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We present a theoretical framework to describe the effects of decoherence on matter waves in Talbot-Lau
interferometry. Using a Wigner description of the stationary beam the loss of interference contrast can be
calculated in closed form. The formulation includes both the decohering coupling to the environment and the
coherent interaction with the grating walls. It facilitates the quantitative distinction of genuine quantum inter-
ference from the expectations of classical mechanics. We provide realistic microscopic descriptions of the
experimentally relevant interactions in terms of the bulk properties of the particles and show that the treatment
is equivalent to solving the corresponding master equation in paraxial approximation.

DOI: 10.1103/PhysRevA.70.053608 PACS number(s): 03.75.Dg, 03.65.Yz

I. INTRODUCTION

The art of demonstrating the wave nature of material par-
ticles experienced considerable advances in recent years; see
[1–3] and references therein. The interfering species evolved
from the elementary particles of the early experiments[4,5]
to composite objects with an internal structure. In particular,
the experiments in atom interferometry have left the stage of
proof-of-principle demonstrations, and provide substantial
applications in metrology[6–9]. Objects with even larger
complexity, such as molecules or clusters, exhibit a rich in-
ternal structure that can interact in various ways with exter-
nal fields. Their interference is highly sensitive to the corre-
sponding phase shifts, thus offering the potential to measure
molecular properties with unprecedented precision. At the
same time any coupling to uncontrollable fields and environ-
mental degrees of freedom severely limits the ability of large
objects to show interference. These effects are bound to be-
come dominant as the chosen objects increase in size and
complexity.

The influence of environmental coupling on a quantum
system may be described by decoherence theory[10,11]. It
considers both the influence of noise due to uncontrollable
external fields and the effect of the entanglement with unob-
served dynamic degrees of freedom. This latter
phenomenon—the dynamic delocalization of quantum coher-
ence into many environmental degrees of freedom—largely
explains the emergence of classical behavior in a quantum
description. In particular, it describes the wave-particle
complementarity encountered if one seeks to determine by a
(macroscopic) measurement device the path taken. Since
matter wave interferometers establish quantum coherence on
a macroscopic scale they are sensitive tools to probe the
quantum-to-classical transition of complex objects.

The purpose of this article is to provide the theoretical
framework needed to describe the diffraction and decoher-

ence effects encountered in the interferometry of large, mas-
sive objects. We focus on near-field Talbot-Lau interference,
which is the favored setup for short de Broglie wavelengths.
We take care to describe the effects of diffraction and deco-
herence with realistic parameters, to permit a direct quanti-
tative comparison with the experimental signal. The interac-
tions are treated on a microscopic level using the bulk
properties of materials and particles. We note that the recent
interference experiments with fullerenes and biomolecules
[12–15] were analyzed using the theory presented in this
article.

Before going into calculations we start with an informal
discussion of Talbot-Lau interference[16–18]. In this setup
an essentially uncollimated particle beam passes three paral-
lel gratings. Effectively, the first grating acts as an array of
collimation slits which illuminate the second grating. Dif-
fraction at the second grating then leads, for particular
choices of the grating periods and the wavelength, to a high
contrast near-field interference pattern at the position of the
third grating. This density pattern is observed with the help
of the third grating by recording the transmitted flux as a
function of the lateral grating position.

An important advantage of the Talbot-Lau effect is the
favorable scaling behavior with respect to larger masses of
the interfering object[19]. Unlike in far-field diffraction,
where the required grating period falls linearly with the de
Broglie wavelength, it decreases merely like the square root
in the Talbot-Lau setup. In addition, the collimation require-
ments are much weaker than for far-field diffraction, and the
spatially resolving detector is already built into the device.

However, for a fixed particle velocity it is not immedi-
ately evident whether the observed signal proves genuine
quantum interference, since a certain fringe pattern could
also be expected from a classical moiré effect. This classical
pattern can be suppressed by an appropriate choice of the
open fraction of the grating and, unlike the strong wave-
length dependence found in the interference effect, the ideal
classical shadow fringes do not depend on the velocity.
Nonetheless, in order to distinguish clearly the quantum phe-
nomenon from a classical expectation it is necessary to de-
scribe the quantum and the classical evolution in the same
theoretical framework, thus ensuring that all interactions and
approximations are treated equally.
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A first aim of this article is to provide such a description
that draws the demarcation line between the predictions of
quantum and classical mechanics concisely and quantita-
tively. The second aim is then to account for the relevant
environmental interactions, thus providing a quantitative de-
scription of the transition from the quantum to the classical
behavior. For both goals it will be helpful to describe the
state in the interferometer in terms of a stationary, unnormal-
ized Wigner function. Due to the stationary formulation the
effect of decoherence will not be given by a master equation.
Therefore, it is shown in the final part of the paper that our
treatment is equivalent to the conventional dynamic formu-
lation of decoherence in terms of a normalized Wigner func-
tion.

The structure of the article is as follows: In Sec. II we
review the coherent Talbot-Lau effect and give a formulation
in terms of the Wigner function. The corresponding classical
shadow effect is calculated on an equal footing in the phase
space representation. The influence of the interaction with
realistic gratings, which is very important for a quantitative
description, is accounted for in Sec. III. Those effects are
also treated on an equal degree of approximation in the quan-
tum and the classical description. In Sec. IV we include the
possibility of decoherence and show how it can be accounted
for analytically. The specific predictions for decoherence due
to collisions and due to heat radiation are then obtained in
Sec. V. In Sec. VI we relate the description of decoherence in
terms of a stationary beam to the solution of the correspond-
ing time-dependent master equation. Concluding remarks are
given in Sec. VII.

II. THE TALBOT-LAU EFFECT IN THE WIGNER
REPRESENTATION

Since the coherent theory of the Talbot-Lau effect can be
found in the literature[20–23] we shall present no detailed
derivations, but discuss the approximations involved and
state the results in terms of the Wigner function as far as
needed for the later inclusion of decoherence effects. Con-
sider the usual interferometric situation where a flux of par-
ticles enters atz=0 with a longitudinal momentumpz that is
much greater than its transverse components. Ideally, the par-
ticle is in a momentum eigenstate, or in an incoherent mix-
ture thereof, before passing a number of collimation slits and
gratings. The vectorr =sx,yd describes the distance of the
particles from the interferometer axis. In the usual paraxial
approximation this separation, as well as the structures in the
grating and in the collimation planes, are assumed to be
small compared to the distancesLi between the optical ele-
ments,ur u!Li. In this case one may evaluate the transmis-
sion to leading order inur u /Li. This approximation implies
that the longitudinal and the transverse parts of the state re-
main separable throughout the interferometer. It follows that
the discussion may be confined to the transverse degrees of
freedom as described bycsr d if the evolution is completely
coherent—or, in the general case, by the density matrix
rsr ,r 8d.

Given the wave functionc0sr d on thez=0 plane the free
unitary evolution up to the planez=L yields, to leading or-
der, the transverse state,

cLsr d =
pz

2p"iL
eipzL/"E dr 0expSi

pz

"

ur − r 0u2

2L
Dc0sr 0d

+ OS r 2

L2D , s1d

as follows from an asymptotic expansion of the free Green
function, e.g.,[24]. An important feature of this paraxial ap-
proximation is the fact that it reflects the composition prop-
erty of the exact propagation without any loss of accuracy.
That is, propagating the wave function first by a distanceL1
and subsequently by the distanceL2 yields exactly the same
result as a single propagation byL1+L2,

c3sr 3d = −
pz

2

s2p"d2L1L2
eispzL1+pzL2d/"E dr 1dr 2

3expSi
pz

"

ur 3 − r 2u2

2L2
DexpSi

pz

"

ur 2 − r 1u2

2L1
Dc1sr 1d

=
pz

2p"isL1 + L2d
eipzsL1+L2d/"E dr 1

3expSi
pz

"

ur 1 − r 3u2

2sL1 + L2d
Dc1sr 1d, s2d

which follows from Gaussian integration. Hence, within the
paraxial approximation no loss of accuracy is introduced by
dividing the propagation into a sequence of intervals and
integrating over the interjacent planes. This freedom will be
used below as a crucial ingredient when we describe the
effects of decoherence.

Note that the composition property(2) does not require a
large separation between the planes. Even for infinitesimally
close planes one obtains the correct expression(1). This can
be seen immediately in Eq.(2) by noting a particular repre-
sentation of the two-dimensionald function [Ref. [25], Eq.
(A.33)],

pz

2p"iL
expSi

pz

"

ur − r 0u2

2L
D →

"L/pz→0

d2sr − r 0d. s3d

The first equality in(2) also shows how the existence of
an ideal grating atz=L1 would affect the propagated state. In
the case of a binary grating ther 2 integration would be sim-
ply restricted to the transparent parts of the grating plane. In
general, an ideal grating causes an amplitude and phase
modulation

c18sr 2d = tsr 2dc1sr 2d with utsr 2du , 1, s4d

which is accounted for by the additional appearance of a
grating functiontsr 2d under the integral.

The passage of a particle stream through a general inter-
ferometer may now be described as a sequence of transmis-
sions through gratings or collimation slits as described by
Eq. (4) each followed by a free evolution(1). This holds also
for general, mixed states since any density operator can be
represented as a convex sum of projectors to pure states.
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A. Wigner function

We proceed to formulate the propagation in the Wigner
representation, which has several advantages. First, the
Wigner function permits a direct comparison of the quantum
evolution to the classical dynamics in terms of phase space
distributions. Second, and more importantly, it is the most
convenient starting point to include effects of decoherence in
Sec. IV. Finally, the free evolution(1) has a particularly
simple form in the Wigner representation.

The Wigner function is the Fourier transformation of the
position density matrixrsr ,r 8d with respect to the two-point
separationD=r −r 8 [26],

wsr ,pd =
1

s2p"d2 E dD eipD/"rSr −
D

2
,r +

D

2
D . s5d

It may be viewed as a quantum analog to the classical phase
space distributionfsr ,pd, with p the transverse momentum
vector.

In order to obtain the free unitary evolution of the Wigner
function we note that the density matrix in position represen-
tation has the general form

rsr ,r 8d =E dm gsmdcmsr dcm
* sr 8d s6d

with edm gsmd=1. According to Eq.(1) a free unitary evo-
lution by the distanceL yields

rsr ,r 8d =
pz

2

s2p"d2L2 E dr 0dr 08 expSi
pz

"

ur − r 0u2 − ur 8 − r 08u
2

2L
D

3r0sr 0,r 08d. s7d

From Eqs.(5) and(7) it follows that a free unitary evolution
by the distanceL changes the Wigner function according to

wLsr ,pd = w0Sr −
L

pz
p,pD . s8d

This transformation is particularly simple and, as one ex-
pects, is identical to the free movement of a classical prob-
ability density in the phase space of the transverse degree of
freedom. The decisive difference between the classical and
the quantum phase space dynamics is found in the transfor-
mation for passing through a grating. Equation(4) implies
that by going through a grating the Wigner function under-
goes a convolution

w8sr ,pd =E dq Tsr ,qdwsr ,p − qd, s9d

which in general builds up quantum coherences that show up
as oscillations in the momentum direction. Here we define
the convolution kernel analogously to(5) as

Tsr ,pd =
1

s2p"d2 E dD eipD/"tSr −
D

2
Dt*Sr +

D

2
D . s10d

Note that by stating(9) we do not keep the normalization of
the Wigner function. Indeed, a finite fraction of the particles
may hit the grating and may be removed from the flux.
Therefore it is convenient to work with an unnormalized

state and take care of the normalization only in the end.
With the transformations(8) and (9) we can proceed to

describe the Talbot-Lau effect in a general framework.

B. The Talbot-Lau setup

In the Talbot-Lau setup a monochromatic beam passes
three vertical gratings that are separated by the distancesL1
andL2. Since the particle stream is effectively uncollimated
in front of the first grating its Wigner function for the trans-
verse degrees of freedom is uniform. If we start with the
(improper) normalizationw0sr ,pd=1 then Eq.(10) yields the
Wigner function after the first grating

w1sr ,pd = ut1sr du2. s11d

The free unitary evolution by a distanceL1, followed by a
passage through a grating(with convolution kernelT) and
another free evolution by a distanceL2, leads to the general
expression

wsr ,pd =E dqUt1Sr −
p

pz
sL1 + L2d +

q

pz
L1DU2

TSr −
p

pz
L2,qD .

s12d

The particle density at positionz=L1+L2 is obtained by in-
tegrating the momentum variable. It can be written as

wsr d ; E wsr ,pddp =E dr 1ut1sr 1du2hsr ;r 1d s13d

with

hsr ;r 1d = S pz

"L1
D2E dp TSr −

p

pz
L2,

L1 + L2

L1
p −

r − r 1

L1
pzD .

s14d

As mentioned above the Talbot-Lau effect operates in the
near-field regime, where the fact that the gratings have a
finite lateral extension does not play a role; it only affects the
overall count rate. It is therefore permissible to describe the
gratings by idealized functions that are periodic on an infinite
plane. Moreover, since the setup is invariant with respect to
changes in the vertical position, it is sufficient to consider the
Wigner function and the grating transmissions only as a
function of the “horizontal” coordinatessrx,pxd;sx,pd (see
Fig. 1).

We take the first grating to have a periodd1, and its trans-
mission function to be given byt1sxd=oamexps2pimx/d1d.
Likewise, the second grating has the Fourier coefficientsbm
and the periodd2=d. Therefore,

ut1sxdu2 = o
,PZ

A, expS2pi,
x

d1
D with A, = o

jPZ
ajaj−,

*

s15d

and

Tsx,pd = o
,,jPZ

bjbj−,
* expS2pi,

x

d
DdSp − "p

2j − ,

d
D .

s16d
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In order to simplify the discussion and to avoid an overly
complicated notation we focus on thesymmetricTalbot-Lau
setup, which is the most important one in practice; for the
asymmetric setup see[23].1 In this case the gratings are set at
an equal distanceL1=L2;L and the periodsd1 andd of the
first and second gratings are related byd1=2d/ r, with r
PN. (The case of equal grating periods,r =2, is most com-
mon [12–15].) The state(12) now reads

wsx,pd =
1

"
o

,,j ,mPZ
A,bjbj−m

* expF2piS r

2
, + mD x

d
− 2pisr,

+ md
L

d

p

pz
GexpSip,s2j − md

r

2

L

Ll
D . s17d

Here we introduced theTalbot length

Ll =
d2pz

2p"
=

d2

l
s18d

in terms of the grating periodd and the de Broglie wave-
lengthl=h/pz. The Talbot length is the proper scale to dis-
tinguish near-field(Fresnel) diffraction from far-field(Fraun-
hofer) diffraction for a given wavelength. It gives the
distance behind a grating where the diffraction peaks of a
collimated, passing beam have a lateral separation equal to
the grating periodd.

To get the particle density in the beam from(17) we in-
tegrate over the momentump, which picks up them=−r,
components,2

wsxd ; E dp wsx,pd ~ o
,PZ

A,
*B,r

sldexpS2pi,
x

d1
D s19d

with Fourier components[23]

Bm
sld = o

jPZ
bjbj−m

* expSip
m2 − 2jm

2

L

Ll
D . s20d

Equation(19) predicts a density pattern which has the same
periodd1 as the first grating. Often the spatial resolution of
detectors is too poor to detect these density oscillations di-
rectly in an experiment. However, an indirect observation is
possible with the help of a third grating with periodd1. If put
at the position of the density pattern it modulates the total
transmission as a function of its lateral positionxs. The inte-
grated transmission, which is much easier to detect, is then
given by

Ssxsd =E dp dq dx wsx,p − qdTsx − xs,qd

=E dx wsxdut3sx − xsdu2. s21d

If we choose the first and third gratings to be identical,
t3sxd= t1sxd, the expected periodic signal is given by the ex-
pression

Ssxsd ~ o
,PZ

sA,
*d2B,r

sldexpS2pi,
xs

d1
D . s22d

For symmetric gratings this modulation signal has a
visibility3

Vqm =
Smax− Smin

Smax+ Smin
=

Uo
n=1

`

A2n−1
2 B2nr−r

sld U
1

2
A0

2B0
sld + o

n=1

`

A2n
2 B2nr

sld

, s23d

which serves as the prime characterization of the interference
pattern.

It is clear from the definition of the coefficientsBm
sld that

the interference pattern(19) and the visibility (23) depend
strongly on both the wavelengthl and the separationL be-
tween the gratings. As evident from Eq.(20) it is indeed the
product of the two quantities which determines the pattern,
sinceL /Ll=Ll /d2.

However, the detection of a periodic signal alone does not
prove necessarily that quantum interference occurred in the
experiment because a certain density pattern may also be
expected from a generalized Moiré effect. To establish the
observation of quantum interference one must show that the
observed visibility differs significantly from the classical ex-
pectation. It is therefore important to have a reliable quanti-
tative prediction for the classical expectation as well.

C. The classical expectation

With the results for the Wigner function at hand it is
straightforward to repeat the calculation using classical phase

1To observe theasymmetricTalbot-Lau effect, atL2=kL1 with
k.0, a period ofd1=sk+1d /k3d/ r is needed in the first grating.
Analogously to the symmetric case(19) a density pattern emerges
at z=L1+L2 which has now a period ofkd1. The casek,1 is called
the fractional Talbot-Lau effect, and it is easily incorporated into
the present framework.

2In order to specify the proportionally factor in(19) a normaliz-
able momentum distribution would be needed in the initial Wigner
function.

3Equations(23) and (31) assume that the transmission signal is
extremal atxs=0 andxs=d1/2 which is the case for realistic trans-
mission functions withtsxd= ts−xd.

FIG. 1. The symmetric Talbot-Lau setup consists of three paral-
lel gratings separated by equal distancesL. Near-field interference
of an uncollimated beam from the left may lead to a density pattern
at the position of the third grating that can be observed by modu-
lation with the lateral grating positionxs.
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space dynamics. The classical phase space densityfsr ,pd
transforms under free evolution like the Wigner function(8)
according to

fLsr ,pd = f0Sr −
L

pz
p,pD . s24d

In contrast to (10), the convolution kernel for passing
through an ideal amplitude grating is now given by

Tclsr ,pd =
1

s2p"d2 E dD eipD/"utsr du2 = utsr du2dspd, s25d

which leads to

f8sr ,pd = utsr du2fsr ,pd. s26d

At a distanceL2 after the second grating this yields a phase
space distribution

fsr ,pd = Ut1Sr −
p

pz
sL1 + L2dDU2Ut2Sr −

p

pz
L2DU2

, s27d

which can also be obtained from the quantum result by re-
placing T by Tcl in Eq. (12). It follows that the classical
density pattern in front of the third grating is given by

fsxd ; E dp fsx,pd ~ o
,PZ

A,
*B,r

s0dexpS2pi,
x

d1
D s28d

with

Bm
s0d = o

jPZ
bjbj−m

* . s29d

The comparison with Eq.(19) shows that the quantum and
the classical results have the same form, but differ in the
Fourier componentsBm. Of course, the classical Fourier
components do not depend on the de Broglie wavelength.
Nonetheless, theBm

s0d may be viewed as the short-wave limit
L /Ll→0 of the quantum Fourier coefficientsBm

sld, which is
already indicated by the notation.

It follows immediately that the classical prediction for the
signal is obtained from Eq.(22) by replacing the
wavelength-dependent Fourier componentsBm

sld by theBm
s0d,

Sclsxsd ~ o
,PZ

sA,
*d2B,r

s0dexpS2pi,
xs

d1
D . s30d

Likewise one can show that the visibility of the classical
signal is given, for symmetric gratings, by

Vcl =

Uo
n=1

`

A2n−1
2 B2nr−r

s0d U
1

2
A0

2B0
s0d + o

n=1

`

A2n
2 B2nr

s0d

. s31d

Let us focus on the important case of equal grating peri-
ods for a moment, i.e.,r =2. In this case only the even Fou-
rier componentsB2m are needed. If the separationL between
the gratings is set to an integer multiple of the Talbot length,
then it is easy to convince oneself that for any ideal grating
t2sxd

B2m
sld = B2m

s0d if L/Ll P N, s32d

that is, the quantum and the classical evolution yieldidenti-
cal predictions for the density pattern and the observed vis-
ibility. This shows clearly that the observation of the integer
Talbot-Lau effect alone does not prove the wave nature of
the beam particles.

However, unlike their classical counterparts, the quantum
Fourier components display a strong wavelength depen-
dence. Therefore, distinctively different results are obtained
in the classical and the quantum calculation for separations
which differ from the integer Talbot criterion,L /Ll¹N, or
equivalently for detuned particle wavelengths,lÞnd2/L ,n
PN. This can be seen in Fig. 2 where we show the quantum
and classical visibilities for identical, ideal binary gratings as
a function of their open fractionf (the ratio of slit width to
grating period).

As predicted by Eq.(32) the quantum and classical results
are identical forL /Ll=1 and given by Fig. 2(a). For L /Ll

=0.9 [Fig. 2(b)] andL /Ll=0.8 [Fig. 2(c)], on the other hand,
the Talbot-Lau visibilities differ markedly while the classical
predictions remain on Fig. 2(a). The distinction between the
classical and the quantum predictions is most pronounced for
an opening fraction of 0.5, where the classical contrast van-
ishes. The quantum calculation yields significant visibilities
for these gratings, of 14.7% atL /Ll=0.9 and 25.4% at
L /Ll=0.8, respectively.

D. Finite longitudinal coherence

In the above calculations the particle beam that enters the
interferometer was assumed to have a fixed velocity in thez
direction and to be completely uncollimated in the transverse
direction. Of course this is an idealization that is in many
respects as unrealistic as the familiar assumption of a per-
fectly coherent plane wave. Realistic particle beams are char-

FIG. 2. Talbot-Lau visibilities for ideal binary gratings as a
function of the open fraction.(a) L=Ll; (b) L=0.9Ll; (c) L
=0.8Ll. The corresponding classical visibilities are all identical
with curve (a).
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acterized by a finite longitudinal coherence and show some
correlations in the transverse direction.

The particle beams used in matter wave interferometry are
usually generated by an effusive or supersonic expansion
into a vacuum chamber[27]. By means of additional skim-
mers or collimators the beam is restricted to a well-defined
“longitudinal” direction. The beam is stationary, and as a
consequence the longitudinal momenta show no off-diagonal
elements in their density matrix[28]. They are completely
characterized by the longitudinal momentum distribution
gspzd [29].

The transverse momenta are much smaller than the longi-
tudinal ones and can be taken to be uncorrelated with the
longitudinal velocity. The transverse coherence is determined
by the source aperture[30], and it could be calculated with
the van Cittert-Zernike theorem[30] if the aperture size were
small compared to the length scale in question. However, in
the Talbot-Lau setup the source aperture is much larger than
the spacing between the grating slits. As a consequence, dif-
fraction at the first grating cannot be observed and it is per-
missible to approximate the transverse degrees of freedom as
completely uncollimated. In front of the first grating the bulk
of the beam is therefore appropriately characterized by the
Wigner function

WbeamsR,Pd = gsP ·ezd s33d

for R=r +zez with z,0. This description does not account
for the edges of the beam and the cutoff at larger transverse
momenta, which is why it cannot be properly normalized.
Fortunately, it is not necessary to include the full beam pro-
file in the treatment of the Talbot-Lau effect. As shown be-
low only the interference of paths through a few neighboring
slits is relevant for the effect, so that the transverse variation
of the total current can be neglected.

Formally, the beam(33) can be written as a convex sum
of stateswsr ,pd=1 that are uniform in the transverse coor-
dinatesr andp, and that have a fixed longitudinal momen-
tum pz:

s34d

Those are the stateswsr ,pd=1 that we started out with in
Sec. III B. Since a sequence of grating transmissions(9) and
free evolutions(8) does not affect the dependence onpz the
general stationary state atz8.0 is given by

Wbeamsr + z8ez,p + pzezd = wsz8;r ,pdgspzd s35d

and the transverse position density reads

wsr d =E dp dpzWbeamsr + z8ez,p + pzezd

=E dp dpzwsz8;r ,pdgspzd. s36d

It follows that the finite longitudinal coherence in the beam
is completely accounted for by averaging the results for a
fixed velocity derived in Secs. II B and II C over the longi-

tudinal velocity distribution. In particular, the modulation
signals(22) and (30) are given by

kSsxsdl =E
0

`

dpzgspzdSsxsd. s37d

If the detection signal is proportional to the flux the average
involves the longitudinal velocity component,

kSsxsdl =

E
0

`

dpzgspzdpzSsxsd

E
0

`

dpzpzgspzd
. s38d

Note that in either case the visibilities are not obtained by a
simple average of Eqs.(23) and (31), but have to be calcu-
lated from the averaged signal.

III. THE INFLUENCE OF REALISTIC GRATINGS

So far it has been assumed that the gratings are ideal in
the sense that their thickness could be neglected. However,
real gratings have a finite thickness and the time of interac-
tion between the particle and the grating depends on the
velocity vz=pz/mp of the beam particles. This introduces a
velocity dependence of the grating function both in the clas-
sical and in the quantum treatments. Generally speaking, the
Talbot-Lau effect is affected more strongly by the grating
forces than far-field diffraction[31], since the near-field in-
terference is characterized by smaller phase shifts. This was
seen in recent experiments with beams of large molecules
[12–15].

A. The grating interaction

In order to account for the effect of a finite grating thick-
nessb we consider an additional interaction potentialVsxd
that acts while the particle is traversing the grating. In order
to avoid a more detailedz dependence in the potential we
average over the the surface roughness and assume that the
grating walls are parallel to the optical axis and that edge
effects can be neglected. In the case of tilted walls one can
introduce an effective slit width, as discussed in[32]. More-
over, it is known[33,34] that grating interaction effects are
usually well described by theeikonal approximation. There,
the additional quantum phase due to the interaction potential
Vsxd is obtained by integrating the action along a straight
path. Accordingly, if we take the binary functiontsxd to de-
scribe the material grating the complete grating function is
given by

t̃sxd = tsxdexpS− i
mpb

pz

Vsxd

"
D . s39d

Here and below the tilde is used to indicate quantities which
have an additional velocity dependence due to the grating
interaction. Accordingly, for nonideal gratings the convolu-
tion kernel(10) is replaced by
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T̃sx,pd =E dq Tsx,p − qdTVsx,qd s40d

with

TVsx,qd =
1

2p"
E dD eiqD/"expH− i

mpb

pz"
FVSx −

D

2
D

− VSx +
D

2
DGJ . s41d

It follows that the quantum expressions(19) for the density
pattern and(23) for the signal visibility still hold after the
replacement

Bm
sld → B̃m

sld = o
jPZ

b̃jb̃j−m
* expSip

m2 − 2jm

2

L

Ll
D s42d

with the modified Fourier componentsb̃m=objc̃m−j and

c̃m =
1

d
E

−d/2

d/2

e−2pimx/dexpS− i
mpb

pz

Vsxd

"
Ddx. s43d

As mentioned above the presence ofVsxd introduces a veloc-
ity dependence also on the classical level. This can be seen
by considering the local approximation of Eq.(41) where
terms of the order]x

3VsxdD3 are neglected in the exponent,

TVsx,qd .
1

2p"
E dD expFiSq +

mpb

pz

d

dx
VsxdDD

"
G

= dSq +
mpb

pz

d

dx
VsxdD . s44d

According to Eq.(40) this yields a classical convolution ker-
nel

T̃clsx,pd = ut2sxdu2dSp +
mpb

pz

d

dx
VsxdD ; ut2sxdu2d„p − Qsxd…

s45d

which indicates that the eikonal approximation corresponds
on the classical level to the momentum kickQsxd=−]xVsxd
3b/vz obtained by multiplying the constant classical force at
a fixedpositionx with the interaction time. Accordingly, the
classical phase space distribution changes asf8sx,pd
= utsxdu2f(x,p−Qsxd) when passing a grating. Using this
transformation and the periodicity ofQ one finds that the
classical expressions for the density pattern and for the signal
visibility assume the forms(28) and(31) as in the ideal case.
One merely has to replace the Fourier components by

Bn
s0d → B̃n

s0d = o
mPZ

Bm
s0dC̃n−m

n s46d

with

C̃n
m =

1

d
E

−d/2

d/2

e−2pimx/dexpS− ipn
L

d

Qsxd
pz

Ddx. s47d

We note that the modifications of the Fourier components
given by Eqs.(42) and (46) describe the quantum and the
classical interactions on the same degree of approximation.
Clearly, the fact that the interaction with the grating is treated
equally in the quantum and in the classical descriptions is an
important requirement for identifying quantum interference
in an experimental observation.

Before turning to realistic descriptions for the grating in-
teraction we note that it is in general not necessary to include
the grating interaction at the first and third gratings. This is
clear from the fact that the Talbot-Lau setup is sensitive to
diffraction only at the second grating, while the others
merely serve to modulate the flux. Formally, it can be seen
from the expression for the observed signal, Eqs.(21) and
(13). It depends only on the squared moduliut1sxdu2 and
ut3sxdu2 of the first and third grating functions, which are not
affected by the phase shift in Eq.(39). Only for very strong
potentials, where Eq.(39) is no longer valid, may the inter-
action effectively reduce the slit width and thus become rel-
evant to the first and third gratings.

B. Material gratings

A neutral particle will in general experience an attractive
van der Waals force if placed in the vicinity of a surface. A
simple, but quite realistic description for nonpolar quantum
objects is given by the staticLondon dispersion forcewhich
acts between a quantum object and a flat wall. IfD
is the distance to the wall it gives rise to the potential
UsDd=−C3/D3, with C3.0 [35].

For simple wall materials the interaction constantC3 can
be found in the literature for many atoms and a number of
small molecules[36]. In general it is obtained from the Lif-
shitz formula[35,37,38]

C3 =
"

4p
E

0

`

asivd
esivd − 1

esivd + 1
dv s48d

by using either experimental data(e.g., absorption spectra) or
appropriate models for the dynamic polarizabilitya of the
particle4 and for the bulk dielectric functione of the grating
material, respectively. Often Drude-type models fora ande
are considered sufficient. In[33,34] the interaction with ma-
terial gratings was studied in an interference experiment and
found to be in good agreement with the assumption of a
London dispersion force.

However, at large distances retardation effects may be-
come important. They show up if the separationD between
the particle and the grating wall is comparable to the wave-
length corresponding to those virtual transitions in the par-
ticle that contribute with a large oscillator strength. In the
case of an ideal metal the potential is described by the
Casimir-Polder formula[39]. For large distances it has the

4We follow common practice and take the polarizabilities through-
out in units of volume rather than SI units.
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asymptotic formUsDd=−C4/D4 with the constant

C4 =
3"c

8p
as0d s49d

given by the static polarizabilityas0d of the particle. The
case of more realistic grating materials and arbitrary dis-
tances is covered by the theory of Wylie and Sipe[40,41]. It
shows that in the case ofreal metals the asymptotic form of
the interaction potential does not depend on the metal and is
identical to the ideal case. For dielectrics the limiting form
depends also on the fourth power of the distance, but with a
reduced interaction constant,

C4
e = C4 E

0

` s1 + 2u2drpsud − rssud

s1 + u2d5/2

u

2
du. s50d

The reduction depends on the static dielectric constantes0d
via the Fresnel coefficients

rpsud =
Î1 + u2 − Îes0d + u2

Î1 + u2 + Îes0d + u2
s51d

and

rssud =
es0dÎ1 + u2 − Îes0d + u2

es0dÎ1 + u2 + Îes0d + u2
. s52d

Figure 3 gives the value of the dielectric reduction factor for
1øes0dø100.

Whether the exact position dependence of the retarded
force must be used depends on the physical situation in the
particular interferometric setup. In most experiments realized
so far it was sufficient to use either the static van der Waals
interaction(48) [31] or the long range limit of the Casimir-
Polder force, Eq.(49).

Figure 4 shows the typical effect of a finite grating inter-
action, and should be compared to the results for the ideal
grating in Fig. 2. Here we assume a particle with mass
1000 amu, a van der Waals interaction withC3
=10 meV nm6, and we take gratings with a period ofd
=1 mm and a thickness ofb=0.2 mm separated by a distance
of L=0.2 m. One observes that the expected quantum vis-
ibilities deviate noticeably from the ideal case. Moreover, the
classical expectations(given by the dashed lines) differ com-
pletely from the ideal expectation and display now a weak
velocity dependence. At an open fraction of 0.5 they now
yield a finite contrast amounting to 12.4% –12.9% for the
three settings. The respective quantum expectations are also
larger than the in the force-free calculation.(They increased
from 14.7% to 32.9% atL /Ll=0.9 and from 25.4% to 35%
at L /Ll=0.8.) This is a typical phenomenon. The attractive
force tends to act as if the open fraction of the grating was
decreased.

C. Gratings of light

It is clear from Eqs.(13) and (21) that the first and the
third gratings in the Talbot-Lau setup must be absorptive to
generate an observable contrast pattern. However, as dis-
cussed in[23] the second grating may be a pure phase grat-
ing as well. Such amixed interferometer can be realized by
the off-resonant interaction with a standing light wave[42].
See[43] for the laser diffraction of large molecules.

If we take a TEM00 mode of wavelengthlL =2p /kL and
waist w produced by a laser of powerPL then the dipole
force leads to the phase shift

t̃sxd = expSiÎ2p
8PLav

"cvzw
cos2skLxdD , s53d

as follows from an integration over the Gaussian beam at
central passage. Hereav is the scalar polarizability of the

FIG. 3. Reduction factorC4
« /C4 [see Eq.(50)], of the long-range

interaction for dielectric gratings as compared to ideal metals(semi-
logarithmic scale). For typical grating materials the static dielectric
constant«s0d is less than 4, leading to a reduction below one-half.

FIG. 4. Talbot-Lau visibilities for gratings with a van der Waals
interaction as a function of the open fraction.(a) L=Ll; (b) L
=0.9Ll; (c) L=0.8Ll. The corresponding classical visibilities are
given by the curves(d),(e),(f), respectively.
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particle at laser frequencyvL=ckL, where we assume that
Imsavd=0 so that photon absorption can be neglected(see
footnote 4). The classical momentum kick in Eq.(45) that
corresponds to the dipole force reads

Qsxd = Î2p
8PLavkL

cvzw
sins2kLxd. s54d

Using these expressions in Eqs.(39) and(47) one obtains the
predictions for the quantum and classical density patterns
produced by a standing light wave in the same way as with
material gratings.

In the present section we showed that the Wigner descrip-
tion of the Talbot-Lau effect permits the effects of the grating
interaction to be incorporated easily, in terms of a simple
modification of the Fourier coefficients. As discussed in the
next section the effect of decoherence can be similarly incor-
porated into the formalism.

IV. ACCOUNTING FOR DECOHERENCE

Having formulated the Talbot-Lau dynamics in the
Wigner representation it is now easy to include the effects of
decoherence. More specifically, we consider the Markovian
interaction of the interfering particle with other, unobserved
degrees of freedom(the environment) [10,11]. The resulting
formation of quantum correlations(or entanglement) be-
tween the particle and the environment leads to a loss of
coherence in the particle state that may be understood from
the fact that a measurement of the environmental degree of
freedom could reveal(partial) which-way information on the
particle’s whereabouts.

We note that a number of studies have been undertaken
recently that describe a loss of visibility in matter wave in-
terference[44–46]. Here we focus on the Talbot-Lau effect
and on a formulation that is sufficiently realistic to permit
quantitative predictions about experiments with mesoscopic
bodies[13,15].

Two important decoherence mechanisms for large, inter-
fering particles are collisions with background gas particles
and the thermal emission of electromagnetic radiation. Both
effects may be treated in the Markov approximation, which
implies that the effect of the environmental coupling can be
described by independent, separate events(such as the emis-
sion of a photon or the collision with a gas particle).

A. The effect of a single decoherence event

The change in the state of the interfering particle due to a
single event can be obtained by performing a partial trace
over the entangled state with respect to the unobserved de-
grees of freedom. For particles with a large mass and for the
decoherence mechanisms considered in this article the den-
sity matrix in position representation changes just by a mul-
tiplication,

%8sR1,R2d = %sR1,R2dhsR1 − R2d. s55d

The factorhsR1−R2d, which may be called the decoherence
function, describes the decay of the off-diagonal elements
(the coherences) of %̂ due to a single event. In Sec. V we will

derive the form of realistic decoherence functions for the
most important decoherence mechanisms. For the time being
it is sufficient to note that the conservation of the trace in
(55) ensures that

lim
R1→R2

hsR1 − R2d = 1, s56d

so that the diagonal elements of the state are unchanged by
Eq. (55). Moreover, the Hermiticity of%̂ implies hs−Rd
=h*sRd, and from the fact that the purity cannot be increased
by a partial trace it follows thatuhsR1−R2duø1.

If the state is expressed in terms of the Wigner function its
change(55) reads

W8sR,Pd =E dQ h̄sQdWsR,P − Qd s57d

with h̄sQd the Fourier transform of the decoherence function,

h̄sQd =
1

s2p"d3 E dR e−iQR/"hsRd. s58d

Clearly, the effect of a decoherence event on the Wigner
function is to smear it out in the momentum direction.

As discussed in Sec. II D the coherently evolving, station-
ary state of the beam in a Talbot-Lau interferometer is de-
scribed by the function

Wbeamsr + zez,p + pzezd = wsz;r ,pdgspzd. s59d

In a typical setup the grating constant and the grating sepa-
ration differ by six orders of magnitude so thatp varies on a
scale in Eq.(59) that is much smaller than the magnitude of
pz. Our basic approximation is now to assume that the width
of h̄ is small compared to the scale over whichWbeamvaries
in pz. This assumption is particularly unproblematic in the
Talbot-Lau setup, where the sensitivity to changes in the lon-
gitudinal momentum is rather weak. It follows that the new
state of the transverse coordinates is approximately given by
integrating the full state with respect to the longitudinal mo-
mentum,

w8sz;r ,pd . E dpz8Wbeam8 sr + zez,p + pz8ezd. s60d

Inserting Eqs.(57) and(59) yields the change in the state of
the transverse coordinates:

w8sz;r ,pd =E dq h̄2dsqdwsz;r ,p − qd s61d

with

h̄2dsqd ; E dqzh̄sq + qzezd. s62d

It follows from Eq.(62) that in the position representation of
the transverse state,rsr 1,r 2d, the decoherence function en-
ters without modification,
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r8sr 1,r 2d = rsr 1,r 2d E dqeiqsr 1−r 2d/"h̄2dsqd

= rsr 1,r 2dhsr 1 − r 2d, s63d

but restricted to thexy plane,hsr d;hsr +0ezd.
Using the Wigner function it is now possible to evaluate

the effect of asingledecoherence event that takes place at a
distancez behind the first grating. One merely propagates the
state to the longitudinal positionz using the coherent trans-
formations(8) and(9), then applies(61), and propagates the
state over the remaining distance to the third grating. Within
the paraxial approximation no additional error is introduced
by this procedure since the composition property of the evo-
lution holds exactly. The result takes a simple form(both for
z,L and forz.L) once the momentum is integrated to yield
the position densitywsr d in front of the third grating. It is
given by an integral of the form(13),

wsr d =E dr 1ut1sr 1du2ĥzsr ;r 1d, s64d

where the coherent kernelhsr ,r 1d from Eq. (14) is replaced
by

ĥzsr ;r 1d =E dq h̄2dsqdhSr ,r 1 −
L − uz− Lu

pz
qD . s65d

This shows clearly that close to the first and to the third
gratings, atz=0 and z=2L, a decoherence event will not
affect the interference pattern while, for monotonically de-
creasingh̄2dsqd, the interference is most strongly affected by
decoherence events that take place in the vicinity of the sec-
ond grating, atz=L. This is consistent with the notion that in
the Talbot-Lau setup diffraction takes place only at the sec-
ond grating, while the first grating acts as an array of coher-
ence slits.

We take the grating function again to be periodic inx
(with perioddd and uniform iny. This means that the discus-
sion can be confined to thex coordinate as in Sec. II B.
Using the Fourier decomposition(16) one finds that the co-
herent kernel(14) reads in the one-dimensional case

hsx;x1d ; E dy dy1hsxex + yey;x1ex + y1eyd

=
pz

2L"
o
mPZ

expS2pim
x + x1

2d
DB̃m

sld. s66d

It follows with Eq. (65) that in the presence of a decoherence
event the kernel takes the form

ĥzsx;x1d =
pz

2L"
o
mPZ

expS2pim
x + x1

2d
DB̃m

sld

3hS− m
d

2

L − uz− Lu
Ll

exD , s67d

where the three-dimensional decoherence function from Eq.
(55) enters with its dependence along thex axis. The com-
parison with Eq.(66) shows that the modified interference
pattern corresponding to a single decoherence event at posi-

tion z is completely described by a modification of the co-
herent Fourier components(42)

B̃m
sld → B̃m

sldhS− m
d

2

L − uz− Lu
Ll

exD . s68d

B. An alternative to the master equation

One can now account for probabalistically occurring de-
coherence events by considering the change in the final in-
terference pattern due to events that occur with rateRszd in
the intervalsz;z+dzd. It follows from Eq. (68) that the cor-
responding Fourier coefficients satisfy the differential equa-
tion

d

dz
B̂m

sld = RszdFB̂m
sldhS− m

d

2

L − uz− Lu
Ll

exD − B̂m
sldG .

s69d

It describes the change of the interference pattern with an
increasing size of the interval where decoherence events may
occur. The integration of Eq.(69) over the whole rangez
P s0;2Ld of admitted decoherence then yields the coeffi-
cients characterizing the modified pattern. They are given by

B̂m
sld = B̃m

sldexpH−E
0

2L

RszdF1 − hS− m
d

2

L − uz− Lu
Ll

exDGdzJ ,

s70d

with B̃m
sld the coefficients of the coherent evolution. This is

the central result of this section. It shows that the effects of
Markovian decoherence of the form(55) can be calculated
analytically if the setup is insensitive to longitudinal correla-
tions as in the Talbot-Lau interferometer. It follows immedi-
ately that the position density and the visibility of the modu-
lation signal are given by the formulas(19) and (23),
respectively, if the coherent coefficientsB̃m

sld are replaced by
those of the incoherent evolution(70).

The result(70) can be easily generalized to the asymmet-
ric Talbot-Lau interferometer. The case of several indepen-
dent decoherence mechanisms is also easily incorporated.
The resulting interference pattern is then characterized by a
product of the corresponding exponentials in Eq.(70).

It is important to note that the basic Fourier components
m=0 are not affected by decoherence, sincehs0d=1. This
shows that the mean count rate does not change due to the
presence of decoherence, as is to be expected from the con-
servation of the norm in Eq.(55). The reduction of the ob-
served visibility assumes a compact form if the modulation
signal (22) is (approximately) sinusoidal, as is typically the
case for gratings with an open fraction off .0.5. Then only

the coefficientsB̂0
sld andB̂2

sldcontribute to the visibility if the
grating periods are equal,r =2. With hs0d=1 it follows that
the reduced visibility is given by
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V = V0 expH−E
0

2L

RszdF1 − hS− d
L − uz− Lu

Ll

exDGdzJ ,

s71d

whereV0 indicates the visibility in the absence of decoher-
ence. This formula is particularly intuitive if the Talbot cri-
terion is met,L=Ll. Then the argument ofh contains the
separation of two paths that start and end at common points
and pass the second grating through neighboring slits. Atz
=L it is equal to the grating constantd, which shows that the
Talbot-Lau interference with equal gratings is based on the
interference through neighboring slits. Also at other positions
z a reduced magnitude ofh suppresses the visibility when-
ever the change in the environmental state is able to resolve
the corresponding path separation. Higher orders of the Tal-
bot effect,L=mLl with mPN, correspond to multiple slit
separationsmd. For longitudinal velocities that deviate from
the Talbot criterion withLÞmLl the argument is replaced by
an “effective” path separation.

It should be emphasized that our derivation of Eqs.(70)
and(71) is rather different from solving the Markovian mas-
ter equation corresponding to the decoherence mechanism.
In Sec. VI we obtain a solution of the master equation cor-
responding to decoherence of the type(55) for a general
interfering state in the paraxial approximation. An expression
analogous to(71) is found there, albeit in a time-dependent
formulation; see Eq.(120). This vindicates our approxima-
tion (60).

The present formulation has the particular advantage that
the rate R of decoherence events and theireffecth appear
separately in the equation. This might seem to be a compli-
cation, since these two quantities must be calculated inde-
pendently by quantum mechanical means. However, they are
often needed with different degrees of sophistication. For
example, often one must take into account the position de-
pendence of the rate. This is easily incorporated in the
present framework, while solving a corresponding master
equation would be incomparably more complicated.

C. Quantum decoherence vs a classical stochastic process

Having treated the effect of environmental coupling on
the quantum evolution, we can now turn to its effects in the
classical description. In Sec. II C the classical expectation
was calculated in terms of the phase space densityfsr ,pd.
The close analogy between the quantum problem and the
classical calculation allows us to map the Wigner represen-
tation of a decoherence event(61) to the classical descrip-
tion. It follows from Eq.(61) that the effect of a decoherence
event can be interpreted on the classical level as a probabi-
listic momentum kick,

f8sr ,pd =E dq h̄2dsqdfsr ,p − qd. s72d

Indeed, the propertieshs0d=1 andhs−r d=h*sr d of the deco-
herence function imply thath̄2d has the features of a prob-
ability density,h̄2dsqdù0 andedq h̄2dsqd=1. From the close
analogy of the classical and the quantum expressions for the

free evolution and the passage through a grating it is easy to
see that the above derivation of the modified pattern holds in
the classical formulation as well if one replaces the quantum

coefficientsB̃m
sld in Eq. (70) by their classical counterparts

B̃m
s0d.

From this one might be led to conclude that the decoher-
ence described in Eq.(55) was a “classical effect.” In our
view this would be a misinterpretation, since a probabilistic
formulation is possible only if the Wigner function is non-
negative everywhere, that is, if it cannot be distinguished
from a classical probability distribution. If the Wigner func-
tion is negative in some parts, as is the case for an interfering
state, any stochastic interpretation is invalidated by the oc-
curring flux of a “negative probability.” Notwithstanding
this, once the motional state has turned into a classical state
without negativities in the Wigner function the additional
loss of visibility in the quantum description is indeed indis-
tinguishable from a corresponding classical stochastic pro-
cess.

V. REALISTIC DECOHERENCE FUNCTIONS

In the following we discuss the form of realistic decoher-
ence functions that can be used to obtain quantitative predic-
tions on the effects of decoherence in matter wave experi-
ments. We focus on the most important mechanisms for
large, massive objects, namely, collisions with particles from
the background gas and the emission of heat radiation. We
note that simple estimates of these effects on material par-
ticles can be found in[47–49].

A. Decoherence by collisions with gas particles

A very important source of decoherence is the unavoid-
able presence of a background gas in the experimental appa-
ratus. Typically, the mass of the interfering particles is much
larger than the mass of the gas particles,mp@mg, and the
interaction is of the monopole type. In this case the decoher-
ence function reads[47,50,51]

hsR1,R2d = trgasFexpS− iP̂gas
R2

"
DŜ0

†expSiP̂gas
R2 − R1

"
DŜ0

3expS− iP̂gas
R1

"
D%̂gasG s73d

whereP̂gasis the momentum operator of the gas particles and

Ŝ0 the center-of-mass scattering operator. The trace over the
scattered gas particle in Eq.(73) can be evaluated if it is in a
(thermal) state that is diagonal in momentum and character-
ized by the distributionmgassPd. One obtains[50,51]
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s74d

with T̂0= is1−Ŝ0d. Awkwardly, the last two expressions in Eq.
(74), which are indicated byXV, involve two quantities that
are arbitrarily large. One is the “quantization volume”V,
which originates from the normalization of the thermal state
%̂gas, and the other is thesquareof the d function appearing

in the matrix elementkP8uT̂0uPl= fsP8 ,PddsP8−Pd / s2p"Pd.
Here fsP8 ,Pd is the scattering amplitude(which must not be
confused with the classical phase space density from Sec.
II C). Since the decoherence function is well defined by Eq.
(73) these two infinite quantities must cancel if the limitV
→` is taken properly. As argued in[51] physical consis-
tency requirements lead to

lim
V→`

XV =
ufsP8,Pdu2

ssPd
dsP8 − Pd

P2 , s75d

wheressPd is the total scattering cross section,

ssPd =E dnufsPn,Pdu2. s76d

With the replacement(75) one gets

hsR1,R2d =E dP
mgassPd

ssPd E dnuf„cossud…u2eisP−PndsR1−R2d/".

s77d

As already anticipated in Eq.(55) this function depends only
on the position differenceR1−R2. For an isotropic distribu-
tion of the gas momenta,mgassPd=ngassPd / s4pP2d, the ex-
pression can be further simplified noting that it depends only
on the distanceDR= uR1−R2u. One obtains

hsDRd =E
0

`

dP
ngassPd

ssPd E dVuf„cossud…u2

3sincFsinSu

2
D2PDR

"
G s78d

with sincsxd=sinsxd /x. The argument of the sinc function is
equal to the momentum transfer during the collision times
the distanceDR in units of ". This indicates that whenever
the change in the state of the gas particle suffices to resolve
the distanceDR the corresponding coherences in the mo-
tional state will be suppressed.

Let us turn to the second ingredient to the decoherence
formula (71), the scattering rateRszd. It is usually expressed
in terms of an effective cross section,Rszd=nszdseff, with
nszd the number density of the background gas. For a con-

stant density, and againmp@mg, the effective cross section
depends only on the velocity of the interfering particle. It is
given by

seffsvpd =E dP mgassPdssuP − mgvpezud
uP/mg − vpezu

vp
,

s79d

as follows from the derivation of the Boltzmann equation.
The most prominent interaction encountered in molecular

scattering is the van der Waals force between polarizable
molecules. At the typical velocities in matter wave interfer-
ometry the scattering depends only on the long-range part of
the interaction potential,Usrd=−C6/ r6, which is character-
ized by a single interaction constantC6. The total cross sec-
tion is then independent of mass and given by[52]

ssmgvd =
p2

Gs2/5dsinsp/5dS3p

8

C6

"v
D2/5

. s80d

The integration in Eq.(79) can be done assuming a thermal
distribution of the gas particles. The exact expression is
given by a confluent hypergeometric function, as shown re-
cently by Vacchini[53]. Here we note the asymptotic form of
the effective cross section(79) for small velocities of the
interfering particle. It reads

seffsvpd =
4pGs9/10d

5 sinsp/5d S3pC6

2"
D2/5ṽg

3/5

vp
H1 +

1

5Svp

ṽg
D2

+ OSvp

ṽg
D4J s81d

with ṽg=s2kBT/mgd1/2 the most probable velocity in the gas.
In principle, the interaction constant is given by the

Casimir-Polder expression

C6 =
3"

p
E dv agsivdapsivd s82d

involving the frequency-dependent polarizabilities of the two
particles(see footnote 4). However, often only the static po-
larizabilities are available for larger molecules. In this case a
fairly accurate estimate can be obtained from the Slater-
Kirkwood expression[54]

C6 .
3

2

e"

Î4p«0me

ags0daps0d

Îags0d/Ng + Îaps0d/Np

, s83d

whereNg andNp are the numbers of valence electrons of the
gas molecules and the interfering particle, respectively.

Let us stress again that in the present treatment the effect
of a single collision(78) and the rate(81) are calculated
separately, which is particularly useful if the two are needed
at different degrees of accuracy. This was the case in the
recent experiments on collisional decoherence[13,55] where
the localization took place on a scale that is by orders of
magnitude smaller than the path separation. Consequently,h
could be replaced by a simple Kronnecker-like function in
Eq. (70), while the finite velocity of the interfering particle
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within the thermal gas had to be taken into account properly.
Corresponding master equations, based on the microscopic
description of the scattering process, are a subject of current
research[47,50,51,56–59]. Although some of those are suf-
ficiently detailed to describe the emergence of an effective
scattering rate(81), their application to a description of the
experiment would have been considerably more complicated
than in the present treatment.

B. Decoherence by thermal emission of radiation

A second decoherence mechanism that is common to all
macroscopic objects is the emission of heat radiation. It
starts to play a role in matter wave interference if one con-
siders macromolecules or mesoscopic particles. Due to the
large number of internal degrees of freedom, a thermody-
namic description of the distribution of the internal energy is
unavoidable. Moreover, their coupling to the electromagnetic
field is quasicontinuous. In general, the thermally emitted
photons will reveal(partial) which-way information on the
whereabouts of the interfering particle and thus lead to de-
coherence.

We assume that the emission is isotropic, and that the
walls of the apparatus, which absorb an emitted photon, are
located in the far field where the photon’s spatial detection
probability is given by its momentum distribution. The con-
servation of the total momentum then suffices to determine
the transformation of the particle’s density operator that
would be obtained from a partial trace over the entangled
state between photon and particle. It follows that the change
of the particle center-of-mass coordinate due to a single
emissions given by

%̂ → %̂8 =E dk
pkskd
4pk2Ûk%̂Ûk

†, s84d

wherepkskd is the probability distribution for photons with

wave numberk= uk u and Ûk =expsiR̂kd are the momentum
translation operators. Note that it is not necessary to consider
the change of the internal degrees of freedom of the particle,
since their state does not get entangled with the center of
mass; this would result only if the emission probability were
position dependent.

In position representation,%sR1,R2d=kR1u%uR2l, the
transformation(84) reduces the off-diagonal elements of the
center-of-mass state,

%8sR1,R2d = %sR1,R2dhsR1 − R2d. s85d

The corresponding decoherence function reads

hsDRd =
1

Rtot
E

0

`

dl RlsldsincS2p
DR

l
D , s86d

where the probability distributionpk was expressed in terms
of the spectral photon emission rate,

Rlsld =
2pRtot

l2 pkS2p

l
D s87d

and the total photon emission rate

Rtot =E
0

`

Rlslddl. s88d

In the expression for the Fourier components(70) the total
rate of decoherence eventsRtot cancels because it gets mul-
tiplied by h. One obtains

B̂m
sld = B̃m

sldexpH−
1

vz
E

0

2L

dzE
0

`

dl Rlsld

3F1 − sincSmp
d

l

L − uz− Lu
Ll

DGJ .

This shows clearly how the fringe pattern gets blurred by
heat radiation if it contains photons that have a sufficiently
small wavelength to resolve the path separation. The proper-
ties of the interfering particle enter only through the spectral
emission rateRl=Rv3 udv /dlu.

For mesoscopic particles the spectral emission rate devi-
ates from the Planck law of a macroscopic blackbody for a
number of reasons. First, the photon wavelengths are typi-
cally much larger than the radiating particle, which turns it
into a colored emitter. The density of available transition
matrix elements can be related to the absorption cross section
[60]. Second, at internal energies where thermal emission is
relevant the particle is usually not in thermal equilibrium
with the radiation field, so that there is no induced emission.
Third, the particle is not in contact with a heat bath, but the
emission takes place at a fixed internal energyE. Similarly to
Einstein’s derivation of the Planck law, these points lead to
the expression[61]

Rvsvddv =
v2

p2c2sabssE − "v;vd
dsE − "vd

dsEd
dv. s89d

The first term is proportional to the mode density. The mean
oscillator strength is described by the absorption cross sec-
tion at frequencyv and internal energyE−"v, and the ratio
of the densities of statedsEd yields the statistical factor under
a strong mixing assumption. The mean densities of states can
be related to the thermodynamic properties of the particle by
a stationary phase evaluation of the inverse Laplace trans-
form of its partition function [62,63]. This yields dsEd
,expfSsEd /kBg and therefore

dsE − "vd
dsEd

. expF−
"v

kBT* −
1

2CV
S "v

kBT* D2G . s90d

Here, the internal energy is conveniently expressed in terms
of the microcanonical temperature

T*sEd = F ] SsEd
] E

G−1

, s91d

with SsEd the entropy. The value ofT* is equal, up to small
corrections, to that canonical temperature where the mean
energy equals the internal energy. The second term in(90)
contains the heat capacityCV of the particle. It is the leading
correction due to the finite size of the internal heat bath. This
term decreases with increasing size of the particle and Eq.
(90) assumes the canonical form in the limitCV→`.
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With Eqs. (89) and (90) one is able to calculate the
temperature-dependent spectral emission rateRlsl ,Td and
the corresponding decoherence effect. At very small heat ca-
pacities the effect of cooling may have to be taken into ac-
count. It can be easily incorporated in the present framework
through a position-dependent temperatureTszd determined
by the cooling formula

d

dz
Tszd = −

1

vzCV
E "vRvsv,Tddv. s92d

We note that also scattering of photons may lead to deco-
herence, although room temperature photons will not limit
matter wave interference in the foreseeable future. The de-
liberate scattering of a laser beam at interfering atoms at a
resonant cross section was studied in[64–68].

Finally, we emphasize that all the calculations in this pa-
per have been within the framework of conventional quan-
tum mechanics. However, proposed extensions of that
theory, which produce spontaneous localization of massive
particles due to postulated “collapse” terms added to the
Schrödinger equation, lead to an evolution of the density
operator which mimics decoherence effects[69]. Hence both
the establishment of the framework we develop here, and
accurate models for decoherence mechanisms, are essential
to ascertain whether or not any particular proposed modifi-
cation of conventional quantum mechanics can be ruled out
by experimental data. We defer such applications to future
articles with a focus on laboratory results.

VI. EQUIVALENCE WITH THE MASTER EQUATION

In this final section we show that the procedure to incor-
porate decoherence that was used in Sec. IV is equivalent to
solving the corresponding master equation in paraxial ap-
proximation. This is done by identifying the systematic cor-
rections to the paraxial approximation in terms of the ratio
between transverse and longitudinal momenta.

Our starting point is the master equation for a free par-
ticle,

]

] t
%̂ =

1

i"
F P̂2

2mp
,%̂G −E dR dR8gsR − R8d%sR,R8duRlkR8u

s93d

with localization rateg. It is valid in situations where the
mass of the particlemp is sufficiently large so that the effect
of the environmental coupling does not(yet) lead to thermal-
ization. This equation is usually applicable in interferometric
situations where one is interested in time scales that are
much shorter than those of dissipation. In particular, it de-
scribes the effects of scattering of particles with a much
smaller mass or the emission of photons.

It follows from (93) that the corresponding Wigner func-
tion satisfies

]

] t
WsR,P;td = −

p

mp
=RWsR,P;td −E dP8ḡsP8d

3WsR,P − P8;td s94d

with ḡ the Fourier transform of the localization rate,

ḡsPd =
1

s2p"d3 E dR e−iRP/"gsRd. s95d

Unlike in the previous sections, we describe the motion of
the particle by a Wigner function that is properlynormalized,

E dR dP WsR,P;td = 1. s96d

A. Decoherence of an interfering state

Now consider the usual scattering situation where the par-
ticle enters and leaves the grating region of an interferometer
in a finite period of time, so thatWsR ,P; t→ ±`d=0 for all
positionsR of interest. It follows that

E
−`

`

dt ]tWsR,P;td = WsR,P; + `d − WsR,P;− `d = 0.

s97d

As above, we take thez axis as the longitudinal direction of
the interferometer,

R = r + zez,

P = p + pzez, s98d

and denote the transverse positions and momenta byr
=sx,yd andp=spx,pyd, respectively.

At t=0 the particle is localized in the regionz,0 and
heading for the regionz.0 where decoherence may occur,
say, because there is a gas present. Moreover, we assume that
at t=0 the particle is already in a nonclassical motional state,
for example because it has just passed a grating. The ex-
pected interference pattern is given by the position-
dependent detection probability in thez plane which is ob-
tained by integrating the longitudinal current density over
time,

Qsz;r d =E dtE dp dpz
pz

mp
Wsr + zez,p + pzez;td. s99d

In order to compare with the results from Sec. IV we are
ultimately interested in the effect of decoherence on the Fou-
rier transform of the interference pattern with respect to the
transverse coordinates,

Q̄sz;qd =
1

s2p"d2 E dr e−iqr /"Qsz;r d

=E dp dpz
pz

s2p"d2mp
E dr e−iqr/"E dt Wsr + zez,p

+ pzez;td ; E dp dpzSasz,pz;q,pd. s100d

Here we introduced the auxiliary functionSa. In order to
obtain a differential equation forSa apply edr exps−iqr /
"dedtf·g to Eq. (94). Using Eq.(97) and integrating by parts
one finds
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]

] z
Sasz,pz;q,pd = − i

q ·p

pz"
Sasz,pz;q,pd

− mpE dpz8dp8
ḡsp8 + pz8ezd

pz − pz8

3Sasz,pz − pz8;q,p − p8d. s101d

In the absence of decoherence this differential equation is
immediately integrated,

Sasz,pz;q,pd = expS− iz
q ·p

pz"
DSas0,pz;q,pd sfor g = 0d.

s102d

This decoherence-free solution is used below to obtain a sys-
tematic approximation in the presence of decoherence. But
first we introduce the Fourier transform ofSa with respect to
the longitudinal momentum referenced by a fixed character-
istic momentump̄z,

Sbsz,z;q,pd: =E dpd expsizpd/"dSasz,p̄z + pd;q,pd

s103d

so that

Q̄sz;qd =E dp Sbsz,0;q,pd. s104d

The motivation for this definition is that we will assume that
Sasz,pz;q ,pd is strongly peaked around the characteristic
momentumpz= p̄z and thereforeSb should be a slowly vary-
ing function ofz. This will form the basis of our approxima-
tions below. For the time being we keep the equations exact.

The dynamics forSb follows from Eq.(101):

d

dz
Sbsz,z;q,pd = F d

dz
Sbsz,z;q,pdG

coh

+ F d

dz
Sbsz,z;q,pdG

incoh
. s105d

The coherent part reads

F d

dz
Sbsz,z;q,pdG

coh
= − i

q ·p

p̄z"
E dpd expsizpd/"d

p̄z

p̄z + pd

3Sasz,p̄z + pd;q,pd

= − i
q ·p

p̄z"
Sbsz,z;q,pd

− i
q ·p

p̄z"
E dpd expsizpd/"dDSpd

p̄z
D

3Sasz,p̄z + pd;q,pd, s106d

where we usedp̄z/ sp̄z+pdd=1+Dspd / p̄zd with

Dsxd: = −
x

1 + x
= o

n=1

`

s− xdn. s107d

Formally, Eq.(103) allows us to introduce a differential op-
erator forSb,

F d

dz
Sbsz,z;q,pdG

coh

= − i
q ·p

p̄z"
F1 +DS− i"

p̄z

d

dz
DGSbsz,z;q,pd. s108d

SinceSb was constructed to have a weak dependence onz we
expect that the expansion(107) can be relied on at least in an
asymptotic sense. For the second term in Eq.(105) one ob-
tains in a similar way

F d

dz
Sbsz,z;q,pdG

incoh

= −
mp

p̄z
E dpz8dp8expsizpz8/"d

3ḡsp8 + pz8ezdF1 +DS− i"

p̄z

d

dz
DG

3Sbsz,z;q,p − p8d. s109d

This integro-differential equation can be further simplified
by separating off the solution of the coherent part(108) for a
vanishingz dependence and by a Fourier transformation that
removes the convolution in Eq.(109). This is done by the
introduction of a third and final auxiliary function,

Scsz,z;q,rd: =E dp expSi
q ·p

p̄z"
z− i

p · r

"
DSbsz,z;q,pd.

s110d

It reads in terms of the Wigner function

Scsz,z;q,rd =
1

s2p"d2 E dr dp dpz expS− i
r ·q + r ·p

"

+ i
q ·p

p̄z"
z+ iz

pz − p̄z

"
D pz

mp
E dt Wsr + zez,p

+ pzez;td. s111d

If one knows the functionSc the interference pattern is im-
mediately obtained since

Q̄sz;qd = ScSz,0;q,
z

p̄z

qD , s112d

as follows from Eq.(104). The evolution equation ofSc is
obtained from Eq.(105). It is now a differential equation,

d

dz
Scsz,z;q,rd = −

mp

p̄z

gS q

p̄z

z− r + zezDScsz,z;q,rd

+
q

p̄z

DS− i"

p̄z

d

dz
D=rScsz,z;q,rd −

mp

p̄z

gS q

p̄z

z

− r + zezDDS− i"

p̄z

d

dz
DScsz,z;q,rd. s113d
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In order to find the initial functionScs0,z ;q ,rd we take into
account that the initial state is localized in the left half space,

Wsr + zez,p + pzez;0d = 0 for z. 0, s114d

and heading to the right,

lim
t→`

Wsr + zez,p + pzez;td = 0 for z, 0. s115d

With these conditions the initial function is obtained from
Eq. (111) by assuming that the Wigner function evolves
freely (without decoherence) until it reaches the boundary to
the decoherence region,z=0. It reads

Scs0,z;q,rd =
1

s2p"d2 E dr dp dpz expS− i
r ·q + r ·p

"

+ iz
pz − p̄z

"
DE

−`

0

dz WSr + zez +
z

pz
p,p

+ pzez;0D . s116d

After solving the differential equation(113) the resulting,
possibly blurred, interference patternQzsr d is obtained by
taking the inverse Fourier transform of Eq.(112):

Qsz;r d =E dq eiqr /"ScSz,0;q,
z

p̄z

qD . s117d

The evolution equation(113) shows clearly the hierarchy of
decoherence terms involved in the dynamics. If one neglects
the right hand side of Eq.(113) altogether one obtains the
diffraction pattern in the paraxial approximation,

Q̄para
sg=0dsz;qd = ScS0,0;q,

z

p̄z

qD . s118d

The first term in Eq.(113) describes the effect of decoher-
ence in the paraxial approximation, the second term gives the
corrections to the propagation beyond the paraxial approxi-
mation, and the third term describes the modification of the
decoherence due to those corrections.

B. Decoherence in the paraxial approximation

In the simplest approximation we neglect the corrections
in Eq. (113) due to theD terms. In this case Eq.(113) can be
immediately integrated,

Scsz,z;q,rd = expF−
mp

p̄z
E

0

z

gSz8q

p̄z

− r + zezDdz8G
3Scs0,z;q,rd. s119d

It follows from Eq. (112) that the resulting interference pat-
tern is characterized by

Q̄para
sgÞ0dsz;qd = expF−

mp

p̄z
E

0

z

gS sz8 − zdq
p̄z

Ddz8GQ̄para
sg=0dsz;qd

= expF−E
0

t

gS st8 − tdq
mp

Ddt8GQ̄para
sg=0dsz;qd

s120d

with t : =zmp/ p̄z. Using Eqs.(118) and (99) we obtain the
final pattern corresponding to a solution of the master equa-
tion (93) in paraxial approximation:

Qpara
sgÞ0dsz;r d =E dr 8dp dq

1

s2p"d2expFiSr − r 8 −
z

p̄z

pDq

"
G

3 expF−
mp

p̄z
E

0

z

gSz− z8

p̄z

qDdz8G
3E dpzE

−`

0

dz8WSr 8 +
z8

pz
p + z8ez,p

+ pzez;0D . s121d

With this result it is easy to see that the stationary treatment
of decoherence in Sec. IV is equivalent to the dynamic ap-
proach in the present section. To facilitate the comparison we
treat the present problem with the method of Sec. IV. Take
the beam to be in a nontrivial stationary state atz=0,

Wbeamsr ,p + pzezd = gspzdws0;r ,pd. s122d

In the case of coherent evolution(8) the interference pattern
reads then

Qsz;r d ~E dq eiqr /"E dpz
pz

mp
gspzdw̄sz,pz;qd s123d

with

w̄sz,pz;qd: =
1

s2p"d2 E dp dr expF− iSr +
z

pz
pDq/"G

3ws0;r ,pd. s124d

Using the same procedure as in Sec. IV one finds how deco-
herence events that take place at a constant rateRszd in
sz;z+dzd will modify the pattern(123). The result is given
by the expression in(123) if the w̄sz;qd are replaced by

ŵsz,pz;qd = expH−E
0

z

Rsz8dF1 − hSz8 − z

pz
qDGdz8J

3w̄sz,pz;qd, s125d

whereh is the corresponding decoherence function. Clearly,
Eq. (125) is the analog of Eq.(120) in the case of a station-
ary description. The only difference is the appearance in Eq.
(120) of p̄z instead ofpz, which occurs because the additional
assumption of a strongly peaked longitudinal velocity distri-
bution was necessary in the time-dependent calculation. The
strong similarity between the results(125) and (120) shows
that the treatment of decoherence in Sec. IV is indeed
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equivalent to solving the master equation in paraxial ap-
proximation.

VII. CONCLUSIONS

In this article we presented an analysis of Talbot-Lau mat-
ter wave interference that provides a quantitative prediction
of the effects encountered in the experimental realization. It
was shown that by describing the stationary beam in terms of
the Wigner function both the interaction with the grating
forces and the effects of Markovian decoherence can be in-
corporated analytically. In addition, the formulation allows
one to distinguish unambiguously the quantum phenomena
from the effects of classical mechanics.

Recently, our theory was successfully applied to describe
experiments with large molecules[12–15,55]. Correspond-
ingly, the discussion of decoherence effects in the present
article was confined to those mechanisms most relevant in
the interference of fullerenes and biomolecules. Indeed, the
interaction with gas molecules and the emission of heat ra-
diation are expected to be relevant sources of decoherence
for all large particles. Our formulation applies immediately
to those since the bulk properties of the particles, such as the
polarizability or the absorption cross section, were used to
describe the environmental coupling.

Other decoherence effects might become relevant as the
particles increase further in complexity. In particular, those
couplings that entangle the center-of-mass motion with the
rotation of the particle or with its internal degrees of freedom

become sources of decoherence. In these cases the observed
loss of visibility, which is inevitable if the detection is insen-
sitive to the relative coordinates, can be calculated with the
same approach as discussed above.

The grating interaction will also require a more refined
treatment at some point. The eikonal approximation ceases to
be valid for particles of increasing size, because they interact
stronger and at the same time they will have a longer inter-
action time. A more careful evaluation of the propagation
through the grating will be needed in those cases.

A final remark concerns the ease of incorporating deco-
herence effects in the present formulation of matter wave
interference. It draws heavily on the fact that one is able to
separate the rate of decoherence events from their effect. It
seems that this approach, which avoids the solution of a mas-
ter equation in time, can be a transparent way of treating
Markovian dynamics. It is vindicated by the comparison with
the more conventional solution of a corresponding Markov-
ian master equation that was presented in the last section of
this article.

ACKNOWLEDGMENTS

The authors acknowledge many helpful discussions with
Björn Brezger and Anton Zeilinger. K.H. thanks Bassano
Vacchini for discussions on collisional decoherence. This
work was supported by the Austrian FWF in the programs
START Y177 and SFB 1505 and by the Emmy-Noether pro-
gram of the Deutsche Forschungsgemeinschaft.

[1] Atom Interferometry, edited by P. R. Berman(Academic, New
York, 1997).

[2] H. Rauch and A. Werner,Neutron Interferometry: Lessons in
Experimental Quantum Mechanics(Oxford University Press,
Oxford, 2000).

[3] S. Martellucci, A. N. Chester, and A. Aspect,Bose-Einstein
Condensates and Atom Lasers(Plenum, New York, 2000).

[4] C. Davisson and L. Germer, Nature(London) 119, 558(1927).
[5] H. Halban, Jr. and P. Preiswerk, C. R. Hebd. Seances Acad.

Sci. 203, 73 (1936).
[6] D. Weiss, B. Young, and S. Chu, Phys. Rev. Lett.70, 2706

(1993).
[7] C. Ekstrom, J. Schmiedmayer, M. Chapman, T. Hammond,

and D. Pritchard, Phys. Rev. A51, 3883(1995).
[8] T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Phys. Rev.

Lett. 78, 2046(1997).
[9] A. Peters, Keng-Yeow-Chung, and S. Chu, Nature(London)

400, 849 (1999).
[10] E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O.

Stamatescu, 2nd ed.Decoherence and the Appearance of a
Classical World in Quantum Theory(Springer, Berlin, 2003).

[11] W. H. Zurek, Rev. Mod. Phys.75, 715 (2003).
[12] B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M.

Arndt, and A. Zeilinger, Phys. Rev. Lett.88, 100404(2002).
[13] K. Hornberger, S. Uttenthaler, B. Brezger, L. Hackermüller,

M. Arndt, and A. Zeilinger, Phys. Rev. Lett.90, 160401

(2003).
[14] L. Hackermüller, S. Uttenthaler, K. Hornberger, E. Reiger, B.

Brezger, A. Zeilinger, and M. Arndt, Phys. Rev. Lett.91,
090408(2003).

[15] L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, and
M. Arndt, Nature(London) 427, 711 (2004).

[16] J. F. Clauser and S. Li, Phys. Rev. A49, R2213(1994).
[17] M. S. Chapman, C. R. Ekstrom, T. D. Hammond, J. Schmied-

mayer, B. E. Tannian, S. Wehinger, and D. E. Pritchard, Phys.
Rev. A 51, R14 (1995).

[18] S. Nowak, C. Kurtsiefer, T. Pfau, and C. David, Opt. Lett.22,
1430 (1997).

[19] J. Clauser, inExperimental Metaphysics, edited by R. Cohen,
M. Horne, and J. Stachel(Kluwer, Dordrecht, 1997).

[20] H. F. Talbot, Philos. Mag.9, 401 (1836).
[21] K. Patorski, inProgress in Optics XXVII, edited by E. Wolf

(Elsevier, Amsterdam, 1989), pp. 2–108.
[22] B. Dubetsky and P. R. Berman, inAtom Interferometry, edited

by P. R. Berman(Academic, San Diego, 1997), pp. 407–468.
[23] B. Brezger, M. Arndt, and A. Zeilinger, J. Opt. B: Quantum

Semiclassical Opt.5, S82(2003).
[24] A. Sommerfeld,Optik, Vorlesungen über Theoretische Physik

Vol. IV (Dieterichsche Verlagsbuchhandlung, Wiesbaden,
1950).

[25] K. Hornberger and U. Smilansky, Phys. Rep.367, 249(2002).
[26] E. Wigner, Phys. Rev.40, 749 (1932).

THEORY OF DECOHERENCE IN A MATTER WAVE… PHYSICAL REVIEW A 70, 053608(2004)

053608-17



[27] Atomic and Molecular Beam Methods, Vol. I, edited by G.
Scoles, D. Bassi, U. Buck, and D. Lainé(Oxford University
Press, Oxford, 1988).

[28] R. Rubenstein, A. Dhirani, D. Kokorowski, T. Roberts, E.
Smith, W. W. Smith, H. Bernstein, J. Lehner, S. Gupta, and D.
Pritchard, Phys. Rev. Lett.82, 2018(1999).

[29] B. Englert, C. Miniatura, and J. Baudon, J. Phys. II4, 2043
(1994).

[30] M. Born and E. Wolf,Principles of Optics(Pergamon, Oxford,
1980).

[31] R. Brühl, P. Fouquet, R. E. Grisenti, J. P. Toennies, G. C.
Hegerfeldt, T. Köhler, M. Stoll, and C. Walter, Europhys. Lett.
59, 357 (2002).

[32] M. Stoll, Ph.D. thesis, University of Göttingen, Germany,
2003.

[33] R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt,
and T. Köhler, Phys. Rev. Lett.83, 1755(1999).

[34] R. Brühl, P. Fouquet, R. E. Grisenti, J. P. Toennies, G. C.
Hegerfeldt, T. Köhler, M. Stoll, and C. Walter, Europhys. Lett.
59, 357 (2002).

[35] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv.
Phys. 10, 165 (1961).

[36] G. Vidali, G. Ihm, H. Y. Kim, and M. W. Cole, Surf. Sci. Rep.
12, 133 (1991).

[37] A. D. McLachlan, Mol. Phys.7, 381 (1964).
[38] E. Zaremba and W. Kohn, Phys. Rev. B13, 2270(1976).
[39] H. B. G. Casimir and D. Polder, Phys. Rev.73, 360 (1948).
[40] J. M. Wylie and J. E. Sipe, J. Phys. A30, 1185(1984).
[41] J. M. Wylie and J. E. Sipe, Phys. Rev. A32, 2030(1985).
[42] P. L. Kapitza and P. A. M. Dirac, Proc. Cambridge Philos. Soc.

29, 297 (1933).
[43] O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, Phys. Rev.

Lett. 87, 160401(2001).
[44] R. Bonifacio and S. Olivares, J. Opt. B: Quantum Semiclassi-

cal Opt. 4, 253 (2002).
[45] P. Facchi, A. Mariano, and S. Pascazio, Recent Res. Dev. Opt.

3, 1 (2002).

[46] A. Viale, M. Vicari, and N. Zanghi, Phys. Rev. A68, 063610
(2003).

[47] E. Joos and H. D. Zeh, Z. Phys. B: Condens. Matter59, 223
(1985).

[48] M. Tegmark, Found. Phys. Lett.6, 571 (1993).
[49] R. Alicki, Phys. Rev. A65, 034104(2002).
[50] M. R. Gallis and G. N. Fleming, Phys. Rev. A42, 38 (1990).
[51] K. Hornberger and J. E. Sipe, Phys. Rev. A68, 012105(2003).
[52] G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham,

Intermolecular Forces—Their Origin and Determination
(Clarenden, Oxford, 1981).

[53] B. Vacchini, J. Mod. Opt.51, 1025(2004).
[54] E. A. Mason and L. Monchick, inIntermolecular Forces, ed-

ited by J. O. Hirschfelder(John Wiley, New York, 1967).
[55] L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, and

M. Arndt, Appl. Phys. B: Lasers Opt.77, 781 (2003).
[56] P. Dodd and J. Halliwell, Phys. Rev. D67, 105018(2003).
[57] L. Diósi, Europhys. Lett.30, 63 (1995).
[58] B. Vacchini, Phys. Rev. E63, 066115(2001).
[59] B. Vacchini, J. Math. Phys.42, 4291(2001).
[60] H. Friedrich, Theoretical Atomic Physics(Springer, Berlin,

1998).
[61] K. Hansen and E. E. B. Campbell, Phys. Rev. E58, 5477

(1998).
[62] M. R. Hoare, J. Chem. Phys.52, 113 (1970).
[63] S. Frauendorf, Z. Phys. D: At., Mol. Clusters35, 191 (1995).
[64] T. Pfau, S. Spälter, C. Kurtsiefer, C. Ekstrom, and J. Mlynek,

Phys. Rev. Lett.73, 1223(1994).
[65] M. S. Chapman, T. D. Hammond, A. Lenef, J. Schmiedmayer,

R. A. Rubenstein, E. Smith, and D. E. Pritchard, Phys. Rev.
Lett. 75, 3783(1995).

[66] D. A. Kokorowski, A. D. Cronin, T. D. Roberts, and D. E.
Pritchard, Phys. Rev. Lett.86, 2191(2001).

[67] M. Mei and M. Weitz, Phys. Rev. Lett.86, 559 (2001).
[68] J. F. Clauser and S. Li, Phys. Rev. A50, 2430(1994).
[69] A. Bassi and G. Ghirardi, Phys. Rep.379, 257 (2003).

HORNBERGER, SIPE, AND ARNDT PHYSICAL REVIEW A70, 053608(2004)

053608-18


