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We evaluate the nonlocal spatial interference displayed by Einstein-Podolsky-Rosen entangled particle pairs
after they pass through a double-grating arrangement. An entanglement criterion is derived which serves to
certify the underlying entanglement only from the observed spatial correlations. We discuss the robustness of the
scheme along with a number of possible realizations with matter waves.
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I. INTRODUCTION

Interferometry plays a central role in physics, with appli-
cations ranging from sensitive phase measurements, e.g., to
monitor the spatial displacements experienced by gravitational
wave detectors [1], to fundamental tests of quantum physics,
such as the wave-particle duality of increasingly complex
quantum objects [2,3]. Given the power of interference exper-
iments, it is natural to ask how their scope can be extended to
access entanglement—the second pillar of nonclassicality [4]
and an important resource in quantum information [5–7]. Such
a combined witnessing of spatial interference and entangle-
ment would not only amount to a striking demonstration of
the departure of nonlocal quantum behavior from classical
physics. It might also be used for entanglement-enhanced
metrological applications such as phase estimation schemes
or quantum lithography [8,9].

So far all experiments that combined entanglement with
spatial interference were based on photons [8–12]. This is due
to their great practical use in information science and above
all to the existence of a mature technology for producing
and manipulating photonic systems. However, the recent
advances in the control of ultracold atoms suggest that it
will be possible to carry out similar experiments with mate-
rial particles. In particular, tailored Einstein-Podolsky-Rosen
(EPR) entangled atom pairs can be produced by dissociating
Feshbach molecules [13–16] or by colliding Bose-Einstein
condensates [17–20], in a process similar to parametric down
conversion of laser light, the established method to generate
entanglement among photons [21].

It would be a great experimental advancement to demon-
strate a nonlocal spatial interference effect with particles of
matter. This would establish the presence of both entanglement
and the wave-particle duality in a single experiment on tangible
material objects, allowing one to transfer potential application
schemes such as quantum lithography [8,9] from photons
to the realm of quantum matter. Moreover, interpretational
issues such as the nonlocality of Bohmian trajectories could
be addressed [22]. However, it is not obvious whether the
observation of an interference pattern in the coincidence signal
of two detectors already proves the existence of entanglement.
This is the more so as any experiment will be character-
ized by a nonideal EPR source and other imperfections

leading to a reduced fringe visibility of the interference
signal.

In this article we provide an entanglement criterion for
nonlocal spatial interference based on EPR entangled particle
pairs, and we work out the conditions for the successful
detection of a nonlocal interference signal. A schematic
generalizing the single-particle Young experiment is depicted
in Fig. 1. A source creates a pair of EPR entangled particles
which travel freely into opposite directions until each one
passes through a grating or double slit. After a further free
evolution their positions are recorded by spatially resolving
detectors located at opposite sides of the experiment. Even for
a source emitting ideal EPR particle pairs no interference will
be observed at each of the detectors. However, a “nonlocal”
interference pattern is expected to emerge if one analyzes the
combined detection records at both sides by focusing on the
center of mass of the coincident pairs.

A major challenge in such nonlocal interference experi-
ments lies in verifying the presence of continuous variable
entanglement. Once the gratings are passed the two-particle
state of motion is strongly non-Gaussian, with a broadened and
structured momentum distribution. The standard entanglement
criteria [23–25] can then not be used, even though they apply
to arbitrary states, since they will detect entanglement only
if the corresponding position and momentum variances are
sufficiently squeezed. Moreover, only position measurements
are easily doable with material particles, practically ruling
out tomographic techniques of entanglement verification.
Recently, we described a viable method based on modular
variables, which captures situations where entanglement gives
rise to spatial interference [26]. In the following we introduce
the corresponding criterion, adapted to the specific correlations
displayed by the EPR interference experiments.

The article is structured as follows: In Sec. II we describe
how the nonlocal interference pattern can be calculated for
finite EPR sources (i.e., sources that produce EPR states with
finite variances in all coordinates and momenta), allowing us to
discuss the requirements and conditions for observing nonlocal
interference. After briefly explaining the concept of modular
variables, the entanglement criterion is then formulated in
Sec. III, along with a discussion of its robustness. In Sec. IV
we discuss different experimental scenarios, before presenting
our conclusions in Sec. V.
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FIG. 1. (Color online) Generic setup of a nonlocal Young ex-
periment with EPR entangled particle pairs. A source provides EPR
entangled particle pairs of equal mass, which are then separately
passed through a grating or double slit (with slit separation d and slit
width a). While the position measurements yield an unstructured
pattern on each screen, interference fringes are expected if one
evaluates the correlated outcomes x1 + x2. Taking the EPR correlation
to be in the transversal x direction it is sufficient to describe the
longitudinal z motion, which separates the particles, by classical
counterpropagating trajectories.

II. NONLOCAL SPATIAL INTERFERENCE FROM
EINSTEIN-PODOLSKY-ROSEN CORRELATIONS

A. The normalized EPR state

Einstein, Podolsky, and Rosen considered originally the
idealized state [4]∫

dx|x〉1|x〉2 =
∫

dp|p〉1|− p〉2.

Switching to center-of-mass coordinates, and disregarding
normalization, it may be written as∫

dxreldpcm δ(pcm)δ(xrel)|xrel〉rel|pcm〉cm.

The state supports perfect correlations both in the relative
position xrel = x1 − x2 and in the center-of-mass momentum
pcm = p1 + p2. The expectation values of these commuting
observables vanish for the idealized EPR state, as do their
variances σ 2

x,rel and σ 2
p,cm. This implies that the conjugate

relative momentum prel = (p1 − p2)/2 and the center-of-mass
position xcm = (x1 + x2)/2 remain undetermined.

The idealized EPR state is readily generalized to a nor-
malized squeezed Gaussian wave function exhibiting finite
position and momentum variances:

|�EPR〉 = 1√
2πσp,cmσx,rel

×
∫

dxreldpcmexp

(
− p2

cm

4σ 2
p,cm

− x2
rel

4σ 2
x,rel

)
× |xrel〉rel|pcm〉cm. (1)

The resulting correlations are sketched in Fig. 2 for both
σx,rel and σp,cm, much smaller than the uncertainties of the
(unsqueezed) minimum uncertainty state.

B. Interferometric two-particle evolution

We proceed to determine the joint probability distribution
for recording the two EPR particles on detection screens after

FIG. 2. (Color online) Correlations expressed by the squeezed
Gaussian Eq. (1) representing a normalizable EPR state. The sketches
display two-dimensional projections of the four-dimensional Wigner
function, emphasizing characteristic properties of the EPR state.
(a) The conjugate relationship between the squeezed center-of-
mass momentum pcm and the correspondingly broad center-of-mass
coordinate xcm. (b) The conjugate relation between the relative
coordinate and its momentum. (c, d) Correlations in the particle
coordinates and momenta due to the squeezing in xrel and pcm.

each passed a grating with N slits. To this end it is helpful to
divide the evolution into three steps: (i) the free time evolution
from the source to the gratings, (ii) the instantaneous effect of
passing through the gratings, and (iii) a further period of free
time evolution from the gratings to the screens. This can be
done since all the correlations probed in such a setting reside in
the transversal motion of the two particles. In the Fraunhofer
approximation the longitudinal motion from the source to
the screens may be viewed as taking place with definite
velocities which are to be averaged in the end. The longitudinal
position can thus be considered as a parametrization of
time.

We take the longitudinal direction to be the z axis and the
grating bars to be aligned along the y axis such that the relevant
motion takes place in the x direction. The free time evolution
of the Gaussian wave function Eq. (1) from the source to the
gratings can be determined analytically. Denoting the arrival
time of the particles at the gratings as T , the evolved state
immediately before passing the gratings reads as

|�T 〉 = eiϕT

√
NT

∫
dxcmdxrel |xcm〉cm|xrel〉rel

× exp

(
− x2

cm

4σ 2
x,cmξT,cm

− x2
rel

4σ 2
x,relξT,rel

)
. (2)

Here we transformed from the center-of-mass momentum pcm

to the center-of-mass position xcm, with σx,cm = h̄/(2σp,cm) the
corresponding (large) uncertainty. The evolution introduces
additional phase factors and results in a dispersion-induced
broadening of the original Gaussian wave packets described
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by the complex dispersion factors

ξt,cm = 1 + ih̄t

4σ 2
x,cmm

, (3)

ξt,rel = 1 + ih̄t

σ 2
x,relm

, (4)

associated with total mass 2m and reduced mass m/2,
respectively. The normalization factorNT and the global phase
ϕT , which are readily calculated, will not be required in the
following.

The effect of traversing the gratings can be captured by the
grating operators

Gi =
∑
n∈IN

∫ a
2

− a
2

dx|nd + x〉i〈nd + x|i , (5)

which are projectors acting on the individual particles, i = 1,2.
The gratings are taken to consist of N slits, with slit distance
d and slit width a (see Fig. 1). The slit indices are taken from

IN =
{
−N − 1

2
,−N − 3

2
, . . . ,

N − 1

2

}
, (6)

which guarantees that the gratings are arranged symmetrically
with respect to the z axis for all N . The gratings are assumed
to be ideal in the sense that imperfections and the dispersion
force between the particle and the grating can be neglected.
This is permissible because such slit imperfections would not
affect the fringe structure of the nonlocal interference pattern,
but only its envelope.

Immediately after traversing the gratings the state follows
from the projection G1 ⊗ G2|�T 〉. Switching to the particle
coordinates x1 = xcm + xrel/2 and x2 = xcm − xrel/2 the en-
tangled two-particle state thus takes the form

|� ′
T 〉 = eiϕ′

T√
N ′

T

∑
n,n′∈IN

∫ a
2

− a
2

dx

∫ a
2

− a
2

dx ′exp

(
− [(n + n′)d + x + x ′]2

16σ 2
x,cm|ξT,cm|2 − [(n − n′)d + x − x ′]2

4σ 2
x,rel|ξT,rel|2

)

× exp

(
i
σ 2

p,cm[(n + n′)d + x + x ′]2T

16mσ 2
x,cmh̄|ξT,cm|2 + i

σ 2
p,rel[(n − n′)d + x − x ′]2T

mσ 2
x,relh̄|ξT,rel|2

)
|nd + x〉1|n′d + x ′〉2. (7)

C. Conditions for nonlocal interference

We can now identify the conditions for observing nonlocal
spatial interference at the screens. As follows from the general
discussion of two-particle correlations in [26], nonlocal spatial
interference requires that the state prepared by the gratings is
correlated with respect to the slits traversed. That is, if we
measure which slit a particle took on one side, by detecting
it right after the grating, we must be able to infer which slit
the other particle took on the other side. This is guaranteed by
requiring that

σx,rel|ξT,rel| � d, (8)

because the second Gaussian in Eq. (7) can then be well
approximated by a Kronecker delta for the slit indices n

and n′ (along with with a factor describing irrelevant intraslit
correlations).

The slit correlation condition Eq. (8) combines two require-
ments. On the one hand, the initial state must be sufficiently
squeezed in the relative position, σx,rel � d. On the other hand,
to guarantee Eq. (8) at the relevant time T when the gratings are
passed, the dispersive broadening of the wave packet evolving
from the source to the screen must remain sufficiently bounded.
The propagation time T from the source to the gratings thus
cannot exceed

Tmax = σ 2
x,relm

/
h̄ � d2m/h̄. (9)

This shows that there is a tradeoff between the squeezing
of the relative position σx,rel and the maximum admissible
propagation time from the source to the screen. This is no
problem of principle since the longitudinal motion might be
uncoupled from the transverse dynamics, allowing one to
propagate the particles with arbitrary velocity to their gratings.

In practice, one may well be forced to start out with an isotropic
two-particle state, using apertures for defining the longitudinal
direction. In this case the dispersion tradeoff Eq. (9) can be a
quite severe restriction.

As a second condition one must require that the N slits are
illuminated uniformly by the incoming wave function. This is
ensured by the first Gaussian in Eq. (7) provided

σx,cm|ξT,cm| � Nd. (10)

Since the slit correlation condition Eq. (8) already requires
that the relative dispersion remains modest, T � Tmax, we can
estimate

|ξT,cm| �

√
1 +

(
σx,rel

2σx,cm

)4

	 1, (11)

because σx,rel � σx,cm. The initial state Eq. (1) must therefore
exhibit a large center-of-mass uncertainty σx,cm � Nd.

D. The modular momentum entangled state

Applying the conditions Eqs. (8) and (10) to Eq. (7) yields a
greatly simplified expression for the slit entangled two-particle
state present once both gratings have been passed:

|� ′
T 〉 ≈ eiϕ′

T√
N ′

T

∫ a
2

− a
2

dx

∫ a
2

− a
2

dx ′exp

(
− (x − x ′)2

4σ 2
x,relξT,rel

)

×
∑
n∈IN

|nd + x〉1|nd + x ′〉2. (12)

Specifically, condition Eq. (8) implies that those contributions
to the wave function where the two particles do not pass
opposite slits with n′ = n can be neglected. For instance, the
next-neighbor contributions with n − n′ = ±1 are weighted by
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the factor exp{−[d/(2σx,rel|ξT,rel|)]2}, and already a moderate
ratio of d/(σx,rel|ξT,rel|) = 5 suppresses these by three orders
of magnitude compared to the opposite-slit contributions. Con-
dition Eq. (10), on the other hand, effects that all opposite slit
pairs contribute equally to the resulting superposition. Since
the contributions at the margins of the gratings are diminished
by the factor exp{−[Nd/(4σx,cm|ξT,cm|)]2}, already a ratio of
Nd/(σx,cm|ξT,cm|) = 1 limits the amplitude decrease toward
the margins to 7% .

The state Eq. (12) describes a superposition of the
particle pair passing through opposite slits. This becomes
most transparent once we rewrite the state in position
representation:

〈x1,x2|� ′
T 〉 = 1√

N

∑
n∈IN

〈x1 − nd,x2 − nd|�s〉. (13)

Here the normalized wave function |�s〉 describes that both
particles are confined to a single pair of opposite slits:

〈x1,x2|�s〉 = eiϕs

√
Ns

exp

(
− (x1 − x2)2

4σ 2
x,relξT,rel

)
χa(x1)χa(x2), (14)

with χa(x) = 	( a
2 + x) 	 ( a

2 − x). As before, the phase ϕs

and the normalization factor Ns will not be required in the
following.

The wave function Eq. (13) is an instance of a modular
momentum entangled (MME) state, a class of states discussed
in a more general context in [26]. As for any MME state, the
momentum representation of Eq. (13) reads

〈p1,p2|� ′
T 〉 = 1√

N

∑
n∈IN

e−i(p1+p2)nd/h̄〈p1,p2|�s〉. (15)

This in turn implies a nonlocal interference behavior if
the particle momenta are measured. The joint momentum
probability distribution takes the form

|〈p1,p2|� ′
T 〉|2 = |〈p1,p2|�s〉|2FN

(
(p1 + p2)d

h

)
, (16)

where the interference pattern is captured by the fringe
function

FN (ξ ) = 1 + 2

N

N−1∑
j=1

(N − j ) cos(2πjξ ). (17)

It reduces to a sinusoidal fringe pattern in the case of double
slits, while FN (x) develops sharpened main maxima and
suppressed side maxima for N > 2. Note that the period of
the fringe pattern is given by the “grating momentum” h/d.

A distinct interference pattern can only emerge if the
envelope in Eq. (16), as given by the momentum distribution
|〈p1,p2|�s〉|2, varies slowly over the extension of a single
period h/d and if it is sufficiently broad to cover several
fringes. These conditions are met in the present case since the
width of the momentum distribution of Eq. (14) is essentially
determined by single-slit diffraction, i.e., by h/a. This is
always greater than the grating momentum h/d, since d > a.
More precisely, the envelope is determined by a convolution
of the opposite slit pair contributions and the correlated

relative motion:

〈p1,p2|�s〉 = eiϕ̃s√
Ñs

∫
dp̃ sinc

(
(p1 + p2 + p̃)a

2h̄

)

× sinc

(
(p1 + p2 − p̃)a

2h̄

)

× exp

[
−ξT,rel

(
(p1 − p2 − p̃)σx,rel

2h̄

)2]
. (18)

E. Far-field interference pattern

The discussed momentum interference effect is easily
observed by letting the particles propagate freely for a time
T2 from the gratings to remote detection screens on each side.
Denoting the final state of the particles as |�f 〉, the joint spatial
detection probability is directly determined by the momentum
distribution Eq. (16) of |� ′

T 〉:

|〈x1,x2|�f 〉|2 = m2

T 2
2

∣∣∣∣
〈
mx1

T2
,
mx2

T2

∣∣∣∣� ′
T

〉∣∣∣∣
2

. (19)

This assumes that the screens are placed sufficiently far away
from the gratings such that one is in the dispersion-dominated
limit, T2 � mN2d2/h̄.

The position measurements at the detection screens may
thus be viewed as effective momentum measurements on |� ′

T 〉.
It follows that the joint spatial probability distribution repro-
duces the nonlocal momentum interference pattern Eq. (16):

|〈x1,x2|�f 〉|2 = m2

T 2
2

∣∣∣∣
〈
mx1

T2
,
mx2

T2

∣∣∣∣�s

〉∣∣∣∣
2

FN

(
m(x1 + x2)

T2h/d

)
.

(20)

This result exhibits the expected nonlocal interference behav-
ior. No fringe pattern will be visible if one looks at either of
the screens since the integration over the unobserved particle
position will remove the fringe function in Eq. (16), leaving
only the broad envelope determined by |�s〉. Only by recording
the coincident detections at both screens and by collecting the
center-of-mass positions x1 + x2 will an interference pattern
emerge.

This proves that it is possible to establish nonlocal interfer-
ence by exposing EPR entangled particle pairs to gratings and
in this sense to perform an entangled Young experiment. The
expected spacing of the fringe pattern is given by T2h/(md).

We identified the slit correlation condition Eq. (8) and
the uniform slit illumination Eq. (10) as requirements for a
successful implementation. In the following section, we will
show how the nonlocal spatial interference pattern Eq. (20) can
serve as the basis for a rigorous verification of the underlying
entanglement.

III. INTERFEROMETRIC ENTANGLEMENT
VERIFICATION

As impressive as the correlations expressed by the nonlocal
interference pattern Eq. (20) may be, it is not clear a priori
that they cannot just as well emerge from a classically
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correlated quantum state, without resorting to entanglement.
To exclude this possibility, one must testify the presence of
entanglement with a suitable entanglement criterion. Ideally,
this should not require measurements beyond the ordinary
position measurements giving rise to the interferometric
correlations of the EPR Young experiment; in particular we
should avoid the necessity of an unfeasible continuous variable
state tomography.

A. Modular variables

Such an entanglement verification can be achieved using
an entanglement criterion in terms of modular variables [26].
The latter proof is useful to capture spatial interference
phenomena [27–30]. They formally decompose the position
and momentum operators into steplike integer components Nx

and Np and sawtoothlike modular components x and p:

x = Nxd + x, p = Np

h

d
+ p. (21)

Expressed in the position eigenbasis, the modular and the
integer position are thus given by

x =
∫ ∞

−∞
dx x(x)|x〉〈x|, (22)

Nx =
∫ ∞

−∞
dx

x − x(x)

d
|x〉〈x|, (23)

with

x(x) :=
(

x + d

2

)
mod d − d

2
. (24)

The momentum operators are defined similarly by the spectral
function

p(p) :=
(

p + h

2d

)
mod

h

d
− h

2d
. (25)

Note that the standard position and momentum eigenvectors
|x〉 and |p〉 can also be interpreted as the joint eigenstates
of the respective integer and modular observable. The latter
can thus be deduced from ordinary position and momentum
measurements.

B. Moments and variances

Interpreted in terms of the modular variables, the cor-
relations displayed by the MME state Eq. (13) describe
reduced variances for the total modular momentum pcm =
p1 + p2. This is the reason for naming it modular momentum
entangled. Also, the spread of the relative integer position
Nx,rel = Nx,1 − Nx,2 is reduced. In particular, if the slit
correlation condition Eq. (8) is satisfied the variance of Nx,rel

vanishes by construction, as a result of the opposite slit pair
correlations:

〈(
Nx,rel)
2〉 = 〈� ′

T |N2
x,rel|� ′

T 〉 − (〈� ′
T |Nx,rel|� ′

T 〉)2

= 0. (26)

Using Eqs. (13) and (14) and noting Nx(x) = [x − x(x)]/d
one finds that in fact all moments m � 1 vanish:〈
Nm

x,rel

〉 =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2[Nx(x1) − Nx(x2)]m|〈x1,x2|� ′

T 〉|2

= 1

N

∑
n1,n2∈IN

∫ n1d+ a
2

n1d− a
2

dx1

∫ n2d+ a
2

n2d− a
2

dx2 δn1n2

× (n1 − n2)m|〈x1 − n1d,x2 − n2d|�s〉|2
= 0. (27)

On the other hand, in the relevant limit a � d and using
Eq. (16), the moments of the total modular momentum are
given by〈

pm
cm

〉 = 〈� ′
T |(p1 + p2)m|� ′

T 〉

=
∫ ∞

−∞
dp1

∫ ∞

−∞
dp2 [p(p1) + p(p2)]m

× |〈p1,p2|�s〉|2FN

(
(p1 + p2)d

h

)

= d2

h2

∫ h/2d

−h/2d

dp1

∫ h/2d

−h/2d

dp2 (p1 + p2)m

×FN

(
(p1 + p2)d

h

)
. (28)

Here we used the scale separation between the width of the
fringe pattern envelope and its period; this permits one to apply
the approximation∫ ∞

−∞
dx χ (x)E(x) ≈

∫ ∞

−∞
dx ′E(x ′)

∫ λ/2

−λ/2

dx

λ
χ (x), (29)

which is valid for a λ-periodic function χ (x) and an envelope
function E(x) that varies slowly over the extent of a single
period λ.

Putting the fringe function Eq. (17) into Eq. (28), one
obtains for the first two moments

〈pcm〉 = 0, (30)

〈
p2

cm

〉 = h2

6d2
[1 − S2(N )]. (31)

The positive function S2, also found in [26], is defined by

S2(N ) = 6

π2

N−1∑
j=1

N − j

Nj 2
. (32)

It is bounded by 1 > S2(N ), increases monotonically, and is
well approximated by its asymptotic form:

S2(N ) ∼ 1 − 6[1 + γ + ln(N )]

π2N
, (33)

involving Euler’s constant γ 	 0.577. The variance of the total
modular momentum

〈(
pcm)2〉 = h2

6d2
[1 − S2(N )] (34)

thus decreases with a growing number N of slits. For large N

this squeezing of the total modular momentum scales as

〈(
pcm)2〉 ∼
(

h

πd

)2 1 + γ + ln(N )

N
. (35)
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C. Postmeasurement analysis

In the proposed Young test the experimenter performs
ordinary position measurements directly behind the gratings
and in the far field, yielding the joint probability densities
prob(x1,x2) and prob(p1,p2), respectively. The required mod-
ular variances 〈(
Nx,rel)2〉 and 〈(
pcm)2〉 are then obtained by
a postmeasurement analysis of this data.

Specifically, the moments of the relative integer position
are obtained by evaluating

〈
Nm

x,rel

〉 =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2[Nx(x1) − Nx(x2)]mprob(x1,x2),

(36)

with Nx(x) = [x − x(x)]/d. Similarly, one calculates

〈
pm

cm

〉 =
∫ ∞

−∞
dp1

∫ ∞

−∞
dp2[p(p1) + p(p2)]mprob(p1,p2),

(37)

where p(p) is defined in Eq. (25). From an operational point
of view, this is all that is required to test the entanglement
criterion Eq. (41).

D. Shifted modular variables

Carrying out the postmeasurement analysis one can always
choose the position and momentum coordinates in such a
way that the maxima of the interference pattern coincide with
vanishing values of the corresponding modular variable. This
reflects the optimal choice and was the case in our calculations
so far.

The general case can be modeled by introducing an
additional phase ϕ into Eq. (20) which shifts the interference
pattern. The expression Eq. (28) for the moments of the total
modular momentum then becomes〈

pm
cm

〉 = d2

h2

∫ h/2d

−h/2d

dp1

∫ h/2d

−h/2d

dp2 (p1 + p2)m

×FN

(
(p1 + p2)d

h
+ ϕ

)
. (38)

This results in the modified variance

〈(
pcm)2〉 = h2

6d2
[1 − S2(N,ϕ)], (39)

where

S2(N,ϕ) = 6

π2

N−1∑
j=1

N − j

Nj 2
cos(jϕ) < S2(N ). (40)

A finite ϕ can result in a substantial deterioration of the total
modular momentum squeezing, while the moments of the
relative integer positions remain unaffected. In the remainder
we consider again the case ϕ = 0. This is no restriction
of generality due to the freedom of choice of ϕ in the
postmeasurement analysis.

E. Modular entanglement criterion

The reduced fluctuations in the integer relative position and
the total modular momentum can be used to verify unambigu-
ously the underlying entanglement. This is achieved with an

entanglement criterion similar to the modular entanglement
criterion derived in [26], where the squeezing was considered
to occur in a different set of two-particle observables, namely,
the modular relative position xrel = x1 − x2 and the total
integer momentum Np,cm = Np,1 + Np,2.

In the present case the relevant entanglement criterion reads

d2

h2
〈(
pcm)2〉ρ + 〈(
Nx,rel)

2〉ρ < 2Cp̄,Nx
. (41)

Any state satisfying this condition must be entangled. Note
that the criterion Eq. (41) is sufficient but not necessary. The
constant Cp̄,Nx

is given by the smallest root μ0 of the equation

d

dx

[
e−πx2

M

(
−π

2
μ + 1

4
,
1

2
,2πx2

)]
x=1/2

= 0, (42)

with M(a,b; x) the Kummer function. Numerical evaluation
yields Cp̄,Nx

∼= 0.078 235.
The MME state Eq. (13) satisfies the entanglement criterion

Eq. (41) for any N � 2, as follows directly from the variances
Eqs. (26) and (34):

1
6 [1 − S2(N )] + 0 < 2Cp̄,Nx

. (43)

This proves that it is indeed possible to detect unambiguously
entanglement based on the nonlocal interference which is
produced by exposing EPR entangled particle pairs to a Young-
like grating setup. Already for the least sensitive entanglement
scheme, the case N = 2 of a double slit on each side,
the squeezing function Eq. (32) evaluates as S2(2) = 0.30,
resulting in a sum of uncertainties staying 25% below the
threshold.

F. Robustness of the entanglement detection

1. Admixture of a classically slit-correlated state

To get a generic understanding of the robustness of the
entanglement detection scheme with respect to visibility
reduction, one may ask how many classical (i.e., no inter-
ference supporting) correlations can be admixed to the EPR
state without compromising the criterion Eq. (41). To this end
we introduce the classically slit-correlated state

〈x1,x2|ρcl|x ′
1,x

′
2〉 = 1

N

∑
n∈IN

〈x1 − nd,x2 − nd|�s〉

× 〈�s |x ′
1 − nd,x ′

2 − nd〉. (44)

Compared to the MME state ρMME = |� ′
T 〉〈� ′

T | determined
by Eq. (13), the state Eq. (44) lacks the coherences between
different opposite-slit pairs. It does therefore not exhibit
nonlocal interference. It carries the variances 〈(
Nx,rel)2〉cl = 0
and 〈(
pcm)2〉cl = h2/(6d2); this latter variance of the total
modular momentum is the maximum possible, reflecting
complete ignorance.

Let us now consider the mixture

ρw = (1 − w)ρMME + w ρcl (45)

of the MME state Eq. (13) and the classically slit-correlated
state Eq. (44) with w ∈ (0,1). We find that the variances
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evaluate as 〈(
Nx,rel)2〉w = 0 and

〈(
pcm)2〉w = (1 − w)〈(
pcm)2〉MME + w〈(
pcm)2〉cl

= h2

6d2
[1 − (1 − w)S2(N )], (46)

noting that all involved first moments vanish, 〈Nx,rel〉MME =
〈Nx,rel〉cl = 〈pcm〉MME = 〈pcm〉cl = 0.

Comparing Eqs. (34) and (46) one sees that the squeezing
of the total modular momentum is diminished by the amount of
classical admixture w. This corresponds to a reduced visibility,
and the fringe pattern Eq. (16) gets replaced by

|〈p1,p2|�s〉|2
[
w + (1 − w) FN

(
(p1 + p2)d

h

)]
. (47)

In the case of double slits, N = 2, we thus find that the
entanglement criterion Eq. (41) remains satisfied as long as
w < (12Cp̄,Nx

− 1)/S2(2) + 1 = 0.79.
In other words, we can admix up to 79% of a classically

correlated state and still detect the entanglement in the blurred
fringe pattern. This robustness manifests the power of the
modular entanglement detection scheme, and it provides a
comfortable cushion to deal with potential noise sources and
experimental limitations, such as decoherence and a finite
detection resolution, which reduce the fringe visibility.

2. Admixture of a separable state

In the opposite case, where the source produces uncorre-
lated particle pairs, the wave function behind the gratings is
described by the separable state

|�sep〉 = |ψms〉1|ψms〉2, (48)

with single-particle multislit states

〈x|ψms〉 = 1√
N

∑
n∈IN

〈x − nd|ψs〉. (49)

Here the state |ψs〉 corresponds to the single-particle state
prepared by a single slit. The state |�sep〉 then leads to local
interference patterns on each side. This implies correlations
in the modular total momentum which reduce its variance.
However, the lacking slit correlations result in a substantial
variance of the relative integer position

〈(
Nx,rel)
2〉sep = 1

6 (N2 − 1), (50)

in contrast to the vanishing variance Eq. (26). As one expects,
already for N = 2 this exceeds substantially the threshold
value 2Cp̄,Nx

of the entanglement criterion Eq. (41). In other
words, a mixed state with a separable admixture exceeding
w = 4Cp̄,Nx

[see Eq. (45)], i.e. of about 31%, is no longer
detected by the entanglement criterion Eq. (41).

3. Extended EPR sources

Another possible reason for a reduced interference visibility
are imprecise EPR sources. We therefore discuss in the
following how the conditions and results derived above are
affected if the initial state is not a pure EPR state Eq. (1) but
a mixture of EPR states with mutually displaced centers in
phase space. They will be characterized by the phase-space
coordinates � ≡ (x(0)

cm,x
(0)
rel ,p

(0)
cm,p

(0)
rel ) indicating where each

EPR state is initially located with respect to the center-of-mass
and relative coordinates:∣∣�(�)

EPR

〉 = 1√
2πσx,cmσx,rel

∫
dxcmdxrel|xcm〉cm|xrel〉rel

× exp

(
−

(
xcm − x(0)

cm

)2

4σ 2
x,cm

−
(
xrel − x

(0)
rel

)2

4σ 2
x,rel

)

× exp

(
i
p(0)

cm xcm

h̄
+ i

p
(0)
rel xrel

h̄

)
. (51)

Comparison with Eq. (1) shows that the previously considered
EPR state is centered at � = 0. The general mixture is given
by

ρμ =
∫

d� μ(�)
∣∣�(�)

EPR

〉〈
�

(�)
EPR

∣∣, (52)

with d� = dx(0)
cmdx

(0)
rel dp

(0)
cmdp

(0)
rel . It is thus determined by the

probability distribution function μ(�), taken in the following
to be a Gaussian centered at the origin, which is fully
characterized by the standard deviations σ (0)

x,cm, σ (0)
p,cm, σ

(0)
x,rel,

and σ
(0)
p,rel.

To see the effect of the mixing Eq. (52), we first determine
the interference pattern of a (moderately) displaced, pure EPR
state Eq. (51). Freely propagating the wave function |�(�)

EPR〉
for time T and then through the gratings yields

∣∣� ′(�)
T

〉 = eiϕ′
T√

N ′
T

∑
n,n′∈IN

∫ a
2

− a
2

dx

∫ a
2

− a
2

dx ′ |nd + x〉1|n′d + x ′〉2 exp

[
i φcm

(
n + n′

2
d + x + x ′

2

)
+ i φrel((n − n′)d + x − x ′)

]

× exp

(
−

[
(n + n′)d + x + x ′ − 2x(0)

cm − p(0)
cmT

/
m

]2

16σ 2
x,cm|ξT,cm|2 −

[
(n − n′)d + x − x ′ − x

(0)
rel − 2p

(0)
rel T

/
m

]2

4σ 2
x,rel|ξT,rel|2

)
. (53)

Here, we introduced the phase functions for the center-of-mass and relative motion:

φcm(x) = p(0)
cm x

h̄|ξT,cm|2 + h̄T
(
x − x(0)

cm

)2

16mσ 4
x,cm|ξT,cm|2 , (54)

φrel(x) = p
(0)
rel x

h̄|ξT,rel|2 + h̄T
(
x − x

(0)
rel

)2

4mσ 4
x,rel|ξT,rel|2

. (55)
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Comparing the form Eq. (53) of the displaced wave function
with Eq. (7) it follows that the slit correlation condition Eq. (8)
and the requirement of uniform illumination Eq. (10) remain
necessary conditions.

In the following, we determine what additional constraints
must be satisfied by the displacements � for a successful
Young test. First, it must be guaranteed that the grating is still
illuminated uniformly. Noting that the wave function Eq. (53)
is centered around the classical displacements

x(T )
cm = x(0)

cm + p(0)
cmT

2m
, (56)

x
(T )
rel = x

(0)
rel + 2

p
(0)
rel T

m
, (57)

we get the requirement∣∣x(T )
cm

∣∣ � Nd. (58)

Next, consider the impact of the displacements on the
resulting slit correlations. To this end, it is helpful to express
x

(T )
rel in modular variables, x

(T )
rel = N

(T )
x,reld + x

(T )
rel . Similarly to

the undisplaced case, the first Gaussian in Eq. (53), combined
with the slit correlation condition Eq. (8), implies ideal
correlations, n − n′ = N

(T )
x,rel. Note that in contrast to the case

� = 0 we must now also take into account that it is not
necessarily opposite slit pairs that are correlated. Uniform
illumination of the slits on both sides demands that the offset
N

(T )
x,reld is small compared to the extension of the grating Nd:

N
(T )
x,rel � N. (59)

Moreover, to make sure that both particles can pass the gratings
in spite of their correlation the modular part must satisfy∣∣x(T )

rel

∣∣ <
a

2
. (60)

If the conditions Eqs. (58)–(60) are met, we obtain the
interference pattern∣∣〈p1,p2

∣∣� ′(�)
T

〉∣∣2 = |〈p1,p2|�s〉|2

×FN ′

(
(p1 + p2)d

h
− p(0)

cm d

h|ξT,cm|2
)

, (61)

with an interference order N ′ = N − |N (T )
x,rel|. It implies that

the interference is remarkably robust against phase-space
displacements, since only a shift in the center-of-mass momen-
tum, p(0)

cm, directly affects the phase of the nonlocal interference
pattern.

With this we are in a position to discuss the implications
for the mixed state Eq. (52). The center-of-mass requirement
Eq. (58) leads to the constraints σ (0)

x,cm � Nd and σ (0)
p,cm �

mNd/T , and the condition Eq. (59) for the relative motion
implies σ

(0)
x,rel � Nd and σ

(0)
p,rel � mNd/T . While these “clas-

sical” requirements are relatively easy to meet, the sensitivity
of the interference pattern Eq. (61) with respect to phase
averaging demands a significantly tightened control of σ (0)

p,cm.
Specifically, the blurred interference pattern due to the

phase averaging results in an increased variance of the total
modular momentum as compared to Eq. (31):

〈
p2

cm

〉
μ

= h2

6d2

[
1 − exp

(
−

(
σ (0)

p,cmd
)2

2h2|ξT,cm|2
)

S2(N )

]
. (62)

A significant reduction of the fringe visibility is thus to be
expected once the total momentum spread σ (0)

p,cm exceeds the
grating momentum h/d. This indicates the level of control
of the initial state required for a successful entanglement
detection.

4. Suboptimal EPR states

Finally, we discuss to what extent one can relax the slit
correlation condition Eq. (8) and the condition for uniform
illumination Eq. (10) and still fulfill the modular entanglement
criterion Eq. (41); i.e., we consider suboptimal EPR states
with variances that do not sufficiently satisfy Eqs. (8) and
(10). In that case, the state prepared by the gratings cannot be
approximated by the MME state Eq. (13), but must instead be
replaced by

〈x1,x2|� ′
T 〉

= 1√
N

∑
n,n′∈IN

exp

(
− [(n + n′)d]2

16σ 2
x,cm|ξT,cm|2 − [(n − n′)d]2

4σ 2
x,rel|ξT,rel|2

)

×〈x1 − nd,x2 − n′d|�s〉. (63)

Here we still assume that the time of flight T from the
source to the gratings is sufficiently small [see Eq. (9)]
such that the modifications of the phase described by the
second line of Eq. (7) can be neglected. Note that in the
limiting cases Eqs. (8) and (10) the Gaussian in Eq. (63)
reduces to the Kronecker delta δn,n′ , yielding the MMS state
Eq. (13).

Based on the suboptimal EPR state Eq. (63), we can
investigate the sum of variances in the modular entanglement
criterion Eq. (41) as a function of the widths σx,cm and σx,rel.
Again, one finds that the entanglement detection is remarkably
robust against suboptimal realizations of the uncertainties
of the EPR state. Given σx,cm = 1.5Nd [i.e., Eq. (10) is
satisified], the critical values σ

(crit)
x,rel where the left-hand side

of Eq. (41) reaches the entanglement detection threshold are
shown in Table I; they hardly depend on the number of slits N

in the investigated range, where the width can increase up to
σ

(crit)
x,rel ≈ 0.46 d before the entanglement detection fails.

Similarly, for σx,rel = 0.1d [i.e., Eq. (8) is satisfied], the
critical center-of-mass uncertainties σ (crit)

x,cm where the interfer-
ence order is reduced from N -slit interference to (N − 1)-slit
interference are located approximately at σ (crit)

x,cm ≈ 0.15Nd for
all considered N (cf. Table I). The case of two slits, N = 2,

TABLE I. Critical uncertainties σ
(crit)
x,rel and σ (crit)

x,cm of the EPR
state required for a successful entanglement detection in the N -slit
experiment, given in units of the slit separation d . σ

(crit)
x,rel denotes the

maximal uncertainty in the relative coordinate in compliance with a
successful entanglement detection (with fixed σx,cm = 1.5Nd). σ (crit)

x,cm

denotes the center-of-mass uncertainty where the interference order
is reduced from N -slit interference to (N − 1)-slit interference (with
fixed σx,rel = 0.1d).

N 2 3 4 5 10 20 30

σ
(crit)
x,rel /d 0.462 0.459 0.458 0.457 0.457 0.457 0.457

σ (crit)
x,cm/(Nd) – 0.148 0.146 0.148 0.140 0.127 0.119
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is excluded here since it exhibits full two-slit interference for
any σx,cm.

IV. EXPERIMENTAL IMPLEMENTATIONS

Let us now turn to possible experimental demonstrations of
nonlocal Young tests and of the verification of entanglement
based on EPR correlated particle pairs. We will see that
conceivable implementations are quite diverse, which is a
result of the generic nature of the presented scheme.

A. Photon experiments

While this article focuses on entangled matter waves, it
should be emphasized that nonlocal interference can be ob-
served with photons as well. Here one can rely on established
methods for generating EPR entangled photon pairs, e.g., by
parametric down conversion of a laser beam [31,32]. Such
bipartite interference experiments have been performed in
different contexts, for instance in quantum lithography [9],
ghost interferometry [33], or the spatial implementation of
qubits [10]. These experiments demonstrated nonlocal spatial
interference, but they could not verify the continuous variable
entanglement for want of a rigorous criterion.

The analysis in Secs. II and III can be carried over
to EPR entangled photon pairs because the interferometric
arrangement allows one to treat the photons as distinguishable
particles, to be recorded at distinct positions x1, x2 on a
photodetector. Moreover, the Kirchhoff diffraction integral
in Fraunhofer approximation for the photonic modes yields
the same expressions as the free propagator of a quantum
particle in paraxial approximation. All that needs to be done
is to express the evolved time t in terms of the longitudinal
momentum pz = zm/t , which is given for the photons by
pz = h/λ.

In a recent article [34] Carvalho et al. describe an exper-
iment with down-converted entangled photons. They report
a significant observation of entanglement with double slits,
based on the criterion Eq. (41) obtained from [26].

B. EPR pairs from atomic BECs

A recent proposal by Kofler et al. [20] sets out to produce
EPR entangled atom pairs of metastable helium atoms. This
is based on a four-wave mixing process in a Bose-Einstein
condensate as in [17]. The helium atoms are kicked against
each other by stimulated Raman transitions and collide by
s-wave scattering. If the applied laser pulses are sufficiently
weak, such that on average only a single pair of atoms is
detected in the end, the resulting (radial) two-particle state
is well described by Eq. (1). The pair then falls freely under
gravity, each of the atoms traversing a double slit aperture,
until they hit the detector, where they are recorded with high
efficiency and resolution.

As in most of the entanglement tests based on the criterion
Eq. (41), the detector should be movable, to be placed
alternately either directly behind the slits or sufficiently far
away. When positioned close to the slits it serves to ascertain
that the particle pair is sufficiently correlated with respect to the
slits traversed. This is quantified by calculating the variance
of Nx,rel = Nx,1 − Nx,2 from the observed positions. When

positioned in the far field, the detector records essentially the
transverse momenta p1, p2 of the particles. After correlating
the data of both particles the resulting nonlocal interference
pattern Eq. (19) will have a finite contrast which limits how
well defined the phase of the pattern is. This phase uncertainty
is quantified by the variance of the modular part of the
total momentum pcm = p1 + p2, the second ingredient to the
entanglement criterion.

C. EPR pairs from molecular Feshbach dissociation

Another possibility to generate clouds of EPR entangled
atom pairs is to use the controlled dissociation of Bose-Einstein
condensed Feshbach molecules [13–16,35]. Starting from a
sufficiently dilute condensate and applying weak dissociation
pulses, it is again possible to focus on single EPR atom pairs
by removing multiple pair events in a postselection procedure.
A detailed investigation of this dissociation scheme, including
the confining geometry induced by trap and guiding lasers,
can be found in [16,36]. Using the well-developed techniques
of atom interferometry [2] one would then have to implement
the required gratings by material or light-induced structures.
A schematic of a possible setup is given in Fig. 3(a). The
horizontal propagation is induced by the dissociation process,
while gravitation causes a vertical acceleration toward the
gratings. The relevant transverse EPR correlations thus reside
in the horizontal motion. The horizontal detection screens (not
shown) would then have to be vertically movable from close
to the gratings to the far field, as described above.

D. Dissociation-time entanglement

One can also conceive schemes that go without gratings,
by directly producing the modular momentum entangled

FIG. 3. (Color online) Schematic setups for realizations of an
entangled Young experiment based on the controlled dissociation of
ultracold Feshbach molecules. An ultracold Feshbach molecule [35]
initially trapped by two crossing laser beams is dissociated by a
magnetic-field pulse, which produces an EPR entangled particle
pair. (a) The laser guide is switched off after the completion of
the dissociation so that the atoms fall freely toward the gratings on
each side. (b) A sequence of two magnetic-field dissociation pulses
generating a dissociation-time entangled particle pair [15,16]. Once
the early and the late wave packets overlap due to the dispersive time
evolution, a nonlocal interference pattern can emerge in the recorded
positions of the two particles.
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states. Here we discuss a method based on dissociation-
time entanglement [15,16], the sequential dissociation of a
Feshbach molecule at two different times. A sequence of two
dissociation pulses can generate a dissociation state where
the atom pair is described by a coherent superposition of an
early and a late wave-packet component associated with the
two dissociation pulses. The two counterpropagating atoms
are thus correlated in the dissociation times [see Fig. 3(b)].

The early and late wave-packet components are spatially
separated but propagate with equal velocities. They are thus
described by a modular momentum entangled wave function
with N = 2, similar to Eq. (13). The MME state is here realized
in the longitudinal motion which separates the particles.
The two dissociation-time components thus take the role of the
slit components prepared by double slits, while the dispersive
time evolution leads eventually to the overlap of the two wave
packets.

Position measurements in the overlap regions can be im-
plemented by resonant photon scattering. The joint probability
for the particle position then exhibits a nonlocal interference
pattern. This completes the analogy with the Young double
slit experiment. To prove entanglement one needs again a
complementary measurement; in this case one must detect
the positions of the atom pair at a time when the wave packets
do not yet overlap to ensure that the particle pair is correlated
in the early or late dissociation time.

E. MME states by photon scattering

In a recent article [37] an experiment was proposed which
generates essentially a modular momentum entangled matter
wave based on photon scattering. A trapped pair of distinguish-
able, noninteracting, massive particles is illuminated with a
plane wave of light. By detecting all scattered and nonscattered
photons one gains knowledge about the relative coordinate of
the two particles, but not about the center of mass, such that an
MME state Eq. (13) with N = 2 is eventually prepared after
about 150 photon detections.

If the two particles are then released from the trap, such
that they evolve freely and drop toward a detection screen,

one expects a nonlocal spatial interference pattern similar
to Eq. (20). An appropriate modular entanglement criterion
can then serve to deduce the underlying entanglement from
the measured correlations, if one complements the detection
by correlation measurements taken briefly after releasing
the particles from the trap. However, unlike in the previous
proposal, both particles are detected on the same screen,
and therefore no macroscopic spatial separation is achieved
between the two particles.

V. CONCLUSIONS

We discussed a generic scheme to generalize the Young
interference experiment for the case of two entangled particles,
where nonlocal spatial interference is achieved by subjecting
each particle to a grating structure. The corresponding quan-
tum state exhibits strongly non-Gaussian continuous variable
entanglement, which can be revealed by a variance-based
entanglement criterion. The latter is formulated in terms
of modular variables, i.e., coordinates adapted to spatial
interference phenomena.

Experimentally, the entanglement detection is based on
simple position measurements directly behind the gratings or
in the far field; the modular variances are then calculated in
a postmeasurement analysis. We find that the entanglement
detection scheme is quite robust against noisy EPR sources,
coping even with substantial admixtures of classical corre-
lations and incoherences. Moreover, while already double
slit arrangements allow one to verify entanglement, one can
improve the correlations by increasing the number of slits.

We showed that a nonlocal Young test could be performed
in a wide range of physical systems. Its demonstration with
material particles would be a striking achievement, demon-
strating both the wave-particle duality and the nonlocality of
quantum mechanics at the same time.
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