × 10−47 2.34 × 10−47 2.15 × 10−47 2.96 × 10−47 2.93 × 10−47 2.68 × 10−47

Au 1.01 × 10−47 1.00 × 10−47 9.28 × 10−48 1.27 × 10−47 1.25 × 10−47 1.15 × 10−47

Si3N4 8.45 × 10−48 8.36 × 10−48 7.69 × 10−48 1.06 × 10−47 1.05 × 10−47 9.55 × 10−48

SiNx 6.26 × 10−48 6.21 × 10−48 5.75 × 10−48 7.86 × 10−48 7.76 × 10−48 7.11 × 10−48
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IV. SUMMARY

We have determined the Casimir-Polder interaction of C60

and C70 with plane surfaces of Au and two different silicon
nitride species, as commonly used in molecular interference
experiments. The numerically calculated potentials are well
approximated by the thermal, retarded, and nonretarded
asymptotes for large, intermediate, and small distances, re-
spectively. We have found that the potential is entirely due
to optical transitions and hence independent of the internal
temperature of the molecules. The environment temperature
affects the potential for distances larger than 2 μm at room
temperature. Comparing the potentials for different silicon
nitride species, we have found differences of up to 30% in
the nonretarded regime, which is most relevant for diffraction
experiments.

According to our microscopic theory of the molecule-field
interaction, the finite line widths of the molecules have
practically no influence on the Casimir-Polder potential. A
macroscopic linear-response approach, on the other hand,
predicts that they decrease the nonretarded potential by
about 10%. The relatively large line widths of the fullerene
transitions thus make them an ideal system to study the impact
of molecular absorption on dispersion interactions.
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APPENDIX: COEFFICIENT FOR THE RETARDED
CASIMIR–POLDER POTENTIAL

The integral of the coefficient C4, given in Eq. (3.6) can be
solved explicitly with the result

C4 = 3h̄cα0

64π2ε0

{
10 − 3

√
ε − 4ε − 3ε3/2 + 6ε2

3(ε − 1)

− ε2

√
ε + 1

[
log

√
ε + 1 − 1√
ε + 1 + 1

+ 2 log(
√

ε + √
ε + 1)

]

− 2ε3 − 4ε2 + 3ε + 1

(ε − 1)3/2
log(

√
ε + √

ε − 1)

}
. (A1)

For large and small values of ε, C4 behaves like

C4 ∼ 3h̄cα0

64π2ε0

(
2 − 5

2
√

ε
+ 44

15ε
+ · · ·

)
, ε 	 1, (A2)

C4 ∼ 3h̄cα0

64π2ε0

(
23

30
χ − 169

420
χ2 + · · ·

)
, χ � 1, (A3)

with χ = ε − 1.
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