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Collisional decoherence of polar molecules
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The quantum state of motion of a large and rotating polar molecule can lose coherence through the collisions
with gas atoms. We show how the associated quantum master equation for the center of mass can be expressed
in terms of the orientationally averaged differential and total scattering cross sections, for which we provide
approximate analytic expressions. The master equation is then utilized to quantify collisional decoherence in a
interference experiment with polar molecules.
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I. INTRODUCTION

Coherence experiments with molecules and molecular clus-
ters test the quantum superposition principle and allow mea-
surement of molecular vacuum properties with unprecedented
accuracy [1–4]. Performing such experiments with organic
molecules or biomolecules [5–8], which are predominantly
polar, raises the question of how their quantum coherence is
affected by collisions with a background gas. It is the aim of
the current article to clarify the influence of molecular dipole
moments on collisional decoherence due to scattering with gas
atoms.

Collisional decoherence is ubiquitous, its relevance reach-
ing well beyond matter-wave experiments [9–14]. While it
is still unclear whether the quantum superposition principle
is valid at all scales [15–17], the effect of decoherence
due to scattering with environmental particles provides an
experimentally tested quantum description of the appearance
of classical dynamics [4,18,19].

In the case of a spherical, polarizable particle, the quantum
linear Boltzmann equation gives a Markovian, nonperturbative
microscopic description of the particle’s motion through a
thermal environment [20,21]. If the molecule is much heavier
than the gas particle, this master equation can be expressed in
terms of a scattering rate and a decoherence function. These
quantities are determined by the total and the differential
scattering cross section of a single collision, as calculated
using standard scattering theory [22].

In order to formulate the theory of collisional decoherence
for nonspherical particles, one must take the molecule’s center
of mass as well as its orientational degrees of freedom into
account. In general, this implies solving the full inelastic
scattering problem to obtain the scattering amplitudes required
for the master equation [12,23,24]. Yet, if the molecule is
sufficiently massive and approximately static during a single
collision, the scattering event is effectively elastic [25]. We will
see that the decoherence function and the scattering rate then
depend on the orientationally averaged cross sections. Here,
we can draw on the orientation-dependent cross sections that
were calculated and measured in various molecular collision
experiments [25–28]. We extend these works and derive the
resulting decoherence function and scattering rate. It is shown
that both quantities can be measured by placing a collision
chamber in a matter-wave interferometer. Comparison of the
scattering rate of two different polar molecules provides a
nonspectroscopic means to measure their relative electric
dipole moment in the gas phase.

We note that our analytic expressions for the orientation-
dependent total and differential cross sections may also
become relevant for future experiments where quantum coher-
ence plays no role. This includes buffer gas cooling of large
polar molecules [29,30] and dedicated collision experiments
with molecular beams [31]. Moreover, they can be used to
assess the influence of background gases in molecular beam
deflection measurements [32–34].

The paper is structured as follows: In Sec. II we present
the master equation for the center-of-mass degrees of free-
dom of a slowly rotating molecule in a homogeneous gas
environment. Section III considers the scattering between a
nonspherical particle and a single gas particle in order to
obtain approximate expressions for the total as well as the
differential scattering cross section, and in Sec. IV we derive
the decoherence function and the scattering rate. In Sec. V
collisional decoherence in a typical far-field matter-wave setup
is studied as an application. We conclude in Sec. VI.

II. MASTER EQUATION FOR THE CENTER-OF-MASS
MOTION

We consider a rigid top molecule of mass M which enters
with velocity vM a chamber filled with a monoatomic gas at
temperature T . The molecular degrees of freedom (DOFs)
are its center-of-mass (c.m.) position R and its orientation
�, specified for instance by the Euler angles in the z-y ′-z′′
convention [35,36]. Since the gas is at thermal equilibrium,
the state of the gas ρg is diagonal in the momentum basis and
its diagonal elements are given by the Boltzmann distribution
μ(|p|).

For isotropic interaction potentials a Markovian master
equation can be derived by means of the so-called monitoring
approach [37,38]. The resulting equation is then characterized
by the rate operator � as well as by the scattering operator S,
which describes the modification of the composite molecule-
gas state ρtot by a single scattering event, ρtot → ρ ′

tot =
SρtotS†.

In the case of nonspherical molecules, the interaction
potential is anisotropic and the orientation state must be
taken into account. This leads in general to a multichannel
scattering problem [23] where the Schrödinger equation must
be solved for arbitrary initial and final rotation states of
the molecule [39]. However, when considering the room-
temperature collision between a multiatomic molecule and a
fast single atom, the rotational period is typically much smaller
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than the collision time and the molecule can be assumed to
be rotationally static during the scattering process (sudden
approximation) [25]. The scattering operator as well as the
rate operator are then diagonal in the orientational DOFs since
the Schrödinger equation depends only parametrically on the
orientation [40].

Here, we are only interested in the CM dynamics of the
molecule and, thus, trace out the environmental as well as the
orientational DOFs. It follows from the monitoring approach
[23,37,37] that the motional state of a slowly rotating molecule
in a gaseous environment is described by a master equation

∂tρ = 1

i�
[H,ρ] + Rρ + Lρ, (1)

where H = P2/2M is the free Hamiltonian. The two superop-
erators in (1) can be given as

Rρ = i〈Trg([�1/2Re(T)�1/2,ρ ⊗ ρg])〉, (2)

Lρ = 〈
Trg

(
T�1/2ρ ⊗ ρg�

1/2T†

− 1
2

{
ρ ⊗ ρg,�

1/2T†T�1/2
})〉

, (3)

where T = T(�) is the nontrivial part of the scattering operator,
S(�) = 1 + iT(�), and the expectation value of the rate
operator � = �(�) gives the scattering rate. Here, the angular
brackets 〈·〉 denote the orientational average with respect to the
rotation state of the molecule. We note that the orientational
coherences 〈� |ρM |�′〉 do not contribute to the master equation
(1) because the rate operator and the scattering operator are
diagonal in the orientational DOFs.

In most experimentally relevant cases the initial rotation
state is thermal, implying that the orientational DOFs are
homogeneously distributed. Since the gas distribution μ(|p|)
is approximately isotropic, it is natural to assume that the
orientational distribution remains homogeneous for all times,
i.e., the orientational diagonal elements of the total molecular
state ρM are 〈� |ρM |�〉 = ρ/(8π2). Then the orientational
average of the function K(�) is

〈K(�)〉 =
∫

S

d�

8π2
K(�), (4)

with S = S2 × S1 being the configuration space of the orien-
tational DOFs.

The fact that the molecular mass M fairly exceeds the mass
m of a gas atom allows us to further simplify Eq. (1). In the
limit that m/M vanishes, Eq. (2) gives a constant energy shift
[21], which can be ignored, and the second term (3) describes
decoherence in the position representation [21,38],

lim
m/M→0

〈R1 |Lρ |R2〉 = −γ [1 − η(R1 − R2)]

×〈R1 |ρ |R2〉. (5)

This expression can be derived following the same steps [21]
as for a point particle. The scattering rate γ in (5) can be given
as

γ = ng

m

∫
d3p pμ(|p + mvM|)〈σtot(p)〉, (6)

where p = |p| is the length of the momentum vector and
ng is the density of the gas. Equation (5) also involves the

decoherence function

η(R) = 1

N

∫ ∞

0
dp p3

∫
S2

d2n
∫

S2

d2n′μ(|p + mvM|)

×〈|f (p,n · n′)|2〉 exp

(
ip

�
(n − n′) · R

)
, (7)

where n and n′ are the incoming and outgoing directions of
the scattered gas atom, respectively, and S2 denotes the surface
of the unit sphere. Here, the normalization constant N ensures
that η(0) = 1, so that the diagonal elements of ρ are preserved
by Eq. (5). The fact that the differential scattering cross section
〈|f (p,n · n′)|2〉 depends on the angle between incoming and
outgoing momentum rather than the individual directions is
due to the trace over the orientational DOFs performed to
derive Eq. (1). The Fourier transform of the decoherence
function η(R) gives the probability distribution of transferred
momentum of a single collision [41].

Note that the thermal gas distribution in Eqs. (6) and (7)
is shifted by mvM due to the molecule’s velocity. Since the
most probable momentum pg = √

2mkBT in a thermal gas
distribution μ(p) is usually much higher than the momentum
mvM, Eqs. (6) and (7) can be expanded in orders of mvM/pg.
This yields

γ = 4πng

m

∫ ∞

0
dp p3μ(p)〈σtot(p)〉

[
1 + O

(
m2v2

M

p2
g

)]
(8)

and

η(R) = 8π2

N

∫ ∞

0
dp p3μ(p)

∫ π

0
dθ sin θ〈|f (p, cos θ )|2〉

×sinc

[
sin

(
θ

2

)
2p|R|

�

][
1 + O

(
m2v2

M

p2
g

)]
, (9)

with cos θ = n · n′. It is demonstrated in Appendix A that the
linear order vanishes.

In what follows, we will specify the scattering rate γ and
the decoherence function η(R) for the case of a polar or
anisotropically polarizable molecule scattering with polariz-
able spherical particles.

III. CROSS SECTIONS FOR POLAR MOLECULE-ATOM
SCATTERING

It is the aim of this section to evaluate the total and the
differential scattering cross sections for the collision between
a gas atom and a polar molecule. Although we are mainly
interested in the dipole-induced dipole interaction, we consider
the more general homogeneous potential

V (r, cos �) = −C

rs
(1 + a cos2 �), (10)

which also includes the anisotropic van der Waals interaction
[42]. Here, � is the angle between the molecule’s orientation
m(�) and the relative c.m. coordinate r, i.e., cos � = m · r/r ,
and r = |r| is the distance between the gas atom and the c.m. of
the molecule. The parameter a � 0 quantifies the anisotropy of
the interaction potential and C is the interaction strength. For
example, the dipole-induced dipole interaction is described
by s = 6 and C = α0d

2
0/32π2ε2

0 with a = 3, where α0 is the
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atomic polarizability and d0 is the molecular dipole moment.
In this case m is the orientation of the dipole moment.

The total and the differential scattering cross sections
for a fixed molecular orientation m can be calculated
in the eikonal approximation, also referred to as Schiff’s

approximation [43]. This approximation provides reliable
results for small angle scattering [25], i.e., for soft collisions,
which we will show to be most important for the decoherence
function. Choosing the initial relative momentum along the z

axis, p = pez, the orientation-dependent scattering amplitude
can be expressed as [43]

f (p,n′; m) = −i
p

2π�

∫
R2

d2b e−ipn′
⊥·b/�

{
exp

[
− im

�p

∫ ∞

−∞
dz V

(√
b2 + z2,

(b + zez) · m√
b2 + z2

)]
− 1

}
, (11)

where b is the impact vector in the xy plane and n′
⊥ are the xy components of the direction of outgoing momentum pn′. Here,

the scattering phase is calculated by integrating the interaction potential for a fixed molecular orientation m along the straight
trajectory of the gas particle.

The total scattering cross section can be obtained by evaluating (11) in the forward direction, n′ = ez, according to the optical
theorem. The orientationally averaged total cross section is then given by [25]

〈σtot(p)〉 = σ0(p)
∫

S2

d2m
4π

[
1 + a

s
(m · ez)

2 + a(s − 1)

s
(m · ex)2

]2/(s−1)

,

(12)

where

σ0(p) = 2π sin

(
π

2

s − 3

s − 1

)
�

(
s − 3

s − 1

)(√
πmC

�p

�[(s − 1)/2]

�(s/2)

)2/(s−1)

(13)

is the cross section resulting from the isotropic part of the
interaction potential, i.e., for a = 0 in Eq. (10) [44].

The orientational average in Eq. (12) can be well ap-
proximated (see Appendix B), and one obtains the compact
expression

〈σtot(p)〉 = σ0(p)
(

1 + a

3

)2/(s−1)
. (14)

Thus the anisotropy of the potential (10) enhances the total
cross section by a constant factor.

We now turn our attention to the differential scattering cross
section. In general, the scattering amplitude (11) cannot be
evaluated in closed form. However, for small angle scattering
events [28], for which n′ 
 n, the scattering amplitude can
be evaluated by expanding the plane wave in Eq. (11) up to
second order in n⊥ · b. A straightforward derivation, presented
in Appendix B, gives the orientation averaged differential
scattering cross section

〈|f (p, cos θ )|2〉 = A(p)

[
1 −

(
θ

θ∗(p)

)2

+ O(θ4)

]
, (15)

where, making the same approximations as above, we abbre-
viated

A(p) =
(

p〈σtot(p)〉
4π� cos[π/(s − 1)]

)2

, (16)

θ∗(p) = �

p

√
8π

〈σtot(p)〉�
(

s − 3

s − 1

)
�

(
s − 5

s − 1

)−1/2

. (17)

Thus, the differential cross section as a function of θ decays
quadratically in the forward direction. However, its functional
dependence for all θ ∈ [0,π ] is required for the calculation of

the decoherence function (7). One possibility to overcome this
is to approximate the cross section by a Gaussian curve with
amplitude A (16) and width θ∗ (17) [28]

〈|f (p, cos θ )|2〉 ≈ A(p) exp

[
−

(
θ

θ∗(p)

)2
]
. (18)

This is certainly a crude approximation, and even though it was
demonstrated [28] that Eq. (18) gives reliable results for soft
scattering, θ � 1, it does not contain the correct asymptotic
behavior 〈|f |2〉 ∝ θ−2(s+1)/s for hard scattering θ � 1 [44,45].
However, the important properties of the decoherence func-
tion, i.e., its width and its asymptotic behavior as |R| → ∞,
are mainly determined by soft collisions, since hard collisions
cause almost complete decoherence and are therefore mainly
captured by the scattering rate. Importantly, this scattering
rate is determined without the small-angle approximation; see
Eq. (12). We remark that the differential cross section can
also show oscillating behavior (glory and rainbow effect) [46]
and various resonances [47], but neglecting these is justified,
since they average out when evaluating the decoherence
function (7).

Having discussed the validity of the approximations used,
we are now in the position to compute the decoherence function
(7) and the scattering rate (6) in the next section.

IV. DECOHERENCE FUNCTION AND SCATTERING RATE

In order to calculate the scattering rate, we insert the total
scattering cross section (14) into Eq. (6) and obtain for the
leading order contribution in mvM/pg

γ = 2ngpg

m
√

π
�

(
2s − 3

s − 1

)
〈σtot(pg)〉. (19)
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As expected, the scattering rate is proportional to ngpgσtot/m,
which is the effective current of gas atoms passing through the
total scattering cross section. For the case of the dipole-induced
dipole interaction, s = 6, the rate is given by

γd−id = 27/5

√
π

�

(
9

5

)
ngpgσ0(pg)

m
. (20)

In particular, it is proportional to ngα
2/5
0 d

4/5
0 (T/m)3/10 and thus

depends only weakly on the gas temperature T . In comparison
to the scattering rate of a spherical molecule [41], one observes
an additional prefactor of 22/5 
 1.3 due to the anisotropic
contribution to the interaction potential (10).

The evaluation of the decoherence function η(R) is slightly
more complicated. In accordance with the small-angle approx-
imation utilized in the calculation of the differential scattering
cross section (18), we replace in Eq. (7) sin θ by θ and extend
the integration boundary to infinity. Thus, the leading order
contribution in mvM/pg is

η(R) =
∫ ∞

0
dξ ν(ξ )D

[
pg|R|θ∗(pg)

2�
ξ

]
, (21)

where ξ = (p/pg)1/(s−1) is a dimensionless integration vari-
able, and we defined the probability distribution ν(ξ ) =
2(s − 1)ξ 4s−7 exp (−ξ 2(s−1))/�[(2s − 3)/(s − 1)] as well as
the auxiliary function

D(x) = e−x2

x

∫ x

0
dξ eξ 2

. (22)

The function D(x) is symmetric and monotonically decreas-
ing, with its maximum value D(x = 0) = 1, so that the
decoherence function fulfills η(0) = 1. For large arguments
it decreases as D(x) ∼ 1/x2. We remark that it is related to
Dawson’s integral F (x) by D(x) = F (x)/x [48].

The function ν(ξ ) is sharply peaked near its mean ξs =
�[2 − 1/2(s − 1)]/�[2 − 1/(s − 1)], so that the function
D(x) is approximately linear in this region. This allows us
to approximate the integral (21) to obtain the decoherence
function

η(R) 
 D

[
ξspgθ∗(pg)|R|

2�

]
. (23)

The decoherence function describes the decay of the
coherences by a single scattering event [41]. Its characteristic
width is given by

wη = 2�

ξspgθ∗(pg)
∝ √〈σtot(pg)〉 ∝ p−1/(s−1)

g , (24)

i.e., it decreases with increasing momentum pg, where de-
coherence is more pronounced. The decoherence function
(7) shows the asymptotic behavior η(R) → 0 for |R| � wη,
i.e., the coherence of distant spatial superpositions gets fully
destroyed.

FIG. 1. Schematic of a far-field interference experiment with
a dedicated collision chamber. The molecules are emitted with
longitudinal velocity vM from a pointlike source (z = 0), propagate
the distance L to the grating (z = L), and are detected on the screen
(z = 2L) after traversing the collision chamber of width �c placed at
the distance Lc in front of the screen.

The Fourier transform η̃(P) of the decoherence function
gives the distribution of momentum kicks [41]. In the present
case, it can be evaluated explicitly as

η̃(P) = 1

(2π�)3

∫
R3

d3R η(R)e−iR·P/�

= 1

2π |P|
(wη

2�

)2
exp

[
−

( |P|wη

2�

)2
]
, (25)

which involves the most probable transferred momentum√
2�/wη. Note that the singularity of η̃(P) at P = 0 reflects

the fact that the decoherence function (23) is not normalizable.
Nevertheless, its Fourier transform (25) is normalized in
accordance with η(0) = 1.

For example, in the case of the dipole-induced dipole
interaction, the width of the decoherence function wη ≈
0.6

√〈σtot(pg)〉 is typically in the of range nanometers. In

the case of helium atoms, α0/4πε0 = 0.2 Å
3
, moving with

pg/m = 103 m/s, and the molecular dipole moment d0 = 5
D, one obtains wη 
 0.5 nm.

V. APPLICATION TO FAR-FIELD MATTER-WAVE
INTERFEROMETRY

In order to illustrate the results of the previous sections,
we consider a far-field matter-wave experiment with massive
molecules. The particles are emitted with longitudinal velocity
vM = vMez from a pointlike source, propagate freely over the
distance L to the diffraction grating with period d, and then
propagate again for the distance L to the detection screen [2];
see Fig. 1. Since the longitudinal kinetic energy exceeds the
average interaction strength as well as the transverse kinetic
energy, the interaction with the grating can be described in the
eikonal approximation and it suffices to consider the transverse
state [49].

We choose our coordinate system such that x denotes the
grating axis and z is the flight direction. The y dependence
can be neglected in most matter-wave experiments since the
extension of the grating in this direction is much larger than the
spatial coherence of the particle. In the case of a point source,
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the interference pattern at the screen can be given as [50]

w0(x) ∝
∣∣∣∣∫ ∞

−∞
dx ′ exp

[
−i

2πx ′(x − x ′)
d�x

]
t(x ′)

∣∣∣∣2

, (26)

up to an irrelevant prefactor. Here �x = 2π�L/dMvM

is the separation of diffraction peaks in the far field,
H 2/d�x � 1, and we defined the grating transformation
t(x), which describes the passage through the grating in
the eikonal approximation, ρ → t̂ρt̂†. In what follows, we
consider a far-detuned laser grating of width H , t(x) =
exp[iφ0 cos2(πx/d)]�(H/2 − |x|), which acts as a pure phase
grating with the maximal phase shift φ0. In the far field,
H 2 � d�x, the interference pattern is given by the modulus
squared of the Fourier transform of the grating function t(x).
For the sake of a clear presentation, we neglect the influence
of photon absorption [51].

For a typical width of the decoherence function (23),
wη 
 0.5 nm, the most probable transferred momentum√

2�/wη according Eq. (25) is much larger than the grating
momentum 2π�/d. For instance, for d = 200 nm, the ratio
is d/

√
2πwη 
 90. This implies that collisions occurring far

away from the detection screen reduce the signal because a
fraction of the molecules are effectively kicked out of the finite
detection range while the shape and contrast of the interference
pattern are almost not affected. Hence, the effect of collisional
decoherence on the signal is best investigated if the collisions
take place close to the screen.

Therefore, we consider a collision chamber of width �c

placed at the distance Lc in front of the detector; see Fig. 1.
We take this chamber to be filled with a monoatomic gas of
density ng and temperature T , and the interaction between
the polar molecule and the gas particles to be described
by the dipole-induced dipole interaction. The range of the
homogeneous potential (10) can be estimated to be Rw 

(2mC/�

2)1/(s−2), where m is the mass of the gas particle. For
example, for helium atoms, m = 4 amu, at room temperature,
pg/m 
 103 m/s, and a molecule with dipole moment d0 = 5
D, the characteristic time scale of the scattering process is
approximately τc = mRw/pg 
 0.7 ps. On the other hand, the
rotational period of a linear rigid molecule of mass M = 103

amu and length 3 nm which has the internal temperature TM =
1000 K is approximately τrot 
 40 ps, and thus τc/τrot 
 50.
Hence, the molecule is almost static during the interaction and
the sudden approximation is well justified.

It is shown in Appendix C that the interference pattern can
be calculated by

w(x) = e−γ �c/vM

[
w0(x) +

∫ ∞

−∞
dx ′w0(x ′)h(x − x ′)

]
, (27)

where we defined

h(x) =
∫ ∞

−∞

dq

2π�
e−iqx/�

×
{

exp

[
γ

vM

∫ �c

0
dz η

(
q(Lc + z)

MvM

)]
− 1

}
. (28)

We note that the relation (27) preserves the normalization
of w(x). The first term on the right-hand side of Eq. (27)
describes the local signal loss, while the second term describes
the modification of the shape of the interference pattern due

−10
−5

0
5

10 0.001
0.02

0.1
0.5

0

0.2

0.4

0.6

L
c
/Lx/Δ x

w
(x

)/
w

0(0
)

FIG. 2. Far-field interference pattern of a polar molecule in the
presence of a collision chamber of width �c/L = 0.05, which is
placed in front of the detector at the distances Lc/L = 0.001, 0.02,
0.1, and 0.5. The molecules of mass 840 amu move with velocity
vM = 50 m/s and have a dipole moment of 5 D. The collision chamber
is filled with helium gas at 300 K and 5 mPa. The atomic polarizability

of helium atoms is taken to be [52] α/4πε0 = 0.2 Å
3
. The phase shift

and the width of the diffraction grating are chosen to be φ0 = π and
H/d = 5.

to collisions. If the collision chamber is far away from the
detection screen, Lc � Lwη/d, the first term dominates the in-
terference signal and the intensity is locally reduced but the
shape of the fringes remains unchanged.

In Fig. 2 we show the influence of the collision chamber on
the far-field interference pattern of a polar molecule diffracted
from a pure phase grating as a function of the distance Lc

between the detection screen and the chamber. The collisions
with gas atoms induce a position-dependent underground. The
width �I of this underground can be estimated assuming
that the collisions occur exactly in the middle of the collision
chamber,

�I

�x

 d√

2πwη

Lc + �c/2

L
. (29)

This relation reflects the fact that in order to investigate
the effect of decoherence, the distance between the collision
chamber and the detector must be of the order Lc/L 
 wη/d.

The fact that the exponential reduction of the signal visi-
bility is proportional to the scattering rate γ allows measuring
the relative interaction strengths C(1)/C(2) by performing the
experiment for two different molecules. For example, if the
dominant interaction for both molecules is the dipole-induced
dipole interaction, the ratio of the scattering rates obtained for
the molecules is γ

(1)
d−id/γ

(2)
d−id = (d (1)

0 /d
(2)
0 )4/5. This can be used

as a measurement of molecular dipole moments in the gas
phase.

VI. CONCLUSION

We derived the master equation for the center-of-mass
collisional decoherence of a slowly rotating polar molecule in a
thermal gas. Based on the orientationally averaged differential
and total scattering cross section of a single collision, we
calculated the decoherence function and the scattering rate for
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the case that the orientation is homogeneously distributed. The
decoherence function describes the decay of the coherences
and provides the most probable transferred momentum. In the
case of the dipole-induced dipole interaction, its width is of
the same order of magnitude as the square root of the total
scattering cross section.

As an application, we considered a far-field matter-wave ex-
periment with an additional collision chamber placed between
the grating and the detector and filled with a monoatomic
gas. If the chamber is far away from the detection screen,
the interference intensity decreases exponentially with the
number of scattering events. Comparing the scattering rate
of two different molecules may then allow one to measure the
relative strength of molecule-gas interaction. In the case that
both molecules are polar, one can thus extract their relative
dipole moments. On the other hand, if the collision chamber
is placed closer to the detection screen, one starts to observe
the modification of the shape of the interference fringes due to
collisional decoherence.
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APPENDIX A: INFLUENCE OF THE ANISOTROPY
OF THE THERMAL GAS DISTRIBUTION

We consider here the angular integration required to
evaluate the decoherence function (7), i.e.,

I =
∫

S2

d2n
∫

S2

d2n′ μ(|p + p0|)〈|f (p,n · n′)|2〉

× exp
[
iζu · (n − n′)

]
, (A1)

with the unit vector u = (R2 − R1)/|R2 − R1| and the con-
stant ζ = |R2 − R1|p/�. If the momentum shift |p0| = mvM

is small in comparison to the most probable momentum pg in
the thermal distribution μ(|p|), one can expand

μ(|p + p0|) = μ(p) + (p0 · n)∂pμ(p)

×
[

1 + O
(

mvM

pg

)]
, (A2)

where we used that p = pn. The zeroth-order contribution is
spherically symmetric, and the integration result is indepen-
dent of the direction u, i.e.,

I0 = 8π2μ(p)
∫ π

0
dθ sin θ〈|f (p, cos θ )|2〉

×sinc

[
2ζ sin

(
θ

2

)]
, (A3)

where cos θ = n · n′. The first-order contribution is given by

I1 = [∂pμ(p)]p0 ·
∫

S2

d2n
∫

S2

d2n′ n〈|f (p,n · n′)|2〉

× exp[iζu · (n − n′)]. (A4)

Simultaneously substituting n → −n and n′ → −n′ yields
that the real part of I1 is equal to zero. On the other hand,
the imaginary part of I1 can be expressed as

I1 − I ∗
1

2i
∝ p0 · ∇uI0 = 0, (A5)

since I0 is independent of the direction u. Thus we demon-
strated that the linear contribution vanishes and the integral
(A1) can be written as

I = I0

[
1 + O

(
m2v2

M

p2
g

)]
. (A6)

APPENDIX B: THE SMALL ANGLE DIFFERENTIAL
SCATTERING CROSS SECTION

Here, we derive the small angle differential cross section
from Eq. (11) by expanding the plane wave up to second order
in n⊥ · b [27]. For this purpose it is beneficial to use spherical
coordinates: The outgoing momentum points into the direction
n′ = n′(θ,φ), where θ and φ denote the polar and azimuthal
angles and, similarly, m = m(β,α). In addition, ϕ is the angle
between b and the x axis.

In what follows, we will employ the following two
approximations:

1

2π

∫ 2π

0
dφ(1 + c cos2 φ)μ ≈

(
1 + c

2

)μ

, (B1)

where 0 � c � 3 and 0 � μ � 1, and

1

2

∫ π

0
dφ sin φ(1 + c cos2 φ)μ ≈

(
1 + c

3

)μ

, (B2)

where |c| < 1 and 0 � μ � 3. The relative error does not
exceed 3% for the parameter range given above.

For the discussion to follow, it is important to note that the
z integration in Eq. (11) can be carried out explicitly to give

∫ ∞

−∞
dz V

(√
b2 + z2,

(b + zez) · m√
b2 + z2

)
= −

√
πC

bs−1

�[(s − 1)/2]

�(s/2)
[G(β,ϕ − α)](s−1)/2, (B3)

where

G(β,ϕ) =
(

1 + a

s
cos2 β + a(s − 1)

s
cos2 ϕ sin2 β

)2/(s−1)

.

(B4)

063612-6



COLLISIONAL DECOHERENCE OF POLAR MOLECULES PHYSICAL REVIEW A 93, 063612 (2016)

Then, the zeroth-order contribution f0(p,n′; m) can be
evaluated with the help of the integrals [53]∫ ∞

0
db bm sin2

(
A

2bs−1

)
= A(m+1)/(s−1)

2(m + 1)
�

(
s − m − 2

s − 1

)
sin

(
π

2

s − m − 2

s − 1

)
, (B5)∫ ∞

0
db bm sin

(
A

bs−1

)
= A(m+1)/(s−1)

(m + 1)
�

(
s − m − 2

s − 1

)
cos

(
π

2

s − m − 2

s − 1

)
, (B6)

for A,m ∈ R, and 1 < (m + s)/(s − 1) < 3 as well as 0 <

(m + s)/(s − 1) < 2, respectively. Thus, one obtains

f0(p,n′; m) = p

4π�
exp

(
iπ

2

s − 3

s − 1

)
�

(
s − 3

s − 1

)

×
(

m
√

πC

�p

�[(s − 1)/2]

�(s/2)

)2/(s−1)

×
∫ 2π

0
dϕ G(β,ϕ). (B7)

In a similar fashion, the linear contribution vanishes due to
the symmetry of the integrand. The leading-order correction is
thus the quadratic term, which can be evaluated analogously
to the above calculation,

f2(p,n′; m)

= − p

16π�
exp

(
iπ

2

s − 5

s − 1

)
�

(
s − 5

s − 1

)

×
(

pθ

�

)2(
m

√
πC

�p

�[(s − 1)/2]

�(s/2)

)4/(s−1)

×
[

sin2(φ − α)
∫ 2π

0
dϕ G2(β,ϕ) + cos(2φ − 2α)

×
∫ 2π

0
dϕ cos2 ϕG2(β,ϕ)

]
. (B8)

Adding the two contributions and orientationally averaging
the squared absolute value finally gives Eq. (15), where the
constants A and θ∗ are given by

A =
(

pσ0(p)

4π�

)2[
1 + tan2

(
π

s − 1

)]
h1(a), (B9)

θ∗ = �

p

√
8π

σ0(p)
�

(
s − 3

s − 1

)[
�

(
s − 5

s − 1

)
h2(a)

]−1/2

.

(B10)

Here, we defined the two functions

h1(a) = 1

8π2

∫ π

0
dβ sin β

[∫ 2π

0
dϕG(β,ϕ)

]2

(B11)

and

h2(a) = 1

4π2h1(a)

∫ π

0
dβ

∫ 2π

0
dϕdϕ′ sin β

×G(β,ϕ)G2(β,ϕ′). (B12)

With the approximations presented above, the two functions
(B11) and (B12) can be written as

h1(a) =
(

1 + a

3

)4/(s−1)
, (B13)

h2(a) =
(

1 + a

3

)2/(s−1)
, (B14)

which finally gives Eqs. (16) and (17), respectively.

APPENDIX C: MOLECULAR DENSITY DISTRIBUTION
IN FAR-FIELD INTERFEROMETRY

Here, we present the theoretical description of the molecular
c.m. dynamics in a far-field matter-wave experiment with
a collision chamber. A typical far-field setup consists of a
molecular source (z = 0), a diffraction grating (z = L1), and
a screen (z = L1 + L2). Since the motional c.m. state of the
molecule is separable in x, y, and z directions at all times
[41], one can reduce the problem to a single dimension and it
suffices to treat the dynamics in the x direction. The motion in
the z direction is then approximated by replacing z = vMt .

The interference pattern can be conveniently expressed with
the help of the Wigner function w(x,p) or, equivalently, with
its characteristic function [54]

χ (s,q) =
∫ ∞

−∞
dx

∫ ∞

−∞
dp w(x,p)ei(qx−ps)/�. (C1)

In particular, the solution of the master equation for collisional
decoherence,

∂tρ(x,x ′) = 1

i�
〈x |[H,ρ] |x ′〉

+ γ (t)[η(x − x ′) − 1]ρ(x,x ′), (C2)

with the free Hamiltonian H and the time-dependent scattering
rate γ (t) can be given in terms of the characteristic function as

χt (s,q) = χ0

(
s − qt

M
,q

)
× exp

{∫ t

0
dτ γ (τ )

[
η
(
s − q

M
(t − τ )

)
− 1

]}
.

(C3)

The state after time t , χt , is described by multiplying the initial
state χ0 by an exponential reduction factor due to decoherence
followed by the shearing transformation s → s − qt/M . The
time dependence of the collision rate γ may account for a
spatially varying gas density, ng(z = vMt).

If the scattering occurs in a chamber placed between the
diffraction grating and the detector, the state in front of the
detector reads

χt1+t2 (s,q) = χ ′
t1

(
s − q

M
t2,q

)
× exp

{ ∫ t2

0
dτ γ (τ + t1)

×
[
η
(
s − q

M
(t2 − τ )

)
− 1

]}
. (C4)

Here, t1 and t2 denote the time of flight between source and
grating and between grating and detector, respectively, and
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χ ′
t1

(s,q) is the state immediately after the diffraction grating.
The density distribution on the screen is then given by

w(x) = 1

2π�

∫ ∞

−∞
dq e−iqx/�χt1+t2 (0,q)

= exp

[∫ t2

0
dτγ (τ + t1)

]
×

[
w0(x) +

∫ ∞

−∞
dx ′ w0(x ′)h(x − x ′)

]
, (C5)

where w0(x) is the interference pattern in absence of decoher-
ence and

h(x) = 1

2π�

∫ ∞

−∞
dq e−iqx/�

×
[

exp

{∫ t2

0
dτ γ (τ + t1)η

[ q

M
(t2 − τ )

]}
− 1

]
.

(C6)

Assuming that the rate γ (t) is constant in the chamber and
zero outside yields Eq. (27).
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Arndt, Quantum interference of large organic molecules, Nat.
Commun. 2, 263 (2011).

[7] N. Dörre, J. Rodewald, P. Geyer, B. von Issendorff, P.
Haslinger, and M. Arndt, Photofragmentation Beam Splitters
for Matter-Wave Interferometry, Phys. Rev. Lett. 113, 233001
(2014).

[8] P. Geyer, U. Sezer, J. Rodewald, L. Mairhofer, N. Dörre, P.
Haslinger, S. Eibenberger, C. Brand, and M. Arndt, Perspectives
for quantum interference with biomolecules and biomolecular
clusters, Phys. Scr. 91, 063007 (2016).

[9] M. A. Schlosshauer, Decoherence and the Quantum-to-
Classical Transition (Springer, Berlin, 2008).

[10] E. Joos, H. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.
Stamatescu, Decoherence and the Appearance of a Classical
World in Quantum Theory (Springer, Berlin, 2002).

[11] W. H. Zurek, Decoherence, einselection, and the quantum
origins of the classical, Rev. Mod. Phys. 75, 715 (2003).

[12] J. Trost and K. Hornberger, Hund’s Paradox and the Collisional
Stabilization of Chiral Molecules, Phys. Rev. Lett. 103, 023202
(2009).

[13] I. Gonzalo and P. Bargueno, Stabilization of chiral molecules
by decoherence and environment interactions in the gas phase,
Phys. Chem. Chem. Phys. 13, 17130 (2011).

[14] P. J. Coles, V. Gheorghiu, and R. B. Griffiths, Consistent histories
for tunneling molecules subject to collisional decoherence, Phys.
Rev. A 86, 042111 (2012).

[15] S. L. Adler, Quantum theory as an emergent phenomenon:
The statistical mechanics of matrix models as the precursor of

quantum field theory (Cambridge University Press, Cambridge,
UK, 2004).

[16] A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht,
Models of wave-function collapse, underlying theories, and
experimental tests, Rev. Mod. Phys. 85, 471 (2013).

[17] M. Arndt and K. Hornberger, Testing the limits of quantum
mechanical superpositions, Nat. Phys. 10, 271 (2014).

[18] K. Hornberger, S. Uttenthaler, B. Brezger, L. Hackermüller,
M. Arndt, and A. Zeilinger, Collisional Decoherence Observed
in Matter Wave Interferometry, Phys. Rev. Lett. 90, 160401
(2003).

[19] I. F. Tenney, M. Artamonov, T. Seideman, and P. H.
Bucksbaum, Collisional decoherence and rotational quasire-
vivals in asymmetric-top molecules, Phys. Rev. A 93, 013421
(2016).

[20] K. Hornberger, Master Equation for a Quantum Particle in a
Gas, Phys. Rev. Lett. 97, 060601 (2006).

[21] B. Vacchini and K. Hornberger, Quantum linear Boltzmann
equation, Phys. Rep. 478, 71 (2009).

[22] J. R. Taylor, Scattering Theory: The Quantum Theory of
Nonrelativistic Collisions (Dover, Mineola, New York, 2000).

[23] A. Smirne and B. Vacchini, Quantum master equation for
collisional dynamics of massive particles with internal degrees
of freedom, Phys. Rev. A 82, 042111 (2010).

[24] C. Hemming and R. Krems, Collisional decoherence of internal-
state superpositions in a trapped ultracold gas, Phys. Rev. A 81,
052701 (2010).

[25] H. G. Bennewitz, K. Kramer, W. Paul, and J. Toennies, Messung
der Aniotropie des van der Waals-Potentials durch Streuung
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