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Molecular rotations in matter-wave interferometry
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We extend the theory of matter-wave interferometry of pointlike particles to nonspherical objects by taking
the orientational degrees of freedom into account. In particular, we derive the grating transformation operator,
which maps the impinging state onto the outgoing state, for a general, orientation-dependent interaction potential
between the grating and the molecule. The grating operator is then worked out for the diffraction of symmetric
top molecules from standing light waves, and the resulting interference pattern is calculated in the near field. This
allows us to identify a signature of the orientational degrees of freedom in near-field matter-wave experiments.

DOI: 10.1103/PhysRevA.92.023619 PACS number(s): 03.75.Dg, 45.20.dc, 37.10.Vz

I. INTRODUCTION

Interference experiments with heavy molecules and nan-
oclusters amount to tests of the quantum superposition princi-
ple at unprecedented scales [1–4] and may serve to measure
molecular properties with high accuracy [5–7]. While it is an
open question whether the superposition principle is valid at all
scales [8–10], it is without doubt that the rovibrational degrees
of freedom of increasingly large, nonspherical objects will at
some point influence the interference signal.

Far-field matter-wave experiments with heavy particles are
challenging due to the small de Broglie wavelength, but near-
field interferometry proved to be a powerful tool in the quest
for high mass interference [1,2,11–13]. Near-field techniques
are based on the Talbot effect, the reproduction of the intensity
pattern in the grating at certain distances further downstream.
Since near-field interference effects are highly sensitive to
even tiny phase modifications, it is natural to expect that the
influence of the rotational state is most pronounced in the near
field. In fact, signatures of the vibrational molecular dynamics
have been observed in near-field experiments in [5].

In order to extend the established theory of matter-wave
interferometry of spherical particles to nonspherical objects
with orientational degrees of freedom, we draw on the results
obtained for the deflection of rotating molecules [14–19].
There, it is a central result that the deflection angle of
a rapidly rotating molecule is determined by its rotational
state when entering the deflection field. In most cases of
interest, the rotation of the molecule is initially thermally
distributed, particularly in the absence of a prealigning pulse.
The distribution of the rotational state then translates directly
into a range of deflection angles, each observed with the
thermal probability of the respective state. The distribution
describing the probability of a particular deflection angle is
thus a central element in the theory of molecular deflection
and it will turn out to be similarly relevant for the theory of
matter-wave interferometry of rotating molecules.

This article presents a full quantum theory of the influence
of rotations in matter-wave interferometry, and we illustrate
this theory by calculating the near-field interference pattern
of symmetric top molecules in the Kapitza-Dirac-Talbot-
Lau interferometer (KDTLI). We emphasize that the general
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formalism presented here is not restricted to the orientation
state but can be applied to other internal degrees of freedom
as well.

The article is structured as follows: In Sec. II we derive the
quantum-mechanical grating transformations for the cases of
a rotationally free and a rotationally diabatic transit through
the grating, as well as their classical analogues. In Sec. III
we specify the grating transformation for the diffraction of
symmetric top molecules from a standing light wave in order to
study the near-field interference pattern in the KDTLI, and we
identify a signature of the rotational dynamics. We conclude in
Sec. IV. The Appendix provides a derivation of the distribution
of classical deflection angles of rotating symmetric molecules,
as required in Sec. III.

II. THE GRATING TRANSFORMATION

It is the aim of this section to determine the effect of
the grating on the translational and rotational dynamics of
the molecule. For this sake we consider a molecule of mass
M that traverses with constant velocity vz a diffraction
grating located at z = 0 and with the grating axis along
the x direction. The assumption that vz remains constant
throughout the diffraction process is well justified, because
in the experimental realization the kinetic energy of the
longitudinal motion exceeds the average interaction potential
and the kinetic energy of the transverse motion by orders of
magnitude [20]. In addition, the restriction to a single velocity
vz is not a limitation because a finite longitudinal coherence
can always be incorporated by averaging over the distribution
of vz in the end [12].

The orientation-dependent interaction between the
molecule and the grating is described by the grating potential
V (x,z,�), where � denotes the set of orientational degrees
of freedom (DOFs) of the molecule, such as the Euler angles,
z = vzt is the center-of-mass (CM) position of the molecule
in the flight direction at time t , and x is the CM position in
the grating direction. Since the extension of the particle beam
in y direction is usually small compared to the extension of
the grating, we can neglect the y dependence of the potential
V (x,vzt,�).

In what follows, we distinguish between the rotationally
free transit, where the (expectation value of the) rotational
period τrot of the molecule is constant during the passage and
much smaller than the transit time τCM through the grating, and
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the rotationally diabatic scenario, in which the characteristic
time τCM is much smaller than the rotational period τrot. While
the rotationally free transit is realized, for instance, in near-
field matter-wave interferometry with laser gratings [12], the
diabatic transit can occur in far-field experiments with very
thin material gratings [21].

A. Quantum-mechanical description

The central tool in the theory of matter-wave interfer-
ometry of spherically symmetric particles is the grating
transformation operator t̂ , that maps the incoming transverse
state ρ onto the outgoing transverse state ρ ′ = t̂ρt̂† with
〈x |x ′〉 = t(x)t∗(x ′)〈x |x ′〉 [12,13,20]. In the case of extended,
non-spherical molecules, the grating transformation operator
t̂ must be adapted in order to account for the effect of the
orientational DOFs. Let us start by deriving this operator from
the time-dependent Schrödinger equation.

The total Hamiltonian Ĥ contains, in addition to the grating
potential V (x,z,�), the CM kinetic energy ĤCM in transverse
direction x, as well as the free rotational Hamiltonian Ĥrot,
whose form is determined by the symmetry of the molecule
[22]. In what follows we keep the discussion general and de-
note by |�m〉 the eigenfunctions of the rotational Hamiltonian
with energy ε�, where � labels the energy levels and m labels
the degenerate states for each �. The symmetry of the rotor is
arbitrary and so is the degeneracy ν� for each �.

For the sake of a more compact notation we introduce for
each � the tuple φ

�
(�) containing all the states with energy

ε�, i.e., (φ
�
)m = 〈�|�m〉. The length of the tuple φ

�
(�) is

thus equal to ν�. With these tuples the total wave function
	(x,�,t) = 〈x,�|	(t)〉 can be expanded as

	(x,�,t) =
∑

�

e−iε�t/�χ
�
(x,t) · φ

�
(�), (1)

where χ
�
(x,t) are the tuples of expansion coefficients (χ

�
)m =

χ�m. Again, the length of χ
�
(x,t) is ν�. Inserting the expansion

(1) into the time-dependent Schrödinger equation with the total
Hamiltonian Ĥ gives the coupled equations

i�∂tχ�
(x,t) = ĤCMχ

�
(x,t)

+
∑
�′

e−i��′�t/�V
��′(x,vzt)χ�′(x,t). (2)

Here, ��′� = ε�′ − ε� is the rotational energy-level spacing,
and we defined the grating potential matrix (V

��′)mm′(x,vzt) =
〈�m |�′m′〉 with dimension ν� × ν�′ . In addition, we denote the
initial conditions to the Schrödinger equation (2) by variables
without the time argument, such as χ

�
(x).

Equation (2) describes the coupled time evolution of the
expansion coefficients χ�m(x,t) due to the effectively time-
dependent interaction between the molecule and the grating.
The exact grating transformation t̂ is given by the unitary
time evolution of the system (2); however, in practice a
semiclassical approach is sufficient due to the small de Broglie
wavelength in matter-wave experiments with heavy molecules
[20]. In most cases it is even sufficient to determine the grating
transformation t̂ in the eikonal approximation, which can be
regarded as the high-energy limit of the semiclassical prop-
agator [20]. Physically speaking, the eikonal approximation

treats the particle trajectories appearing in the semiclassical
propagator as straight lines [22]. We now specify t̂ explicitly
for the rotationally free and for the rotationally diabatic transit
through the grating.

a. Free rotor transit. In a rotationally free transit through
the grating the molecule rotates rapidly during the passage
through the grating, τrot � τCM, and the rotational energy
clearly exceeds the average potential. Then the transverse
CM wave functions χ� are nearly constant during the transit
and one can neglect the nonresonant terms in the Schrödinger
equation (2) (rotating wave approximation):

i�∂tχ�
(x,t) = [ĤCM + V

��
(x,vzt)]χ�

(x,t). (3)

The interaction potential is effectively diagonal in the angular
momentum quantum numbers � due to the fast molecular
rotations. The corresponding expansion coefficients χ

�
(x,t)

for different energies ε� are mutually independent; however,
in general the entries within each χ

�
(x,t) are coupled via

Eq. (3).
In the eikonal approximation [12,20,22] the scattered

state χ ′
�
(x) behind the grating, according to the Schrödinger

equation (3), is related to the impinging state χ
�
(x) by

χ ′
�
(x) = T

�
(x)χ

�
(x), where the grating transformation matrix

is given by

T
�
(x) = exp

[
− i

�vz

∫ ∞

−∞
dzV

��
(x,z)

]
. (4)

It is a square matrix of dimension ν�. The corresponding grat-
ing transformation operator t̂ can be expressed in terms of the
matrix elements tmm′

� = (T
�
)mm′ of the grating transformation

matrix (4) as

t̂ =
∑

�

∑
mm′

(
tmm′
� (x̂) ⊗ |�m〉〈�m′|)|t(x̂,�̂)|. (5)

Here, we included the aperture function |t(x,�)| ∈ {0,1}
describing the grating structure. Pure phase gratings are
characterized by |t(x,�)| = 1, while for ideal interaction-free
gratings the eikonal phase vanishes [20].

The grating transformation (5) is valid for any interaction
potential as long as the rotating wave approximation is
justified. This is the case in most matter-wave experiments
with large particles, such as near-field interference experiments
with laser gratings [11–13] or far-field experiments with
thick gratings [2]. In Sec. III we will specify the grating
transformation (5) for laser gratings. In addition, we note
that in many practical cases the initial rotational state is a
thermal mixture of angular momentum states and, hence, the
grating transformation (5) can be regarded as the thermal aver-
age of angular-momentum-dependent grating transformations
tmm′
� (x̂).

b. Diabatic transit. In a rotationally diabatic grating
passage the interaction time τCM is much smaller than the
rotational period τrot and, in a classical picture, the orientation
� remains constant during the transit. In this case the
quantum-mechanical grating transformation gets diagonal in
the orientational coordinates �. In order to see this we note that
for short transit times the rotating phases ���′ t/� 
 2πt/τrot

in the Schrödinger equation (2) can be neglected. This yields
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the coupled equations

i�∂tχ�
(x,t) = ĤCMχ

�
(x,t) +

∑
�′

V
��′(x,vzt)χ�′(x,t), (6)

which depend on the orientational DOFs only in parametric
fashion, since these equations are independent of the rotational
energy levels ε�. Defining the wave function,

�(x,�,t) =
∑

�

χ
�
(x,t) · φ

�
(�), (7)

allows us to rewrite the coupled equations (6) in the form

i�∂t�(x,�,t) = [ĤCM + V (x,vzt,�)]�(x,�,t), (8)

which can now be solved in the eikonal approximation. The
diabatic grating transformation operator t̂ , mapping the initial
state �(x,�) onto the outgoing state �′(x,�), can now be
written in the eikonal approximation as

t̂ = |t(x̂,�̂)| exp

[
− i

�vz

∫ ∞

−∞
dzV (x̂,z,�̂)

]
. (9)

As anticipated, the diabatic grating transformation (9) is
diagonal in the orientational DOFs �. This coincides with the
classical perception that the orientation is conserved during
the diabatic passage through the grating and is in contrast
to the free rotor case (5), which is diagonal in the angular
momentum quantum numbers �. The diabatic transformation
(9) can be appropriate to describe the transit through ultrathin
material gratings, e.g., made of graphene.

B. Classical grating transformation

In order to identify genuine quantum effects in near-
field matter-wave interferometry, it is necessary to compare
the quantum interference signal to the classically expected
shadow pattern of the grating [12]. This moiré-type signal
can be obtained in principle by solving Hamilton’s equations
of motion for a rotating molecule in the grating potential
V (x,vzt,�). However, the problem is significantly simplified
by the classical analog of the eikonal approximation.

The classical state of the rotating molecule approaching the
grating is described by its phase-space distribution function
f (x,px,�,p�), where p� denotes the vector of conjugate
momenta to the angles �. We seek the classical grating
transformation that maps the incoming state f (x,px,�,p�)
onto the outgoing state f ′(x,px,�,p�) [12,23], i.e., the
classical analog of the grating transformation operator t̂

mapping ρ onto ρ ′. We discuss the free rotor scenario first.
a. Free rotor transit. For a rapidly rotating molecule, the CM

motion is determined by the grating potential averaged over a
rotational period [24]. The resulting eikonal momentum kick
�px experienced by the molecule while passing through the
grating reads as

�px(x,�,p�) = − 1

τrotvz

∫ τrot

0
dt ′

∫ ∞

−∞
dz

×∂xV [x,z,�(t ′)]. (10)

The transferred momentum (10) is a function of both the
transverse CM coordinate x and of the initial orientation
state (�,p�), which determines the rotational dynamics. In

addition, it is reasonable to neglect the influence of the grating
on the rotational dynamics, since the rotational energy is much
higher than the average interaction potential. The free rotor
approximation is in most practical cases well justified due
to the high rotational temperature of the molecules in the
experiments [2].

With the help of the eikonal momentum kick (10), we
can express the outgoing distribution f ′(x,px,�,p�) as a
CM momentum convolution of the impinging distribution
f (x,px,�,p�),

f ′(x,px,�,p�) =
∫

dp′
xTcl(x,px − p′

x,�,p�)

×f (x,p′
x,�,p�), (11)

with the grating transformation function

Tcl(x,px,�,p�) = |t(x,�)|δ[px − �px(x,�,p�)]. (12)

The function Tcl(x,px,�,p�) is the classical analog of the
quantum-mechanical grating transformation operator t̂ . We
remark that the transformation (11) conserves the angular
momenta p�, as it was the case in the quantum-mechanical
case (4). We will now specify the grating transformation
function for the rotationally diabatic case.

b. Diabatic transit. In the case of a rotationally diabatic
transit, the rotational period is much longer than the transit time
and thus the orientation � of the molecule can be considered
as being constant during the passage through the grating. The
resulting CM momentum kick (10) is

�px(x,�) = − 1

vz

∫ ∞

−∞
dz∂xV (x,z,�), (13)

which is a function of the transverse CM position x and of
the orientation �. In a similar fashion, we obtain the eikonal
angular momentum kick �p�,

�p� = − 1

vz

∫ ∞

−∞
dz∂�V (x,z,�), (14)

which is also a function of x and �. The resulting grating
transformation is now given by a CM momentum and an
angular momentum convolution analogous to Eq. (11) with
the grating transformation function Tcl(x,px,�,p�),

Tcl(x,px,�,p�) = |t(x,�)|δ[px − �px(x,�)]

×δ[p� − �p�(x,�)]. (15)

Having derived the quantum and classical grating transforma-
tions, we can next apply them to the molecular diffraction from
standing-wave laser gratings.

III. INTERFERENCE OF SYMMETRIC TOP
MOLECULES IN THE KDTLI

Here we first discuss the diffraction of rapidly rotating
symmetric top molecules from laser gratings in order to
illustrate the previously derived grating transformation. The
obtained transformation operator is then used to determine the
quantum fringe visibility as well as the classical shadow pat-
tern in the Kapitza-Dirac-Talbot-Lau interferometer [2,11,12].
The KDTLI is a near-field interferometer consisting of three
gratings that all share the same grating period d. The first
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and third grating are material masks, while the central one
is a standing light wave. The transverse coherence of the
incoming particle beam is prepared by the first material grating
at distance L in front of the standing wave. Diffraction occurs
at the central grating and the signal is detected with the help
of the third one at distance L further downstream. The KDTLI
is currently the working horse for high-mass-interference
experiments in Vienna [2].

For the theoretical description of rotating molecules in
the KDTLI it is a reasonable approximation to neglect the
influence of the first and the third grating on the orientational
DOFs because the diffraction relevant for interference takes
place only at the central grating. The total transverse state
operator ρ behind the third grating can be obtained by
successively applying the grating transformations of the three
gratings as well as the intermediate unitary evolutions [12,20].
Finally, the orientational DOFs are traced out in order to obtain
the interference pattern on the screen.

A. Standing-wave grating transformation

We now evaluate the grating transformation t̂ for symmetric
top molecules traversing a standing-wave laser grating. This
operator will then be used to calculate the near-field interfer-
ence pattern of symmetric molecules in the KDTLI, but it can
also be applied to other situations. We consider a polarizable,
symmetric molecule with moments of inertia I = I1 = I2 and
I3 (I/I3 � 1 for prolate particles and 1/2 < I/I3 < 1 for
oblate discs) that is diffracted from a Gaussian standing laser
wave of wavelength λ. The laser wave is linearly polarized in
the direction n and acts as a pure phase grating, |t(x,�)| = 1.
The intensity of the Gaussian standing laser beam averaged
over one optical cycle is given by [12]

I (x,z) = 8P

πwywz

exp

(
−2z2

w2
z

)
sin2

(
π

x

d

)
, (16)

where d = λ/2 is the grating period, P the laser power, and
wz is the beam waist in z direction. Since the extension of
the incoming particle beam in y direction is usually small
compared to the beam waist in y direction [11], it is natural to
neglect the y dependence of the intensity (16).

Denoting by α‖ and α⊥ the two independent components
of the polarizability tensor of the particle (along its symmetry
axis and perpendicular to it, respectively), the grating potential
can be expressed as [12,14–16,25]

V (x,z,θ ) = − 4P

πε0cwzwy

exp

(
−2z2

w2
z

)
×(α‖ − �α sin2 θ ) sin2

(
π

x

d

)
. (17)

Here �α = α‖ − α⊥ is the polarizability anisotropy of the
molecule (�α > 0 for prolate particles) and θ is the nutation
angle with respect to the field polarization n. The grating
transformation can be safely determined in the free rotor ap-
proximation, Eq. (5), since the laser beam waist along the flight
direction is approximately wz = 20 μm [11,12]. For an exem-
plary molecule (diazobenzene with mass M 
 1030 amu and
length Lmol 
 3.5 nm) with velocity vz = 100 m s−1 and rota-
tional temperature T = 600 K, we thus have τrot/τCM ∼ 10−4.

In order to calculate the grating transformation matrix (4),
we need to specify the grating potential matrices, whose
particular form depends on the symmetry of the rotor. Here
we restrict our discussion to symmetric top molecules for
reasons of simplicity. The eigenstates |�mk〉 of the sym-
metric rotor [with classical Hamilton function (A1), see
Appendix] are labeled by the three quantum numbers � ∈ N0,
m ∈ {−�, . . . ,�}, and k ∈ {−�, . . . ,�} with eigenenergies ε�k

[26,27]. Denoting by ϕ ∈ [0,2π ), θ ∈ [0,π ), and ψ ∈ [0,2π )
the three Euler angles with respect to the field polarization n
(z-y ′-z′′ convention), the configuration space representation of
the states |�mk〉 can be given explicitly in terms of the Wigner
D matrices. In particular, the eigenfunctions are 〈�|�mk〉 =√

2� + 1/(2π
√

2)D�∗
mk(�) [26,27], where D�

mk(�) is related to
the (small) Wigner d matrix by D�

mk(�) = e−imϕd�
mk(θ )e−ikψ .

We remark that the (small) Wigner d matrices d�
mk(θ ) are real

due to the employed definition of the Euler angles [22]. The
basis kets |�mk〉 are complete and orthonormal with respect to
the infinitesimal volume element d� = dϕdθdψ sin θ .

The interaction potential (17) is a function of the nutation
angle θ only and thus the quantum numbers m and k are
conserved. The resulting grating potential is diagonal in all
three quantum numbers �, m, k, and the diagonal elements
can be given with the help of the expectation values Q�mk :=
〈�mk |�mk〉. Expressing these expectation values in terms of
Wigner D matrices [17] and using the properties of the Wigner
3-j symbol [26,27] yields the algebraic form

Q�mk = 1

2
+ 1

2

(2m)2 + (2k)2 − 1

(2� − 1)(2� + 3)

−3

2

(2mk)2

�(� + 1)(2� − 1)(2� + 3)
. (18)

We remark that in the limit of a linear rotor, I/I3 → ∞ and
thus k = 0, the well-known expectation value [14]

Q�m0 = 1

2
+ 1

2

(2m)2 − 1

(2� − 1)(2� + 3)
(19)

of the linear rigid rotor is recovered.
We are now ready to identify the grating transformation

operator for symmetric top molecules traversing a standing-
wave laser grating by inserting the expectation value (18) into
the grating transformation matrix (4). The resulting operator
(5) is

t̂ =
∞∑

�=0

�∑
m,k=−�

exp

[
iφ0

(
1 − �α

α‖
Q�mk

)
sin2

(
π

x̂

d

)]
⊗|�mk〉〈�mk|, (20)

where φ0 = 4α‖P/ε0c�wyvz

√
2π is the eikonal phase [12]

defined with the polarizability α‖ along the symmetry axis
of the molecule. It is important to note that the eikonal
phase imprinted on a particle during the grating passage
depends on all of its angular momentum quantum numbers
�, m, and k. The final signal, obtained by a trace over the
orientational DOFs, is thus an average over signals from
different grating transformations (20), each weighted with
the probability of the corresponding angular momentum state
|�mk〉. This matches with the fact that the classical deflection
angle of molecules traversing an electrostatic field depends
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on the angular momentum of the deflected particle [14–16].
For nearly isotropic particles, �α/α‖ � 1, the transformations
(20) are all equal and the average over angular momentum
states can be neglected.

B. Quantum and classical fringe visibility

Having specified the grating transformation (20), the
quantum fringe visibility V of symmetric top molecules in
the KDTLI can be calculated by applying the transformation
(5) with (20) to the quantum phase-space formalism presented
in [12]. The common period of all three gratings is denoted by
d and the de Broglie wavelength of the incoming rod by λdB =
h/Mvz. The Talbot length, the characteristic length scale
in near-field interferometry [2], is LT = d2/λdB. Successive
application of the three grating transformations and of the
free evolution between the gratings [12] yields the sinusoidal
quantum fringe visibility

V = 2 sinc2(πf )
∞∑

�=0

�∑
m,k=−�

p�mk

×J2

[
φ0

(
1 − �α

α‖
Q�mk

)
sin

(
π

L

LT

)]
, (21)

where f is the opening fraction of the first and the third
grating, J2(·) is the second-order Bessel function of the first
kind, L is the distance between the gratings, and p�mk is the
statistical weight of the angular momentum state |�mk〉. The
interference contrast can be regarded as the average of point
particle visibilities with (�,m,k)-dependent eikonal phases and
weights p�mk .

Since the molecules are emitted from a thermal source into
vacuum, the rotational DOFs follow a thermal distribution,
p�mk ∼ exp(−ε�k/kBT ), at a very high temperature, kBT �
�

2/I . Then the sum over angular momenta in Eq. (21) can
be replaced by the integral over the corresponding classical
distribution [27] and Eq. (21) is further simplified. In particular,
we denote by pth(q) the probability density of the variable
q = Q(Erot,pϕ,pψ ), where Q(Erot,pϕ,pψ ) is the classical free
temporal mean value of sin2 θ (t) depending on the conserved
rotational energy Erot and on the canonical momenta pϕ and
pψ of ϕ and ψ rotations, respectively. A simple expression for
Q(Erot,pϕ,pψ ), as well as for the thermal distribution pth(q),
is derived in the Appendix. This probability density is depicted
in Fig. 1 and reads

pth(q) =
√

I

3I3

∫
ζ (q)

du

[
1 −

(
1 − I

I3

)
u2

]−3/2

×
[(

u2 − 1

3

)
(u2 + 1 − 2q)

]−1/2

, (22)

where the integral must be taken over the union of two
intervals, ζ (q) = ζ1(q) ∪ ζ2(q). The first interval ζ1(q) =
[0,

√
min[A(q)]], where A(q) = {1/3,2q − 1,1 − q}. This

contribution to the distribution (22) vanishes for q � 1/2. The
second interval ζ2(q) = [

√
max[A(q)],1]. The distribution

(22) depends on the fraction I/I3 only and is independent
of the thermal energy kBT .
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FIG. 1. (Color online) The thermal distribution pth(q), Eq. (22),
of the temporal average q of sin2 θ (t) for the free symmetric rotor
with different moments of inertia, I/I3 = 1/2 (solid line), I/I3 = 10
(dashed line), and I/I3 → ∞ (dot-dashed line).

In Fig. 1 we show the distribution (22) of the sym-
metric rotor for the oblate limit (I/I3 = 1/2), a prolate
particle (I/I3 = 10), and the linear rotor (I/I3 → ∞). Similar
figures were obtained numerically in [15]. For finite I/I3 the
probability density (22) is discontinuous at q = 1/2, which
follows from the definition of the set ζ (q) and it diverges at
q = 2/3, as can be observed directly from Eq. (22). In the
limit of the linear rotor, I/I3 → ∞, the established [14] form
pth(q) = 1/

√
2q − 1 is recovered.

Using the probability density (22) the quantum fringe
visibility V takes on its final form:

V = 2 sinc2(πf )
∫ 1

0
dqpth(q)

×J2

[
φ0

(
1 − �α

α‖
q

)
sin

(
π

L

LT

)]
. (23)

In order to identify genuine quantum interference effects, we
must compare the visibility (23) to the visibility Vcl of the
classical shadow pattern [12], which is most conveniently
calculated with the help of the phase-space grating transfor-
mations (11). The classical momentum kick (10) transferred
to the molecule by the grating potential (17) is

�px(x,Erot,pϕ) = π�φ0

d

[
1 − �α

α‖
Q(Erot,pϕ,pψ )

]
× sin

(
2π

x

d

)
. (24)

Following the treatment in [12] one obtains the classical fringe
visibility

Vcl = 2 sinc2(πf )
∫ 1

0
dqpth(q)

×J2

[(
1 − �α

α‖
q

)
φ0πL

LT

]
, (25)

where we assumed the orientational DOFs to be thermally
distributed.
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FIG. 2. (Color online) Quantum (upper curves) and classical
(lower curves) absolute sinusoidal fringe visibility as a function of
relative separation L/LT for a linear molecule in the KDTLI for three
different values of �α/α‖.

The classical visibility (25) decays as
√

LT/L with increas-
ing grating separation L (and decreasing particle velocity vz),
while the quantum visibility (23) is periodic in L/LT [11,12].
This can be used to discriminate between genuine quantum
behavior and classical shadow effects [11], as illustrated in
Fig. 2 for the linear rotor I/I3 → ∞. In Figs. 2 and 3 we
consider an exemplary molecule (M = 1030 amu, Lmol =
3.5 nm, α = 4πε0 × 50 Å

3
, vz = 100 m s−1, I/I3 
 ∞ [11])

traversing the KDTLI (d = 266 nm, L/LT = 0.5, f = 0.42,
wz = 20 μm [11,12]) for three different relative anisotropies
�α/α‖. The velocity spread in longitudinal direction can be
safely disregarded in the latest KDTLI experiment due to the
high resolution of the velocity detection scheme [28].

An experimentally observable signature of the orientational
DOFs can be found in the absolute value of the quantum
fringe visibility (23) as a function of laser power P . This
is illustrated in Fig. 3. While the value of subsequent maxima
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FIG. 3. (Color online) Absolute value of the sinusoidal quantum
fringe visibility (21) as a function of laser power for a linear rigid
molecule in the KDTLI for three different values of �α/α‖.
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FIG. 4. (Color online) Absolute value of the sinusoidal quantum
fringe visibility (23) as a function of laser power for the prolate sym-
metric top in the KDTLI for different values of I/I3 (�α/α‖ = 0.9).

in the visibility are strictly decreasing for spherical particles,
this is not the case for nonspherical molecules. For large
relative anisotropies �α/α‖ the thermal average over angular
momentum states leads to the appearance of an additional side
peak between the major recurrences. This is a signature of the
orientational DOFs of the molecule traversing the grating.

In Fig. 4 we show the absolute value of the quantum
fringe visibility (23) as a function of laser power for three
differently shaped prolate molecules. All other parameters
are as for the linear molecules of Fig. 3 (�α/α‖ = 0.9).
While the visibility coincides with the visibility of the linear
molecule for large ratios I/I3, it approaches the behavior of a
spherically symmetric object for I/I3 → 1. The signature of
the orientational DOFs discussed above is most pronounced for
linear molecules but can be observed for all prolately shaped
molecules.

IV. CONCLUSION

We extended the theory of matter-wave interferometry to
large, nonspherical particles by accounting for the influence
of the rotational dynamics. In particular, we derived the
grating transformation operator for the rotationally free and
for the rotationally diabatic transit. This operator describes
the modification of the transverse quantum state due to the
orientation-dependent interaction with the grating. In addition,
the classical shadow pattern was derived in order to provide
the tools required for the identification of genuine quantum
effects in near-field matter-wave interferometry.

If the molecule rotates rapidly with high energy, the transit
is rotationally free and the grating transformation depends only
on the angular momentum of the impinging particle. On the
other hand, if the transit time is much shorter than the average
rotational period, the grating transformation depends on the
orientation of the particle.

We worked out the grating transformation for symmetric
top molecules traversing a standing-wave laser grating, and we
showed how it enters the description of symmetric top particles
in the Kapitza-Dirac-Talbot-Lau interferometer as performed
at the University of Vienna [11]. In these experiments the
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typical transit time exceeds the rotational period by orders of
magnitude, making the transit rotationally free. A signature
of the rotational dynamics was pointed out in the predicted
quantum fringe visibility as a function of laser power. We
also derived a closed-form expression for the distribution
of deflection angles in classical deflection experiments with
symmetric top molecules, as required in this context.
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APPENDIX: ROTATION STATISTICS OF
SYMMETRIC TOP MOLECULES

In this Appendix we present a derivation of the thermal
probability distribution fth(r) of classical realizations r of the
temporal mean value of cos2 θ (t) for symmetric top molecules,
as required in Sec. III. This distribution is of central interest
in the theory of molecular deflection experiments because it
translates directly into the distribution of deflection angles
[14,17–19] and it has been evaluated numerically with the
help of Monte Carlo methods in [15]. The distribution (22)
of realizations q of sin2 θ (t) can be trivially obtained by
substituting r = 1 − q in fth(r).

We follow the notation of Sec. III and denote the moments
of inertia of the symmetric top by I1 = I2 ≡ I and I3. The
three orientational DOF � = (ϕ,θ,ψ) are the Euler angles
in the z-y ′-z′′ convention, and the respective conjugate mo-
menta are p� = (pϕ,pθ ,pψ ). The classical Hamilton function
Hrot(�,p�) of the free symmetric top is given by [24]

Hrot(�,p�) = 1

2I

(
(pϕ − pψ cos θ )2

sin2 θ
+ p2

θ

)
+ p2

ψ

2I3
, (A1)

and there are three conserved quantities: the total energy Erot =
Hrot(�,p�), as well as the angular momenta pϕ and pψ . Hence,
the equations of motion are integrable and the period of θ

rotations acquires the form

τrot = 2πI√
2ErotI + p2

ψ (1 − I/I3)
. (A2)

In the limit of very prolate molecules, I/I3 → ∞, ψ rotations
do not contribute, pψ = 0, and the period τrot approaches the
period of the linear rotor, τrot → π

√
2I/Erot.

Separating Hamilton’s equations with (A1) yields the
temporal average of cos2 θ (t) over one rotational period (A2):

R(Erot,pϕ,pψ ) = 1

τrot

∫ τrot

0
dt ′ cos2 θ (t ′)

= 1

2
− 1

2

p2
ϕ + p2

ψ

2ErotI + p2
ψ (1 − I/I3)

+3

2

(
pϕpψ

2ErotI + p2
ψ (1 − I/I3)

)2

. (A3)

We observe that the quantum-mechanical expectation value
R�mk = 1 − Q�mk , Eq. (18), closely resembles this expression.

A more compact expression for the temporal average (A3)
is obtained in terms of the relative frequencies of ϕ and ψ

rotations,

u1 = pϕτrot

2πI
and u2 = pψτrot

2πI
, (A4)

which satisfy −1 � u1,u2 � 1. In particular, introducing the
angular momentum scale prot = 2πI/τrot we observe that
|pϕ,ψ | � prot. Then the average (A3) can be written as

R̃(u1,u2) = 1
2 − 1

2

(
u2

1 + u2
2

) + 3
2u2

1u
2
2, (A5)

which will be of advantage in what follows.
If the orientational DOFs are distributed in phase space

according to the thermal distribution

pth(�,p�) = 1

Z
exp [−Hrot(�,p�)/kBT ], (A6)

with the partition function Z = 16π3IkBT
√

2πI3kBT [29],
the distribution fth(r) of r = R(Erot,pϕ,pψ ) is given by

fth(r) =
∫

d�δ[r − R(Erot,pϕ,pψ )]pth(�,p�), (A7)

where the integral covers the whole phase space (d� =
dϕdθdψdpϕdpθdpψ ). On the other hand, one can also write
the distribution fth(r), Eq. (A7), in terms of the probability
density qth(u1,u2),

qth(u1,u2) =
∫

d�δ

(
u1 − pϕτrot

2πI

)
×δ

(
u2 − pψτrot

2πI

)
pth(�,p�), (A8)

according to

fth(r) =
∫ 1

−1
du1

∫ 1

−1
du2δ[r − R̃(u1,u2)]qth(u1,u2). (A9)

The integral (A8) can be evaluated by defining the dimen-
sionless quantities ωχ = (pϕ − pψ cos θ )/ sin θ

√
IkBT , ωθ =

pθ/
√

IkBT , and ωψ = pψ/
√

IkBT and transforming the
vector (ωχ,ωθ ,ωψ ) to spherical coordinates, (ω,ξ,η) (where
ω ≡ prot/I ). This gives

qth(u1,u2) = 1

4

√
I

I3

[
1 −

(
1 − I

I3

)
u2

2

]−3/2

, (A10)

which is independent of the temperature T , uniformly dis-
tributed in u1, a function of the ratio I/I3 only, and normalized
by construction.

Finally, inserting the distribution (A10) into expression
(A9) yields the thermal distribution fth(r):

fth(r) =
√

I

3I3

∫
ζ (r)

du

[
1 −

(
1 − I

I3

)
u2

]−3/2

×
[(

u2 − 1

3

)
(u2 + 2r − 1)

]−1/2

. (A11)

Here, the set ζ (r) ⊂ [0,1] denotes the fraction of the unit
interval [0,1] where the integrand is real. In particular,
for arbitrary r ∈ [0,1], ζ (r) = ζ1(r) ∪ ζ2(r) consists of two
intervals ζ1,2(r): the first is ζ1(r) = {0,

√
min[A(r)]}, where
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A(r)={1/3,1−2r,r}. This contribution vanishes for r �1/2.
The second interval ζ2(r) is ζ2(r) = {√max[A(r)],1} to 1.
The probability density function (22) of the temporal average
q = 〈sin2 θ (t)〉, as required in Sec. III, is obtained by the
substitution q = 1 − r . Finally, we note that the distribution

fth(r) (A11) approaches, in the rigid rotor limit I/I3 → ∞
(in agreement with [14]),

fth(r) = 1√
1 − 2r

. (A12)
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