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We extend the Wigner-Weyl-Moyal phase-space formulation of quantum mechanics to general curved
configuration spaces. The underlying phase space is based on the chosen coordinates of the manifold and
their canonically conjugate momenta. The resulting Wigner function displays the axioms of a quasiprobability
distribution, and any Weyl-ordered operator gets associated with the corresponding phase-space function, even
in the absence of continuous symmetries. The corresponding quantum Liouville equation reduces to the classical
curved space Liouville equation in the semiclassical limit. We demonstrate the formalism for a point particle
moving on two-dimensional manifolds, such as a paraboloid or the surface of a sphere. The latter clarifies the
treatment of compact coordinate spaces, as well as the relation of the presented phase-space representation to
symmetry groups of the configuration space.
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I. INTRODUCTION

The successful treatment of a physical problem often rests
on the right choice of formalism, and conceptual progress
is hard if one uses an inappropriate language. This is
particularly evident in quantum theory, where diverging yet
equivalent formalisms come along with inherent advantages
and disadvantages. For good reasons, the hydrogen atom is
usually quantized by means of Schrödinger’s wave equation,
while fields are naturally described by Heisenberg operators.
Feynman’s path integral formulation, on the other hand, is
often preferred in semiclassical contexts, and vast perturbative
expansions are best handled diagrammatically. It is clearly
useful to command a variety of alternative methods for treating
a given physical system.

Wigner’s prescription [1] to transform the statistical op-
erator into a distribution on classical phase space initiated
yet another equivalent description of quantum mechanics.
No other formalism is as powerful in highlighting quantum
features while providing us with intuition in classical terms.
Moyal completed it [2] by discovering that Wigner’s one-to-
one mapping between quantum operators and functions on a
classical phase space reflects Weyl’s correspondence rule [3].
This picture has found numerous applications in many areas of
physics, ranging from solid-state physics to quantum optics [4–
9], from particle interferometry to molecular physics [10–
12], and from semiclassics to the foundations of quantum
mechanics [13–18]; it has even been adapted to quantum field
theory [19–22].

In this article we generalize the standard Cartesian
Wigner-Weyl-Moyal formalism to general curved configura-
tion spaces. It applies not only to highly symmetric surfaces
such as spheres or paraboloids but also to arbitrary manifolds
without any symmetry constraints. All the characteristic
features of the Cartesian case carry over. Along with the
interpretation of the Wigner function as a quasiprobability
distribution, these include the replacement of operator traces
by phase-space integrals and a meaningful semiclassical
limit. As we demonstrate, the phase-space coordinates must

be constructed from canonically conjugate operator pairs.
The associated translation operators are used to define the
Stratonovich-Weyl operator kernels, which lie at the heart of
the Wigner-Weyl-Moyal formalism [23,24]. In this sense, the
formalism is consistently based on the group of translations,
independent of whether these reflect an isometry of the
manifold or whether competing dynamical symmetry groups
are present.

Our phase space is based on coordinates xi of the Rieman-
nian manifold and their canonically conjugate momenta pi . It
does provide by construction an unambiguous partitioning into
mutually independent pairs of phase-space variables, reflected
by the classical canonical Poisson brackets {xi,pj } = δi

j and
{xi,xj } = {pi,pj } = 0. This guarantees that the resulting
phase-space representation behaves in correspondence to its
classical counterpart, as in the Cartesian case. We then find
that any Weyl-ordered observable is mapped to its equivalent
function on phase space, that integrating out phase-space
coordinates yields the marginal probability distribution, and
that the motion of the Wigner function is described by a
quantum Liouville equation, which turns into its classical
equivalent as � → 0.

Various attempts to generalize the Cartesian Wigner func-
tion considered highly symmetric manifolds, in particular
homogeneously curved spaces such as spheres [25–34]. These
approaches focused on the underlying symmetry groups to
construct a phase space. The generators Ĵi of a Lie group
obey generally noncanonical commutation relations, [Ĵr ,Ĵs] =
iCt

rs Ĵt , involving the structure constants Ct
rs of the group. If

taken as momenta, these generators interfere detrimentally
among each other, unless one deals with the translation
group. None of the resulting phase-space representations
preserves all of the above mentioned essential features of
the Cartesian formalism. Other approaches are based on a
mapping to the Cartesian case [35–38], on eigenfunctions of
the Laplace-Beltrami operator in the case of hyperboloids [39],
or on a covariant, field-theoretic extension to a generalized
density matrix [40]. All the relevant properties of the standard
Wigner function have so far been demonstrated only for the
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one-dimensional case of a single angle-angular momentum
pair, which is a curvature-free problem [41–45], and for the
orientation state of a rigid body [46], which is an instance of
the general theory presented in this article.

Many physical systems exhibit compact configuration
spaces. Simple examples are the one-dimensional motion of a
point particle constrained to a circle, or the two-dimensional
motion of a particle confined to the surface of a sphere.
Underlying symmetry groups are then compact, with discrete,
finite-dimensional irreducible representations. Likewise, the
canonically conjugate momentum operators generating coor-
dinate translations then exhibit discrete spectra. This is a con-
sequence of the compactness and is not directly related to the
curvature of the configuration space. We demonstrate how the
presented phase-space formalism is applied to configuration
spaces, implying discrete momentum spectra.

This article is structured as follows: In Sec. II we
recapitulate the Wigner-Weyl-Moyal representation for the
Cartesian case and briefly demonstrate how to construct it from
Stratonovich-Weyl operator kernels. Quantum mechanics in
curved configuration spaces is introduced in Sec. III, and we
provide in Sec. IV the corresponding phase-space description.
In Sec. V we illustrate the presented Wigner-Weyl-Moyal
formalism by means of two-dimensional curved surfaces
embedded in three-dimensional Euclidean space. Section VI
then elaborates the formalism for compact configuration
spaces, demonstrating it for a point particle constrained to
the surface of a sphere. Finally, we present our conclusions in
Sec. VII.

II. CARTESIAN WIGNER FUNCTION

It is instructive to briefly recapitulate the Wigner-Weyl
formalism for a single point particle in Euclidean space,
parametrized by Cartesian coordinates [7]. The Wigner func-
tion of a quantum state ρ̂ in a single space dimension then
assumes the well-known form

W (x,p) = 1

2π�

∫ ∞

−∞
dx ′eipx ′/�〈x − x ′/2|ρ̂|x + x ′/2〉, (1)

where the phase-space variables x and p are based on the
position and momentum operator x̂ and p̂, respectively, with
[x̂,p̂] = i�. Similarly, one can write the Wigner function in
momentum representation as

W (x,p) = 1

2π�

∫ ∞

−∞
dp′e−ip′x/�〈p − p′/2|ρ̂|p + p′/2〉.

(2)

The Wigner function (1) can easily be generalized to the case
of N point particles in d space dimensions, but for the sake
of clarity we confine the discussion here to a single degree of
freedom.

A. The Wigner function as a quasiprobability distribution

It is straightforward to verify that the Wigner function (1)
is real, W (x,p) ∈ R ∀ x,p, and that it satisfies the axioms of

a quasiprobability distribution:

∫ ∞

−∞
dx

∫ ∞

−∞
dp W (x,p) = 1, (3a)

∫ ∞

−∞
dp W (x,p) = 〈x|ρ̂|x〉, (3b)

∫ ∞

−∞
dx W (x,p) = 〈p|ρ̂|p〉. (3c)

Equation (3a) reflects normalization, and Eqs. (3b) and (3c)
describe the marginal properties, i.e., the possibility to infer
the probability distribution of a phase-space variable by
integrating out the respective conjugate variable.

By virtue of Eq. (3) the Wigner function behaves anal-
ogously to a classical probability distribution, which is one
of its most outstanding features and sets it apart from other
phase-space representations, such as the Glauber P function
and the Sudarshan Q function [47]. The substantial difference
to a genuine, classical probability distribution arises when the
Wigner function takes negative values. If such negativities
occur, it can be taken as a signature of genuine quantum
features. A prominent example is the coherent superposition
of two spatially distinct wave packets, where their capability
to interfere is captured by a partly negative interference term
in the Wigner function.

B. Weyl correspondence

The phase-space description not only yields an appealing
way to represent quantum states but it provides us with
a formulation of quantum mechanics which is completely
equivalent to Hilbert space quantum mechanics; that is, all
relevant objects and operations in quantum theory, such
as states, observables, expectation values, time evolution,
etc., can be represented in phase space. In the following
we briefly recapitulate how the Wigner-Weyl-Moyal phase-
space formalism can be constructed using Stratonovich-Weyl
operator kernels.

One starts by defining displacement operators

D̂(x,p) = e−ixp̂/�eipx̂/�. (4)

These subsequently shift a quantum state by p in momentum
and translate it by a distance x. In that sense the displace-
ment operators are composed of translations. Note that the
displacement operators are often defined symmetrically as
exp[i(px̂ − xp̂)/�]. Applying the Baker-Campbell-Hausdorff
formula then yields Eq. (4) with an additional, but irrelevant
phase factor exp[(−ixp/(2�)]. While such a symmetric def-
inition may appear appealing, it turns out that it cannot be
easily generalized to situations where the commutators of the
coordinates and their conjugate momenta are not c numbers.
This is already the case, e.g., for a single angle variable and its
angular momentum [45] (see also [33]).

Using the displacement operators (4), one introduces the
Stratonovich-Weyl operator kernel [26]

�̂(x,p) = D̂(x,p)�̂(0,0)D̂†(x,p), (5)
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with the undisplaced kernel chosen as

�̂(0,0) = 1

2π�

∫
dp′

∫
dx ′D̂(x ′,p′)eix ′p′/2�

=
∫

dx ′|x ′/2〉〈−x ′/2|. (6)

Note that we could have omitted the phase factor in Eq. (6) if
we had chosen the symmetric definition of the displacement
operators. The operator �̂(x,p) can be interpreted as effecting
a displaced parity operation, since �̂(0,0) is proportional to the
parity operator P̂ = ∫

dx|x〉〈−x|, �̂(0,0) = 2P̂ . With Eq. (6)
one gets

�̂(x,p) =
∫

dx ′eipx ′/�|x + x ′/2〉〈x − x ′/2|. (7)

The Stratonovich-Weyl operator kernel (5) is the central
tool to construct the complete phase-space formalism. In
particular, it constitutes a basis in operator space, as reflected
by the completeness relation

tr[�̂(x,p)�̂(x̃,p̃)] = 2π� δ(x − x̃)δ(p − p̃). (8)

Below we will see how it can be generalized to curved
configuration spaces.

The phase-space representatives of arbitrary Hilbert space
operators Â, i.e., the Weyl symbols WÂ, can now be obtained
as

WÂ(x,p) = tr[Â�̂(x,p)] (9a)

=
∫

dx ′eipx ′/�〈x − x ′/2|Â|x + x ′/2〉. (9b)

In the case of Hermitian operators Â the Weyl symbols are real.
Equation (9) establishes a one-to-one mapping from Hilbert
space to phase space, where the inverse is given by

Â = 1

2π�

∫
dx

∫
dpWÂ(x,p)�̂(x,p). (10)

Note that the Wigner function (1) is the Weyl symbol of the
density operator ρ̂, multiplied by 1/(2π�). This prefactor is
introduced to normalize the Wigner function; see Eq. (3a).
Moreover, expectation values 〈Â〉 = tr[ρ̂Â] then follow from
the phase-space integral

〈Â〉 =
∫

dx

∫
dp WÂ(x,p)W (x,p), (11)

in full analogy to a classical description. In the case of two
arbitrary operators, tr[ÂB̂], this is referred to as the tracing
condition.

The Weyl symbol of the product of two operators is obtained
from their individual Weyl symbols via the star product

WÂB̂(x,p) = (WÂ � WB̂)(x,p)

=
∫

dx1dp1

π�

∫
dx2dp2

π�
e2i(x1p2−x2p1)/�

×WÂ(x + x1,p + p1)WB̂(x + x2,p + p2).

(12)

Equivalent ways to express the star product are

(WÂ � WB̂)(x,p)

= WÂ

(
x + i�	∂p

2
,p − i�	∂x

2

)
WB̂(x,p) (13a)

= WÂ(x,p)WB̂

(
x − i�

←
∂ p

2
,p + i�

←
∂ x

2

)
. (13b)

The arrows on top of the differential operators indicate that
they act only on the respective other Weyl symbol. The
star product prescribes how to obtain the Weyl symbols of
arbitrary operator expressions from the Weyl symbols of their
elementary constituents. The expressions (13) are useful to
derive quantum Liouville equations.

The most elementary Weyl symbols are the phase-space
representations of the position and the momentum operator,

Wx̂(x,p) = x and Wp̂(x,p) = p. (14)

These Weyl symbols are identical with the corresponding clas-
sical phase-space functions, which again manifests the close
analogy of the Wigner-Weyl-Moyal phase-space formalism
with the classical phase-space description. Importantly, this
also holds for arbitrary Weyl-ordered moments,

W{p̂k ,x̂�}W (x,p) = pkx�. (15)

The Weyl ordering is defined as

{p̂k,x̂�}W = 2−k

k∑
j=0

(
k

j

)
p̂k−j x̂�p̂j ; (16)

in the Cartesian case it is equivalent to the symmetric ordering.
Below, we will see that the relation (15) can be extended to
curved configuration spaces. It is now easy to see that the Weyl
symbol of a Hamiltonian Ĥ = p̂2/2m + V (x̂) is given by

WĤ (x,p) = p2

2m
+ V (x), (17)

which coincides with the classical Hamiltonian.

C. The quantum Liouville equation

So far we have discussed kinematic aspects. Let us now
consider the dynamics of a quantum point particle in terms
of its phase-space description. The von Neumann equation,
i�∂t ρ̂ = [Ĥ ,ρ̂], then translates into its phase-space version,

∂W (x,p)

∂t
= − i

�
[WĤ � W (x,p) − W � WĤ (x,p)]. (18)

For a particle of mass m described by a Hamiltonian of the
form Ĥ = p̂2/2m + V (x̂) and using Eq. (13) one obtains the
quantum Liouville equation(

∂t + p

m

∂

∂x
− dV (x)

dx

∂

∂p

)
W (x,p)

=
∞∑

�=1

(−1)�(�/2)2�

(2� + 1)!

d2�+1V (x)

dx2�+1

∂2�+1

∂p2�+1
W (x,p). (19)
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To leading order in � the right-hand side vanishes so that one
obtains the classical Liouville equation for the corresponding
Hamilton function H (x,p) = p2/2m + V (x). The right-hand
side thus generates quantum corrections to the classical time
evolution. It vanishes if the potential is at most harmonic. The
dynamics generated by the quantum Liouville equation (19)
is then identical with the classical time evolution, a feature
often helpful in practical applications. In particular, the time
evolution of a free particle merely shears the Wigner function.

III. QUANTUM MECHANICS ON CURVED
CONFIGURATION SPACES

We now proceed to the general situation of curved configu-
ration spaces. We start by clarifying important kinematic and
dynamic aspects of quantum mechanics in curved spaces.

A. Hilbert space of a curved manifold

Throughout this section, we consider an n-dimensional
Riemannian manifold with metric tensor gij (x) and associated
determinant

g(x) = det gij (x). (20)

For simplicity, we assume that we have a global parametriza-
tion of the manifold with coordinates xi,i = 1, . . . ,n. More-
over, let us assume that the configuration space is unbounded,
so that the coordinates xi are from an unbounded interval
supporting canonically conjugate momenta with continuous
spectra. In Sec. VI, we also discuss examples where the
configuration space is compact.

To ease notation, we abbreviate
∫

dxf (x) ≡∫
dx1 . . . dxnf (x1, . . . ,xn), δ(x − x ′) ≡ δ(x1 − x ′1) . . .

δ(xn − x ′n), and we use the Einstein sum convention. The
identity operator expressed in terms of the coordinate basis
then reads as [48,49]

1 =
∫

dx
√

g(x) |x〉〈x|. (21)

Note that due to the metric determinant it is in general not
possible to decompose Eq. (21) into a tensor product of single-
coordinate Hilbert spaces. The coordinate eigenstates exhibit
the orthogonality relation

〈x|x ′〉 = 1√
g(x)

δ(x − x ′), (22)

and the coordinate operators x̂i satisfy

x̂i |x〉 = xi |x〉. (23)

B. Conjugate momentum basis

We now seek an equivalent Hilbert space representation in
terms of the canonically conjugate momenta. Following De-
Witt [48,49], one obtains the conjugate momentum operators
p̂i from the requirement that they shall satisfy the canonical
commutation relations [x̂i ,p̂i] = i�δi

j and [p̂i ,p̂j ] = 0. This
yields the quantization rule

pi → p̂i = �

i

(
∂

∂xi
+ 1

2
	

j

ji(x)

)
, (24)

where the curvature is reflected by the contracted Christoffel
symbol 	

j

ji(x).
The Christoffel symbols of a Riemannian manifold are

defined by the contravariant and covariant components of the
metric tensor,

	k
ij = 1

2
gkl

(
∂gjl

∂xi
+ ∂gil

∂xj
− ∂gij

∂xl

)
. (25)

It follows that the contracted Christoffel symbol is given by
the simple expression

	
j

ji(x) = 1

2

∂ ln g(x)

∂xi
. (26)

Compared to the Cartesian quantization rule, pi → p̂i =
−i� ∂/∂xi , the ordinary partial derivative is thus replaced
by the derivative (24) (resembling a covariant derivative up
to the factor 1/2). The momentum eigenstates in coordinate
representation now follow from the eigenvalue equations
(i = 1, . . . ,n)

�

i

(
∂

∂xi
+ 1

2
	

j

ji(x)

)
〈x|p〉 = pi〈x|p〉, (27)

which are solved by

〈x|p〉 = eipix
i/�

(2π�)n/2 4
√

g(x)
. (28)

Similar to the Cartesian case, the momentum eigenstates span
the Hilbert space, and the unity operator expressed in this basis
reads

1 =
∫

dp |p〉〈p|. (29)

Below we see that the canonically conjugate momentum
operators p̂i and their eigenstates |p〉 play a central role for
defining the curved space Wigner function. We remark that in
compact coordinate spaces (such as a circle or a sphere) the
commutators between conjugate operator pairs are necessarily
operator valued. The quantization rule (24) remains valid in
this case, while the compactness is then reflected by discrete
momentum spectra.

C. Quantum Hamiltonian

In order to formulate the quantum dynamics we need to set
up the quantum Hamiltonian. Here one should keep in mind
that there is no unique prescription to quantize the classical
curved space Hamilton function

H (x,p) = 1

2m
gij (x)pipj + V (x). (30)

This is because different Hermitian operator orderings of the
kinetic energy term result in different, inequivalent quantum
corrections to the potential. Ultimately, the correct Hamilto-
nian can only be confirmed empirically. We stress that the issue
of identifying the correct quantum Hamiltonian is not related
to our task of finding a viable phase-space description for
curved configuration spaces, since we can assume the quantum
Hamiltonian to be given.
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DeWitt derived the quantum correction for the case of a
specific operator ordering

Ĥ = 1

2m
p̂ig

ij (x̂)p̂j + �
2Q(x̂) + V (x̂). (31)

It involves a so-called quantum potential Q(x), which guaran-
tees the covariance of the Hamiltonian and reads as [48,49]

Q(x) = 1

4m
gij

[
∂

∂xj
	k

ki − 	k
ij	

l
lk − 1

2
	k

ki	
l
lj

]
. (32)

For the sake of concreteness, we assume in the following that
the quantum Hamiltonian takes the form (31); it is clear that
other choices of operator ordering can be treated similarly.
We emphasize that the occurrence of a quantum potential is a
generic phenomenon in curved spaces. It must be taken into
account to obtain the correct quantum dynamics. In Sec. V we
see how it arises in the case of a particle constrained to the
surface of a sphere and a paraboloid.

Let us remark that similar ambiguities arise if one seeks
to quantize the kinetic energy using the Laplace-Beltrami
operator,

�f = 1√|g|
∂

∂xi

(√
|g|gij ∂

∂xj
f

)
. (33)

Here, the ambiguity arises in that one is free to add scalar
curvature terms without affecting covariance of the kinetic
energy [50]. The Laplace-Beltrami operator (33) is equivalent
to DeWitt’s choice (31), as shown in Ref. [50]. The expression
of the kinetic energy in Eq. (31) is favorable in order to
determine its Weyl symbol.

IV. CURVED-SPACE WIGNER FUNCTION

In the following we derive the Wigner function for curved
configuration spaces. This can be achieved following a similar
line of argument as for the Cartesian Wigner function,
introducing displacement operators and Stratonovich-Weyl
quantizers. For this it is crucial that the phase-space repre-
sentation is based on mutually commuting conjugate operator
pairs.

A. Stratonovich-Weyl operator kernel

In the previous section we discussed the momentum oper-
ators canonically conjugate to the curved-space coordinates.
As a defining feature of such conjugate operator pairs, they
mutually generate translations in their conjugate coordinate. In
the general curved case the translation operators act according
to

e−ixi p̂i /�|x ′〉 = 4

√
g(x ′ + x)

g(x ′)
|x ′ + x〉, (34a)

eipi x̂
i /�|p′〉 = |p′ + p〉, (34b)

as follows from the representations of unity (21) and (29). In
analogy to Eq. (4), we now consider the displacement operators

D̂(g)(x,p) = e−ixi p̂i /�eipi x̂
i /�. (35)

Next, these are used to define the undisplaced operator kernel
in analogy to Eq. (6),

�̂(g)(0,0) = 1

(2π�)n

∫
dp′

∫
dx ′D̂(g)(x ′,p′)eix ′ip′

i /2�

=
∫

dx ′ 4
√

g(−x ′/2)g(x ′/2) |x ′/2〉〈−x ′/2|. (36)

As in Eq. (5), we can finally introduce the Stratonovich-Weyl
operator kernel by

�̂(g)(x,p) = D̂(g)(x,p)�̂(g)(0,0)D̂(g)†(x,p), (37)

which evaluates as

�̂(g)(x,p) =
∫

dx ′ 4
√

g(x + x ′/2)g(x − x ′/2)

× eipix
′i /�|x + x ′/2〉〈x − x ′/2|. (38)

A nontrivial metric determinant g thus modifies the
Stratonovich-Weyl operator kernel compared to the Cartesian
one. The completeness in operator space, on the other hand,
remains untouched,

tr[�̂(g)(x,p)�̂(g)(x̃,p̃)] = (2π�)n δ(x − x̃)δ(p − p̃). (39)

As we will see, this ensures that the equivalence of the phase-
space representation with Hilbert space quantum mechanics is
maintained in the general curved case.

B. Wigner function

The Wigner function in a curved space is obtained from the
Stratonovich-Weyl quantizer (38) according to

W (g)(x,p) = 1

(2π�)n
tr[ρ̂�̂(g)(x,p)]

= 1

(2π�)n

∫
dx ′ 4

√
g(x + x ′/2)g(x − x ′/2)

× eipix
′i /�〈x − x ′/2|ρ̂|x + x ′/2〉. (40)

It is the natural generalization of the Cartesian Wigner
function (1). Formally, the momentum representation of the
Wigner function remains unchanged [cf. Eq. (2)],

W (g)(x,p) = 1

(2π�)n

∫
dp′e−ip′

i x
i /�〈p − p′/2|ρ̂|p + p′/2〉,

(41)

although one should keep in mind that the position represen-
tation of the momentum eigenstates is modified; see Eq. (28).

One easily verifies that the curved-space Wigner func-
tion (40) maintains the axioms of a quasiprobability distri-
bution,

∫
dx

∫
dp W (g)(x,p) = 1, (42a)∫
dp W (g)(x,p) =

√
g(x)〈x|ρ̂|x〉, (42b)∫

dx W (g)(x,p) = 〈p|ρ̂|p〉. (42c)
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C. Weyl symbols

In analogy to the Cartesian case, the Weyl symbol of an
arbitrary operator Â is defined by

W
(g)
Â

(x,p) = tr[Â �̂(g)(x,p)] (43a)

=
∫

dx ′ 4
√

g(x + x ′/2)g(x − x ′/2)

× eipix
′i /�〈x − x ′/2|Â|x + x ′/2〉, (43b)

and the inverse mapping is given by

Â = 1

(2π�)n

∫
dx

∫
dp W

(g)
Â

(x,p)�̂(g)(x,p). (44)

As desired, expectation values are calculated by the
phase-space integral over Wigner function and Weyl
symbol,

〈Â〉 = tr[ρ̂Â] =
∫

dx

∫
dp W

(g)
Â

(x,p)W (g)(x,p). (45)

The Weyl symbols are covariant under phase-space transla-
tions in the sense that the Weyl symbol of a translated operator
Â′ = D̂(g)(x ′,p′)ÂD̂(g)†(x ′,p′) is the shifted Weyl symbol of
the operator Â,

W
(g)
Â′ (x,p) = W

(g)
Â

(x − x ′,p − p′). (46)

This directly follows from our definition (43) of the Weyl
symbols and holds for arbitrary curved configuration spaces.
The definition of the star product remains unchanged

in curved configuration spaces,

W
(g)
ÂB̂

(x,p) =(
W

(g)
Â

� W
(g)
B̂

)
(x,p)

=
∫

dx1dp1

(π�)n

∫
dx2dp2

(π�)n
e2i(xi

1p2i−xi
2p1i )/�

× W
(g)
Â

(x + x1,p + p1)W (g)
B̂

(x + x2,p + p2).
(47)

Accordingly, the alternative representations (13) hold also in
the general case.

The Weyl symbols of the position and momentum operators
x̂i and p̂i take their classical phase-space analogues

W
(g)
x̂i (x,p) = xi and W

(g)
p̂i

(x,p) = pi, (48)

and the same holds for any Weyl-ordered product,

W
(g)
{(p̂i )k ,(x̂i )�}W

(x,p) = (pi)
k(xi)�. (49)

The Weyl ordering is defined in Eq. (16), and there is no
summation over i.

The Hamiltonian (31) is represented by the Weyl symbol

W
(g)
Ĥ

(x,p) = 1

2m
pig

ij (x)pj + U (x). (50)

Here, the formal potential

U (x) = V (x) + �
2Q(x) + �

2

8m

∂2

∂xi∂xj
gij (x) (51)

includes the quantum potential (32) and an additional metric
correction term; the latter arises because the kinetic energy
operator in Eq. (31) is not Weyl ordered.

D. Quantum Liouville equation

We now establish the quantum Liouville equation in curved configuration spaces for a general Hamiltonian of the form (31).
Like in the Cartesian case it has the general form

∂tW
(g)(x,p) = − i

�

[
W

(g)
Ĥ

� W (g) − W (g) � W
(g)
Ĥ

]
(x,p), (52)

and using the explicit Weyl symbol (50) we obtain (L ≡ ∑n
k=1 �k)

∂tW
(g)(x,p) =−

⎡
⎢⎢⎣pi

m
	∂xj

∞∑
�1,...,�n=0

L even

∂Lgij (x)

∂�1x1 . . . ∂�nxn
(−1)

L
2

(
�

2

)L n∏
k=1

	∂�k
pk

�k!

⎤
⎥⎥⎦W (g)(x,p)

+

⎡
⎢⎢⎣ 1

2m

{
pipj −

(
�

2

)2
	∂xi 	∂xj

} ∞∑
�1,...,�n=0

L odd

∂Lgij (x)

∂�1x1 . . . ∂�nxn
(−1)

L−1
2

(
�

2

)L−1 n∏
k=1

	∂�k
pk

�k!

⎤
⎥⎥⎦W (g)(x,p)

+

⎡
⎢⎢⎣

∞∑
�1,...,�n=0

L odd

∂LU (x)

∂�1x1 . . . ∂�nxn
(−1)

L−1
2

(
�

2

)L−1 n∏
k=1

	∂�k
pk

�k!

⎤
⎥⎥⎦W (g)(x,p). (53)

As in Eq. (13), the arrows on top of the derivatives indicate that
they act only on the Wigner function. In the case of a constant
metric the second line vanishes. For a Euclidean space,

gij (x) = δij , the Cartesian quantum Liouville equation (19) is
reproduced (in n dimensions). We note that a related quantum
Liouville equation has been derived in Ref. [38] based on
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a different definition of the Wigner function in curvilinear
coordinates.

In the semiclassical limit, where only leading terms in � are
retained, the quantum Liouville equation (53) reduces to

∂tW
(g)(x,p) =

[
−pi

m
gij (x)∂xj + 1

2m
pipj

∂gij (x)

∂xk
∂pk

+ ∂V (x)

∂xk
∂pk

+ O(�2)

]
W (g)(x,p). (54)

It coincides with the classical Liouville equation in curved
configuration spaces, as desired. This strongly confirms the
viability of the presented phase-space representation.

To summarize, we have verified that all kinematic and dy-
namic aspects of the Cartesian Wigner phase-space formalism
can be generalized to the situation of curved configuration
spaces. In the following, we apply this phase-space formalism
to problems characterized by curved configuration spaces. To
ease notation, and since there is no risk of confusion, we will
drop from now on the upper label (g), indicating that we deal
with a curved space.

V. UNBOUNDED TWO-DIMENSIONAL CURVED SPACES

We proceed to consider the motion of a quantum particle
in unbounded configuration spaces. The resulting conjugate
momentum observables then exhibit continuous spectra. For
the sake of clarity, we focus on a particle constrained to
a two-dimensional surface embedded into three-dimensional
Euclidean space. The surface is taken to be parametrized in

Cartesian coordinates by

z = f (x,y). (55)

One may think of elliptic (or hyperbolic) paraboloids,

f (x,y) = c

[(
x

a

)2

±
(

y

b

)2]
, (56)

or a Gaussian-shaped bump in the vicinity of the origin,

f (x,y) = c e−(x/a)2−(y/b)2
. (57)

For the time being, we keep the discussion general, merely
requiring that f (x,y) is sufficiently smooth.

If the particle is not subject to an additional potential,
the resulting classical Hamiltonian is determined by the
kinetic energy H = gij (x,y)pipj/2m, (i,j ∈ {x,y}), where
the metric coefficients are given by (fx ≡ ∂xf )

gxx(x,y) = 1 − f 2
x

1 + f 2
x + f 2

y

, (58a)

gyy(x,y) = 1 − f 2
y

1 + f 2
x + f 2

y

, (58b)

gxy(x,y) = gyx(x,y) = − fxfy

1 + f 2
x + f 2

y

. (58c)

Based on these one gets the metric determinant

g(x,y) = 1 + f 2
x (x,y) + f 2

y (x,y). (59)

Using Eq. (40), we can now immediately write down the
Wigner function in terms of the position representation of
the statistical operator,

W (x,y,px,py) = 1

(2π�)2

∫ ∞

−∞
dx ′

∫ ∞

−∞
dy ′

[
1 + f 2

x (x+,y+) + f 2
y (x+,y+)

]1/4

[
1 + f 2

x (x−,y−) + f 2
y (x−,y−)

]−1/4 ei(pxx
′+pyy

′)/�〈x−,y−|ρ̂|x+,y+〉. (60)

Here we introduced the short hand notation x± = x ± x ′/2, and likewise for y±. Weyl symbols are determined analogously.
The corresponding quantum Liouville equation can be obtained from Eq. (53). In case of the parabolic constraint (56) and

confining to the region x/a  1, y/b  1, one obtains(
∂t + px

m
	∂x + py

m
	∂y − ∂U

∂x
	∂px

− ∂U

∂y
	∂py

)
W (x,y,px,py)

=
[

4c2

a4

px

m
	∂x

{
x2 − �

2

4
	∂2
px

}
+ 4c2

b4

py

m
	∂y

{
y2 − �

2

4
	∂2
py

}
± 4c2

a2b2

(
px

m
	∂y + py

m
	∂x

) {
xy − �

2

4
	∂px

	∂py

}

−4c2

a4

{
p2

x − �
2

4
	∂2
x

}
x

m
	∂px

− 4c2

b4

{
p2

y − �
2

4
	∂2
y

}
y

m
	∂py

∓ 4c2

a2b2

{
pxpy − �

2

4
	∂x

	∂y

} (
y

m
	∂px

+ x

m
	∂py

)

+
∞∑

�x ,�y=1
�x+�y≡L odd

∂LU (x,y)

∂x�x ∂y�y
(−1)

L−1
2

(
�

2

)L−1 	∂�x
px

	∂�y

py

�x!�y!

]
W (x,y,px,py). (61)

The effective potential U (x,y) is defined as in Eq. (51). The
explicit quantum potential Q(x,y) is unwieldy; for the elliptic
case and a = b it reads

Q(x,y) = 1

m

a4[2a4 − 3(x2 + y2)]

2[a4 + 2(x2 + y2)]3
. (62)

The left-hand side of Eq. (61) describes the classical evolution
of a point particle in Euclidean space subject to the potential U ,
while the second and the third lines capture curvature-induced
effects. The last line describes the familiar quantum corrections
due to anharmonic potentials. If one approximates the metric
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p x

a
/h̄

x/a x/a

FIG. 1. (Color online) Wigner function of a superposition state
in flat (left) and curved (right) two-dimensional configuration space;
a slice of the four-dimensional Wigner function (60) is shown for
y = py = 0. The curved space is taken to be an elliptic paraboloid,
Eq. (56), with a/c = b/c = 1. The quantum state is a superposition
of two Gaussian wave packets with mean momenta (px,py) =
(±3�/a,0), both centered at the origin with widths σx,y = a. Red
[light gray] (blue [dark gray]) color indicates positive (negative)
values of the density plot, normalized to the maximal value.

by a Taylor series up to second order (e.g., in the vicinity of an
extremal point) the resulting quantum Liouville equation has
the same structure (61).

To illustrate the effect of the curvature, we display in
Fig. 1 the Wigner function of a superposition of two Gaussian
wave packets with different velocities, both centered around
the origin. Comparing the Wigner functions on a flat plane
(left) and on a elliptic paraboloid (right), one observes that the
characteristic structure of the superposition state is preserved
in the curved case. The main effect of the curvature is to distort
the envelopes of the individual components and the resulting
interference.

VI. QUANTUM PARTICLE ON A SPHERE

In the following, we demonstrate how the phase-space
representation applies to compact configuration spaces. To
this end, we consider a particle constrained to the surface
of a sphere, one of the paradigms for quantum mechanics in
curved space. The underlying compact symmetry group SO(3)
exhibits finite-dimensional representations, e.g., the spherical
harmonics for fixed total angular momentum quantum number
�. The motion on a sphere has been widely investigated in the
literature, e.g., in the context of establishing a phase-space
formalism for the spin degree of freedom (based on the SU(2)
algebra) [26,30,34,51,52].

A. Phase space coordinates on the sphere

The appropriate generalized coordinates to describe the
dynamics on a sphere are the azimuthal angle ϕ ∈ [0,2π ) and
the polar angle ϑ ∈ [0,π ] in spherical coordinates, where the
radial coordinate r is constrained to fixed radius r = R. The
classical Hamilton function for a particle of mass M moving
freely on this surface is then given by

H = 1

2MR2

(
p2

ϑ + p2
ϕ

sin2 ϑ

)
. (63)

Here pϕ = 	ez · 	L and pϑ = −	eϕ · 	L describe the components
of the angular momentum 	L with respect to the unit vectors
	ez and 	eϕ . By comparing Eq. (63) with Eq. (30), i.e., with
the general form H = gij (ϑ,ϕ)pipj/2MR2, (i,j ∈ {ϑ,ϕ}), we
can identify the metric components

gϑϑ (ϑ,ϕ) = 1, (64a)

gϕϕ(ϑ,ϕ) = 1

sin2 ϑ
, (64b)

gϑϕ(ϑ,ϕ) = gϕϑ (ϑ,ϕ) = 0. (64c)

From this one infers the covariant components gϑϑ (ϑ,ϕ) =
1, gϕϕ(ϑ,ϕ) = sin2 ϑ , and gϑϕ(ϑ,ϕ) = gϕϑ (ϑ,ϕ) = 0, yielding
the metric determinant

g(ϑ,ϕ) =
∣∣∣∣1 0
0 sin2 ϑ

∣∣∣∣ = sin2 ϑ. (65)

According to Eq. (21), the identity operator in the coordinate
basis |ϑ,ϕ〉 is therefore given by

1 =
∫ π

0
dϑ

∫ 2π

0
dϕ sin ϑ |ϑ,ϕ〉〈ϑ,ϕ|. (66)

Moreover, the conjugate momentum operators follow from
Eq. (24):

p̂ϕ = �

i

∂

∂ϕ
, p̂ϑ = �

i

(
∂

∂ϑ
+ 1

2
cot ϑ

)
. (67)

The finite range of the angular coordinates introduces a novel
feature, the occurrence of discrete momentum eigenvalues.
The eigenfunctions are given by [cf. Eq. (28)]

〈ϑ,ϕ|mϑ,mϕ〉 = e2imϑϑ

√
π sin ϑ

eimϕϕ

√
2π

, (68)

with mϕ,mϑ ∈ Z labeling the associated eigenvalues,

p̂ϑ |mϑ,mϕ〉 = 2�mϑ |mϑ,mϕ〉, (69a)

p̂ϕ|mϑ,mϕ〉 = �mϕ|mϑ,mϕ〉. (69b)

The eigenvectors form a discrete orthonormal basis of the
Hilbert space,

1 =
∑

mϑ∈Z

∑
mϕ∈Z

|mϑ,mϕ〉〈mϑ,mϕ|, (70a)

〈mϑ,mϕ|m′
ϑ ,m′

ϕ〉 = δmϑ ,m′
ϑ
δmϕ,m′

ϕ
. (70b)

With this we have identified the phase space. Unlike in
the unbounded configuration space the discrete momentum
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spectrum implies a discrete momentum phase-space coor-
dinate. This is a generic feature of compact coordinates
and also arises, e.g., in the case of a single angle variable
(motion on a circle) [45] or the orientation state of a rigid
body [46]. We stress that this discreteness does not arise
due to the phase-space formalism but is a necessary physical
consequence, as also reflected in the discrete measurement
outcomes of the corresponding momentum observables. We
see below that the classical continuous momentum space is
regained in the semiclassical limit.

We conclude with a number of further remarks.

1. Discussion

First, the commutators [ϕ̂,p̂ϕ] and [ϑ̂,p̂ϑ ] are operator
valued, which is a generic feature of position and momentum
operator pairs in compact spaces that is not relevant in the
following. In particular, it does not affect the conjugate
relationship between the angle coordinates and the momentum
operators (67), which is founded on the classical Poisson
brackets. The necessity of operator-valued commutators can be
seen from the uncertainty relation, as the bounded coordinate
uncertainty can give rise to vanishing uncertainty products,
e.g., in the case of momentum eigenstates. We remind the
reader that the displacement operators (4) and (35) are not
defined symmetrically, because one cannot apply the Baker-
Campbell-Hausdorff formula if the commutator is operator
valued.

As a second remark, one might suppose that the spherical
harmonics offer an alternative, viable momentum basis to
complement the angle coordinates:

1 =
∞∑

�=0

�∑
m=−�

|�m〉〈�m|, (71a)

〈ϑ,ϕ|�m〉 = Y�,m(ϑ,ϕ). (71b)

The momentum operators would then be the total angular

momentum 	̂L2 and its projection on the z-axis L̂z. This
choice seems in particular appealing, since the spherical
harmonics, realizing a representation of the rotation group
SO(3), respect the continuous symmetry of the configuration
space. Moreover, a free particle constrained to the surface of
a sphere is described by the Hamiltonian

Ĥ =
	̂L2

2MR2
=

∞∑
�=0

�∑
m=−�

�
2�(� + 1)

2MR2
|�m〉〈�m|. (72)

The time evolution of an arbitrary quantum state can thus easily
be given in terms of the spherical harmonics.

However, for this choice it is not possible to relate each
coordinate to a corresponding momentum, impeding a phase-
space formalism that satisfies the marginal property. Next, even

though 	̂L2 and L̂z commute, they do not constitute independent
variables, as can be seen from the range dependence of
the quantum number m on �. Moreover, since they are not
the momenta conjugate to the coordinates, they will not
yield the desired transition to the classical Liouville equation
in the semiclassical limit. All this illustrates that the issue how

to establish a viable phase-space formalism is independent of
possible symmetries of the configuration space.

B. Wigner-Weyl representation on the sphere

Even though the spectra of the conjugate momenta are
discrete, the derivation of the Wigner-Weyl representation
follows by and large the same line of argument as in Sec. IV.
All properties and relations of the Wigner-Weyl formalism
carry over, except that the continuous momentum argument is
replaced by a discrete variable and the momentum integrals by
summations.

We introduce the displacement operators D̂(ϑ,ϕ,mϑ,mϕ) =
D̂ϑ (ϑ,mϑ )D̂ϕ(ϕ,mϕ) for ϑ ∈ [0,π ], ϕ ∈ [0,2π ), and mϑ,mϕ ∈
Z in terms of the commuting factors

D̂ϑ (ϑ,mϑ ) = e2imϑ ϑ̂ e−iϑp̂ϑ /�, (73a)

D̂ϕ(ϕ,mϕ) = eimϕϕ̂e−iϕp̂ϕ/�. (73b)

Note that the translation operators keep the phase-space
variables within their range of definition:

e−iϑ ′p̂ϑ /�|ϑ,ϕ〉 =
√

| sin(ϑ + ϑ ′)|
sin ϑ

|[ϑ + ϑ ′] mod π,ϕ〉,
(74a)

e2im′
ϑ ϑ̂ |mϑ,mϕ〉 = |mϑ + m′

ϑ ,mϕ〉, (74b)

e−iϕ′p̂ϕ/�|ϑ,ϕ〉 = |ϑ,[ϕ + ϕ′] mod 2π〉, (74c)

eim′
ϕ ϕ̂|mϑ,mϕ〉 = |mϑ,mϕ + m′

ϕ〉. (74d)

The undisplaced operator �̂0 = �̂ϑ (0,0)�̂ϕ(0,0) is defined by

�̂ϑ (0,0) = 1

π

∑
m′

ϑ∈Z

∫ π/2

−π/2
dϑ ′D̂ϑ (ϑ ′,m′

ϑ )e−iϑ ′m′
ϑ , (75a)

�̂ϕ(0,0) = 1

2π

∑
m′

ϕ∈Z

∫ π

−π

dϕ′D̂ϕ(ϕ′,m′
ϕ)e−iϕ′m′

ϕ/2. (75b)

The main difference with the general undisplaced kernel (36)
is that the momentum integrals are replaced by sums. More-
over, the angle integrations are defined symmetrically with
respect to the origin. This is required in order to guarantee
the hermiticity of �̂0. It is not in conflict with the definition
ranges of the angle variables, since the integration variables
correspond to changes of the angles.

The general Stratonovich-Weyl operator kernel
�̂(ϑ,ϕ,mϑ,mϕ) is defined analogously to (37) and reads

�̂(ϑ,ϕ,mϑ,mϕ) =
∫ π/2

−π/2
dϑ ′

∫ π

−π

dϕ′√sin ϑ+ sin ϑ−

× e2imϑϑ ′
eimϕϕ′ |ϑ+,ϕ+〉〈ϑ−,ϕ−|. (76)

Here we introduced the abbreviations ϑ± = [ϑ ± ϑ ′/2]mod π

and ϕ± = [ϕ ± ϕ′/2]mod 2π . The operator kernel satisfies the
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completeness relation

tr[�̂(ϑ,ϕ,mϑ,mϕ)�̂(ϑ ′,ϕ′,m′
ϑ ,m′

ϕ)]

= 2π2δmϑ ,m′
ϑ
δ([ϑ − ϑ ′]mod π )δmϕ,m′

ϕ
δ([ϕ − ϕ′]mod 2π ).

(77)

The Wigner function for a point particle constrained to the
surface of a sphere is now given by

W (ϑ,ϕ,mϑ,mϕ) = 1

2π2
tr[ρ̂�̂(ϑ,ϕ,mϑ,mϕ)]

= 1

2π2

∫ π/2

−π/2
dϑ ′

∫ π

−π

dϕ′√sin ϑ+ sin ϑ−

× e2imϑϑ ′
eimϕϕ′ 〈ϑ−,ϕ−|ρ̂|ϑ+,ϕ+〉; (78)

it corresponds to Eq. (40) with modified integration limits. The
Weyl symbol of an operator Â is defined accordingly:

WÂ(ϑ,ϕ,mϑ,mϕ) = tr[Â�̂(ϑ,ϕ,mϑ,mϕ)]

=
∫ π/2

−π/2
dϑ ′

∫ π

−π

dϕ′√sin ϑ+ sin ϑ−

× e2imϑϑ ′
eimϕϕ′ 〈ϑ−,ϕ−|Â|ϑ+,ϕ+〉. (79)

The inverse relation (44) holds with the integral over p

replaced by summations over mϑ and mϕ . For the mo-
menta p̂ϑ and p̂ϕ one now obtains the desired Weyl
symbols Wp̂ϑ

(ϑ,ϕ,mϑ,mϕ) = 2�mϑ and Wp̂ϕ
(ϑ,ϕ,mϑ,mϕ) =

�mϕ . The marginals evaluate as expected,

∫ π

0
dϑ

∫ 2π

0
dϕ W (ϑ,ϕ,mϑ,mϕ) = 〈mϑ,mϕ|ρ̂|mϑ,mϕ〉,

(80a)∑
mϑ,mϕ∈Z

W (ϑ,ϕ,mϑ,mϕ) =
√

sin ϑ〈ϑ,ϕ|ρ̂|ϑ,ϕ〉.

(80b)

As an example, we consider the Wigner function for
the isotropic angular momentum state |� = 0,m = 0〉 with
〈ϑ,ϕ|� = 0,m = 0〉 = 1/

√
4π . It simplifies to an expression

W (ϑ,ϕ,mϑ,mϕ) = 1

4π2
δmϕ,0

∫ π/2

−π/2
dϑ ′√| sin(ϑ + ϑ ′/2)|

×
√

| sin(ϑ − ϑ ′/2)| cos(2mϑϑ ′), (81)

0.0 0.2 0.4 0.6 0.8 1.0

0

0.05

W
,
,m

0
1,
m

0

π

FIG. 2. (Color online) Wigner function W (ϑ,ϕ,mϑ,mϕ) of the
isotropic spherical harmonic |� = 0,m = 0〉. Shown is the variation
with the polar angle ϑ for the conjugate momentum choices mϑ = 0
(solid line) and mϑ = 1 (dashed line); in both cases we specify
mϕ = 0. The Wigner function is independent of the azimuthal
angle ϕ.

which is independent of the azimuthal angle variable ϕ but
depends on the polar angle variable ϑ and the conjugate
momenta mϑ and mϕ . This is illustrated in Fig. 2 for the
cuts W (ϑ,ϕ,mϑ = 0,mϕ = 0) and W (ϑ,ϕ,mϑ = 1,mϕ = 0).
The fact that an isotropic state exhibits angular dependence is
a consequence of the use of spherical coordinates, which are
defined with respect to a chosen direction.

We have thus established that the Wigner function for a
particle on a sphere behaves like a quasiprobability distribu-
tion. We remark that the Wigner function (78) is not invariant
under rotations, in the sense that the Weyl symbol W

RHρ̂R
†
H
(x)

of a rotated state R̂Hρ̂R̂
†
H is not the rotated Weyl symbol

Wρ̂(RCx) of the unrotated state (H and C indicate that the
rotation acts in Hilbert or in phase space, respectively). This is
evident by considering the Wigner function of an isotropic state
such as Eq. (81). While the state is invariant under rotations,
this does not hold for the phase space representation due to
its angular dependence. This consequence of the choice of
spherical coordinates arises also in the classical case. As in the
general case (46), the Weyl symbols are covariant under the
displacements (73), instead.

The momentum representation of the Wigner function is
more intricate due to the discreteness of the momenta, and
reads

W (ϑ,ϕ,mϑ,mϕ) = 1

2π2

∑
m′

ϑ ,m′′
ϑ ,m′

ϕ,m′′
ϕ∈Z

sinc

[(
mϑ − m′

ϑ − m′′
ϑ

2

)
π

]
sinc

[(
mϕ − m′

ϕ − m′′
ϕ

2

)
π

]

× e2i(m′
ϑ−m′′

ϑ )ϑei(m′
ϕ−m′′

ϕ )ϕ〈m′
ϑ ,m′

ϕ|ρ̂|m′′
ϑ ,m′′

ϕ〉, (82)

with sinc(x) = sin(x)/x. We remark that one could obtain a diagonal momentum representation with only two sums by choosing
an undisplaced operator kernel �̂0 which, however, does not preserve parity. For instance, one can take the kernel �̂ϑ (0,0) =
P̂ϑ + e±2iϑ̂ P̂ϑ , with P̂ϑ = ∑

mϑ∈Z |mϑ 〉〈−mϑ |, and similarly for �̂ϕ(0,0). This possibility is discussed in detail in Ref. [45].
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C. Quantum Liouville equation on the sphere

The Hamiltonian (72) rewritten in terms of the canonical phase-space coordinates reads [48]

Ĥ = 1

2MR2

(
p̂2

ϑ + p̂2
ϕ

sin2 ϑ̂

)
− �

2

8MR2

(
1 + 1

sin2 ϑ̂

)
. (83)

By comparison with Eq. (31) and the classical Hamiltonian (63), we can infer the quantum potential

Q(ϑ) = − 1

8MR2

(
1 + 1

sin2 ϑ

)
, (84)

which agrees with the general theory (32). The effect of the quantum potential is thus to repel the particle from the range
boundaries 0 and π of the angle ϑ .

Because of the discrete momenta, we cannot use Eq. (53) for obtaining the quantum Liouville equation. Instead, one must
re-evaluate the von Neumann equation with Eq. (83) in phase space for the discrete momentum variables. A lengthy calculation
yields (

∂t + 2�mϑ

MR2
∂ϑ

)
W (ϑ,ϕ,mϑ,mϕ)

= − �mϕ

MR2
∂ϕ

∞∑
n=0

∂2ngϕϕ(ϑ,ϕ)

∂ϑ2n
(−1)n

(�/2)2n

(2n)!

1

(2�)2n

∑
m′

ϑ∈Z
δ

(2n)
mϑ−m′

ϑ
W (ϑ,ϕ,m′

ϑ ,mϕ)

+ 1

2MR2

{
(�mϕ)2 −

(
�

2

)2

∂2
ϕ

} ∞∑
n=0

∂2n+1gϕϕ(ϑ,ϕ)

∂ϑ2n+1
(−1)n

(�/2)2n

(2n + 1)!

1

(2�)2n+1

∑
m′

ϑ∈Z
δ

(2n+1)
mϑ−m′

ϑ
W (ϑ,ϕ,m′

ϑ ,mϕ)

+
∞∑

n=0

∂2n+1Q(ϑ)

∂ϑ2n+1
(−1)n

(�/2)2n

(2n + 1)!

1

(2�)2n+1

∑
m′

ϑ∈Z
δ

(2n+1)
mϑ−m′

ϑ
W (ϑ,ϕ,m′

ϑ ,mϕ), (85)

where we introduced δ(N)
m = ∂N

m sinc(mπ ). The metric component gϕϕ(ϑ,ϕ) = 1/ sin2 ϑ was given in Eq. (64a). Note that Eq. (85)
does not contain a potential V (ϑ,ϕ), which, however, is easy to include by replacing Q by V + Q.

If the Wigner function and its derivatives vary sufficiently
slowly as functions of mϑ , we can approximate the sums over
mϑ by integrals. Rewriting 2�mϑ = pϑ , we have

1

(2�)N
∑

m′
ϑ∈Z

δ
(N)
mϑ−m′

ϑ
W (m′

ϑ ) ≈ ∂N
pϑ

W (pϑ ). (86)

Based on this replacement, one can now confirm easily that the
quantum Liouville equation with discrete momenta, Eq. (85),
is consistent with the general version (53) given in Sec. IV. In
particular, we find that in the semiclassical limit (� → 0)

∂tW = − 1

MR2

(
pϕ

sin2 ϑ
∂ϕ + pϑ∂ϑ + cot ϑ

sin2 ϑ
p2

ϕ∂pϑ

)
W.

(87)

As expected, this equation corresponds to the classical Li-
ouville equation for a particle on the sphere. (Here we also
replaced �mϕ = pϕ .)

D. Extension to the orientation state

Finally, let us briefly sketch how the phase-space repre-
sentation of the motion on a sphere can be generalized to the
orientation state of a rigid body. The latter can be characterized
by the Euler angles α,β,γ of precession, nutation, and intrinsic
rotation, which constitute a compact, curved configuration
space. The orientation state is related to the point particle
constrained to a sphere, since the two angles α,β locate the

intersection point of the intrinsic rotation axis with the surface
of the unit sphere; the third angle γ describes the rotation about
this axis.

The derivation of the orientation state Wigner function, as
well as the quantum Liouville equation in the semiclassical
limit, were already presented in a previous publication [46].
Here we remark only that these results can also be derived
in the spirit of a curved configuration space. To this end, we
consider the Hamilton function of a general, nonsymmetric
top with the moments of inertia I1, I2, and I3,

H = 1

2I1 sin2 β
[(pα − pγ cos β) cos γ − pβ sin β sin γ ]2

+ 1

2I2 sin2 β
[(pα − pγ sin β) cos γ + pβ sin β cos γ ]2

+ 1

2I3
p2

γ . (88)

Writing H = pig
ijpj/2I , i,j ∈ {α,β,γ }, with I = 3

√
I1I2I3,

we can infer the covariant metric components

gαα = Ĩ1 sin2 β cos2 γ + Ĩ2 sin2 β sin2 γ + Ĩ3 cos2 β, (89a)

gββ = Ĩ1 sin2 γ + Ĩ2 cos2 γ, (89b)

gγγ = Ĩ3, (89c)

gαβ = gβα = (Ĩ2 − Ĩ1) sin β sin γ cos γ, (89d)
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gαγ = gγα = Ĩ3 cos β, (89e)

gβγ = gγβ = 0. (89f)

Here we introduced the dimensionless moments of inertia Ĩi =
Ii/I . The metric (89) leads to the metric determinant

g(α,β,γ ) = sin2 β, (90)

which is identical to the metric determinant (65) arising
for the motion on a sphere. From here on, the phase-space
representation for the orientation state is derived analogously
to Secs. IV and VI, yielding the same expressions as in
Ref. [46].

VII. CONCLUSIONS

We extended the Wigner-Weyl-Moyal phase-space repre-
sentation to curved configuration spaces. All essential features
of the standard formalism are maintained: The Wigner function
can be interpreted as a quasiprobability distribution, and
expectation values can be calculated by phase-space inte-
grals, where Weyl-ordered operators are represented by their
corresponding classical phase-space functions. Moreover, the
quantum Liouville equation exhibits the correct semiclassical
limit, which completes the desired connection with classical
mechanics. Both unbounded and compact configuration spaces

are covered; the latter display discrete momentum variables in
phase space, which, however, exhibit a continuous semiclassi-
cal limit.

In contrast to previous approaches, we do not invoke possi-
bly existing symmetries of the system but consistently employ
translations in order to construct the Stratonovich-Weyl oper-
ator kernels. This is at variance with Stratonovich’s request
for covariance [23,24,30], expressing the expectation that the
Weyl symbols are invariant under symmetry transformations.
This is certainly a reasonable requirement in the Cartesian case,
since the Wigner-Weyl-Moyal representation for a free particle
with Ĥ = p̂2/2m is invariant under translations. However, our
results suggest that it is not the covariance which constitutes
a defining feature of general phase-space representations but
rather that the use of the translation group is decisive to obtain
a viable phase-space representation. The presented formalism
can be applied to spaces of arbitrary curvature and thus opens
the versatility of the quantum phase-space perspective to the
wide field of curved configuration spaces.
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