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Rotranslational cavity cooling of dielectric rods and disks

Benjamin A. Stickler,1 Stefan Nimmrichter,1,2 Lukas Martinetz,1 Stefan Kuhn,3 Markus Arndt,3 and Klaus Hornberger1

1Faculty of Physics, University of Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany
2Centre for Quantum Technologies, National University of Singapore, Singapore

3Faculty of Physics, University of Vienna, VCQ, Boltzmanngasse 5, 1090 Vienna, Austria
(Received 18 May 2016; published 12 September 2016)

We study the interaction of dielectric rods and disks with the laser field of a high-finesse cavity. The quantum
master equation for the coupled particle-cavity dynamics, including Rayleigh scattering, is derived for particle
sizes comparable to the laser wavelength. We demonstrate that such anisotropic nanoparticles can be captured
from free flight at velocities higher than those required to capture dielectric spheres of the same volume and that
efficient rotranslational cavity cooling into the deep quantum regime is achievable.
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I. INTRODUCTION

Laser cooling and controlling the rotranslational degrees
of freedom of a nanoparticle in vacuum is a challenging
task [1] with far-reaching implications: Levitated dielectrics in
a high-finesse cavity can be used as ultrasensitive force sensors
with atto- or even zeptonewton sensitivity [2–5]. In addition,
preparing nanoscale dielectrics in the deep quantum regime
may allow one to address fundamental questions, such as the
thermalization of a single particle [6–9] or the validity of the
quantum superposition principle at high mass scales [10,11].

In the case of small molecules with a sharp internal
transition, the rotranslational motion can be laser cooled
by exploiting the methods developed for atoms [12–14].
Micron-sized particles in solution and low vacuum can be
trapped and manipulated rotationally with optical tweezers
and vortex beams [15–23]. A first step towards controlling the
rotranslational state of a nanometer-sized rod in high vacuum
was demonstrated recently [24].

Here, we show that nanoscale rods and disks are excellent
candidates for cavity cooling [25–27], possibly even into
their rotranslational ground state. This is due to a number of
fortuitous properties: (i) The anisotropic shape of a dielectric
appreciably enhances the effective interaction with the cavity
as compared to a sphere of the same volume, and (ii) for
sufficiently red-detuned cavities, efficient cooling takes place
for all orientations and positions of the particle. In addition,
(iii) their rotranslational motion can be tracked from the
scattered light, since the particle’s position and orientation
are encoded in the polarization and intensity, and (iv) the final
temperature is well below the rotranslational level spacing in
the trap potential.

The finite extension of the dielectric must be taken into
account when describing the interaction between a nanopar-
ticle and the field of a high-finesse cavity since the laser
intensity varies on the length scale of the particles [24,28–30].
Rather than using numerical techniques [31,32] or iterative
methods [33], we exploit the fact that the considered particles
are thin, allowing us to analytically derive the internal
polarization field [34] and thus the optical potential. Here,
it is crucial that we adopt the direction of the internal
polarization field from the exact electrostatic solution [35] and
therefore correctly account for the anisotropic susceptibility
of the particle. Our resulting analytic expressions for the

Markovian particle-cavity dynamics and the scattered light
intensity provide the theoretical toolbox required to carry out
cavity experiments with dielectric nanorods and nanodisks in
high vacuum.

We start by deriving the optical potential of a dielectric
rod or disk in a standing-wave cavity mode, which enters the
Markovian master equation for the combined state of particle
and field mode. The cooling rate due to the retarded back action
of the light field is then extracted from this equation. It also
determines the threshold velocity for capturing a particle in
free flight. We account for recoil heating of the particle by light
scattering into the vacuum modes by deriving the orientation-
dependent Rayleigh scattering operators and determine the
final temperature of a deeply trapped particle.

II. CAVITY INDUCED POTENTIAL

We consider a thin dielectric rod or disk, modeled as a
cylinder of length �, radius a, and mass M with moment
of inertia perpendicular to the symmetry axis, Ir = M�2/12
or Id = Ma2/4, respectively. The particle propagates through
the field of a standing-wave Gaussian cavity mode of waist
w0 and wavelength 2π/k; see Fig. 1. The cavity mode is
driven by a pump laser of angular frequency ωp and power
Pp = �ωpη

2/2κ , where η is the pump rate [36]. When the z

axis is along the cavity axis and the x axis is in the direction
of the cavity mode polarization, the local cavity field at posi-
tion r′ = (x ′,y ′,z′) reads Ein = √

2�ωp/ε0Vcbf (r′) cos(kz′)ex ,
where f (r′) is the Gaussian envelope with waist w0 and Vc

and b denote the mode volume and the dimensionless field
amplitude, respectively.

Evaluating the optical force and torque exerted by the laser
field on the dielectric requires knowledge of the macroscopic
polarization field P inside the particle [37,38]. In general, the
internal field must be determined numerically if the particle’s
extension is comparable to the laser wavelength [32]. However,
in the present case one can exploit the fact that the particle
is very thin in at least one direction in order to derive an
approximate analytic expression for the polarization field (gen-
eralized Rayleigh-Gans approximation) [34]. Specifically, this
is possible for rods and disks of (real) dielectric permittivity
εr since k2a2(εr − 1) � 1 or k�(εr − 1) � 1, respectively.

The resulting internal polarization field acquires the po-
sition dependence of the external field but it is rotated
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FIG. 1. A thin dielectric rod or disk traverses the laser field of a
high-finesse cavity with resonance frequency ωc, driven with pump
rate η and pump frequency ωp. The cavity detuning is � = ωp − ωc

and κ and γ0 are the cavity linewidth and the Rayleigh scattering rate,
respectively. The orientation vector of the dielectric’s symmetry axis
is denoted by m(
).

according to the dielectric’s susceptibility tensor. The internal
field is the exact solution to Maxwell’s equations in the
limit of infinitesimally thin particles and it provides a good
approximation for the present scenario [24]. In particular,
the field accounts correctly for the anisotropic susceptibility
of the nanoparticles because its polarization is obtained by
solving the corresponding electrostatic problem [34]. In the
case of rods, the components of the susceptibility tensor
perpendicular and orthogonal to the symmetry axis are χ r

‖ =
εr − 1 and χ r

⊥ = 2(εr − 1)/(εr + 1) while χd
‖ = (εr − 1)/εr

and χd
⊥ = εr − 1 for disks [35]. We denote the anisotropy

by �χ = χ‖ − χ⊥ and the maximal value by χm = εr − 1.
Note that the orientationally averaged susceptibility of a
dielectric rod or disk thus exceeds the susceptibility of a
dielectric sphere. With the above notation, the polarization
field is proportional to χ⊥ex + �χ (ex · m)m where m is the
direction of the dielectric’s symmetry axis. This dependence
on the dielectric’s orientation is familiar from anisotropically
polarizable pointlike particles [39].

The particle-cavity interaction potential can now be cal-
culated by integrating the potential energy density derived
from cavity perturbation theory [30,40,41] averaged over one
optical cycle, −P · E∗

in/4, or, equivalently, from the averaged
force and torque densities [38]. Denoting the center-of-mass
position of the dielectric by r and its orientation by m(
), with

 = (α,β,γ ) being the Euler angles in the z-y ′-z′′ convention,
we find the optical potential as

V (r,
) = �U0|b|2f 2(r)

{
χ⊥
χm

+ �χ

χm
[m(
) · ex]2

}

×
{

1

2
+ 1

2
cos(2kz)S[m(
),ez]

}
. (1)

Here, U0 = −ωpχmV0/2Vc denotes the coupling frequency
with V0 the dielectric’s volume. The orientation-dependent
shape function S(m,n) accounts for the particle’s finite
extension and reads for rods and disks, respectively, as

Sr(m,n) = sin(k�m · n)

k�m · n
,

(2)

Sd(m,n) = J1(2ka|m × n|)
ka|m × n| ,

where J1(·) denotes a Bessel function of the first kind. Both
functions (2) take on their maximum value if their arguments
vanish and, thus, it can be seen from (1) that rods tend to align
with the field polarization, m = ex , while disks align with the
cavity axis, m = ez. In the limit of small dielectrics, k� � 1 or
ka � 1, the potential of an anisotropic pointlike particle in a
standing wave laser field [39] is recovered and the potential (1)
becomes proportional to the local laser intensity.

III. MASTER EQUATION FOR DIELECTRIC AND CAVITY

A dielectric particle moving through the cavity modifies
the laser intensity by effectively shifting the cavity resonance
frequency ωc as well as enhancing the cavity loss rate. While
this retarded reaction of the cavity on the dielectric’s motion
can cool the particle’s motional state, Rayleigh scattering
of cavity photons off the dielectric leads to recoil heating.
Compared to other decoherence mechanisms [41], recoil
heating dominates for deeply trapped particles and thus
determines the steady-state temperature. The coupled particle-
cavity dynamics can be described with the help of a Markovian
quantum master equation for the total state operator ρ. This
equation can be derived by coupling the particle-cavity system
to the infinite bath of empty vacuum modes, which are then
traced out in the Born-Markov approximation [42]. Here,
scattering enhanced coupling between vacuum modes [30]
can be safely neglected since we consider very thin particles,
for which the scattering rate is sufficiently low. Denoting by
r̂ and 
̂ the rotranslational coordinate operators and by b the
cavity field operator, one obtains

∂tρ = − i

�
[Hp,ρ] − iU0[v(r̂,
̂)b†b,ρ] + Lcρ

+ γ0

∑
s=1,2

∫
S2

d2n
4π

[
LnsρL†

ns − 1

2
{L†

nsLns ,ρ}
]
, (3)

where Hp is the free particle Hamiltonian and Lcρ describes
the unperturbed cavity dynamics,

Lcρ = i[�b†b + iη(b − b†),ρ] + κ(2bρb† − {b†b,ρ}),
(4)

with v(r,
) = V (r,
)/�U0|b|2 being the field-independent
part of the interaction potential (1). The position- and
orientation-dependent Lindblad operators of Rayleigh scat-
tering into polarization direction εns with scattering rate
γ0 = cχ2

mV 2
0 k4/6πVc, are Lns = bAns[r̂,m(
̂)] with

Ans(r,m) =
√

3

8
f (r)εns ·

[
χ⊥
χm

ex + �χ

χm
(m · ex)m

]
e−ikn·r

×{eikzS[m,(ez − n)/2]+e−ikzS[m,(ez+n)/2]}.
(5)

They are diagonal in the rotranslational degrees of freedom and
thus tend to localize the state in position and orientation. While
the operator (5) transfers a superposition of the momentum
kicks �k(n ± ez) on the dielectric’s center of mass, its action
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on the orientational degrees of freedom is more intricate
because the angle operators 
̂ are not the generators of angular
momentum kicks but of the canonically conjugate momentum
translations [43,44]. Thus, an eigenstate |mα,mβ,mγ 〉 of the
canonical momentum operator p̂
 conjugate to the Euler
angles 
 transforms under the action of (5) into a superposition
of shifted eigenstates, each weighted with the corresponding
Fourier coefficient of the Lindblad operator. Nevertheless, it
will turn out that the Rayleigh scattering dissipator describes
diffusive rotranslational motion for deeply trapped nanoparti-
cles. In addition, in the limit of small, isotropically polarizable
point particles [28,41] the operators (5) turn proportional to
the local standing wave profile.

IV. SCATTERED LIGHT INTENSITY

The light scattered by the dielectric can be utilized to
track its rotranslational motion [24]. Specifically, a detector
at position Rn measures the intensity

In(r,
) = �ωpγ0|b|2
4πR2

∑
s=1,2

|Ans[r,m(
)]|2 (6)

as derived from the electric field integral equation [34] in the
far-field limit. The polarization of the scattered field depends
only on the dielectric orientation since it is orthogonal to the
direction of its internal polarization field.

V. EQUATIONS OF MOTION

In order to assess under which conditions cavity cooling and
trapping of the dielectric are possible, we determine the local
cooling rate from the classical equations of motion. Denoting
by (p,p
) the canonically conjugate momentum coordinates,
the classical equations of motion are obtained from the master
equation (3) by replacing all operators with their expectation
values,

ḃ = i(� − U0v)b −
(

κ + γsc

2

)
b + η, (7a)


̇ = ∂p

Hp, and ṙ = ∂pHp, (7b)

ṗ
 = −∂
V + �γ0|b|2
∑
s=1,2

∫
S2

d2n
4π

Im(A∗
ns∂
Ans),

and

ṗ = −∂rV + �γ0|b|2
∑
s=1,2

∫
S2

d2n
4π

Im(A∗
ns∂rAns), (7c)

where we introduced the total scattering rate as a function of
position and orientation,

γsc(r,
) = γ0

∑
s=1,2

∫
S2

d2n
4π

|Ans[r,m(
)]|2. (8)

Equation (7a) describes the retarded reaction of the light
field on the particle dynamics. The equations of motion of
the particle (7b) and (7c) contain the conservative optical
potential (1) as well as the nonconservative radiation pressure
due to Rayleigh scattering (5). This contribution vanishes close
to the minimum of the potential (1); it vanishes everywhere
for isotropic point particles.

The particle-cavity equations (7) must be solved numer-
ically in general. However, if the particle is not yet deeply
trapped, we can neglect Rayleigh scattering. Assuming further
that the particle moves sufficiently slowly, such that the cavity
reacts nearly instantaneously, we expand the cavity amplitude
to first order in all velocities and angular momenta. Thus, we
obtain nonconservative equations describing the dissipative
dynamics of the nanoparticle. In general, the different degrees
of freedom are strongly coupled and exchange energy, such
that it is not useful to define a friction rate for the individual
coordinates. Nevertheless, by adapting Liouville’s theorem
one can calculate the rate at which an infinitesimal phase space
volume centered at (r,
) expands or contracts [45],

�(r,
) = 4�κη2U 2
0 [� − U0v(r,
)]

{κ2 + [� − U0v(r,
)]2}3

{
[∂rv(r,
)]2

M

+ [∂αv(r,
)]2

I sin2 β
+ [∂βv(r,
)]2

I

}
. (9)

Notably, this rate is everywhere negative if the laser is
sufficiently far red-detuned, i.e., for � < U0, and thus cooling
occurs irrespective of the particle’s position and orientation.

FIG. 2. (a) Trapping probability as function of the forward
velocity for a silicon rod (blue; � = 800 nm, a = 25 nm) and a
sphere (red; R � 72 nm) of the same volume. The nanoparticle
is launched towards the cavity with forward velocity vx . In order
to obtain the trapping probability we solve the classical equations
of motion (7) for several thousand initial conditions for each vx .
The transverse velocity vz is uniformly distributed within 5% of
the forward velocity vx , assuming a collimated beam. We neglect
the weak y dependence, setting vy = 0 and y = 0, and assume the
orientational degrees of freedom to be microcanonically distributed
with a total rotation frequency of 1 MHz. For the cavity, we chose
the following realizable parameters: λ = 1.56 μm, κ = 0.78 MHz,
Pin = 10 mW, � = −1.2κ , F = 330 000. In panel (b) we show
the total energy for a sample trajectory with vx = 0.5 m/s and
vz = −0.3 m/s. The dielectric rod (blue) is captured and cooled while
a sphere (red dashed) of the same volume traverses the cavity almost
unaffected. Negative energies indicate that the particle is captured.
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This generalizes the results obtained for cavity cooling of
point particles [46,47]. The cooling rate (9) vanishes if the
particle reaches the mechanical equilibrium, where the partial
derivatives of v(r,
) are zero. This could be circumvented
by resorting to well-established techniques such as two-
mode [41,48] or feedback cooling [49–52].

The facts that cooling occurs almost everywhere for � <

U0 and that the effective interaction strength is enhanced due to
the anisotropy have a remarkable consequence: They facilitate
trapping of rods and disks at velocities at which corresponding
spheres would traverse the cavity almost unaffected. This is
demonstrated in Fig. 2, which shows the trapping probability
as a function of the forward velocity for dielectric rods and
spheres of the same volume together with the total energy
along one sample trajectory.

VI. COOLING LIMIT

Recoil heating due to Rayleigh scattering prevents the
dielectric from being cooled to its absolute ground state. To
determine the steady-state temperature, we study the quantum
master equation (3) in the case that the particle is already
deeply trapped. For simplicity, we consider a moderately
sized particle, k� � 1 or ka � 1, for which the interaction
potential (1) can be approximated harmonically around its
single minimum, implying that the rotranslational degrees of
freedom are only coupled via the cavity field. (If a linear
coupling between the different degrees of freedom is required
by a specific protocol, this can be achieved by illumination
with a second laser.)

For a dielectric rod aligned with the field polarization axis,
m(
0) = ex , at a position of maximum laser intensity, r0 = 0,
the harmonic frequencies are

ωr
z =

√
2�|U0||b0|2k2

M
, ωr

α =
√

2�|U0||b0|2�χ

Iχ‖
,

ωr
β =

√
2�|U0||b0|2

I

[
�χ

χ‖
+ (k�)2

12

]
. (10)

In a similar fashion, a deeply trapped disk has its surface
aligned with the cavity axis, m(
0) = ez, at a position of max-
imum laser intensity and the frequencies are ωd

z = ωd
β = ωr

z

together with ωd
α = 0. Here b0 = η/(κ + γ 0

sc/2 + i[� − U0])
denotes the steady-state cavity amplitude in the potential
minimum with γ 0

sc = γsc(r0,
0) being the corresponding
Rayleigh scattering rate. The frequencies in the transversal
direction (x,y) can be safely neglected because the laser
waist w0 is typically much larger than the wavelength. The
frequencies (10) are of the same order of magnitude exceeding
the cavity linewidth κ . Note that the trapping frequency ωz is
determined by the maximum susceptibility χm = εr − 1 rather
than by the average value.

Similarly, we expand the Lindblad operators harmonically
around the potential minimum. A straightforward calculation
demonstrates that the remaining Lindblad operators are linear
in the field operator b as well as in the position operators
ẑ and 
̂ and thus they describe diffusive motion. One can
determine an approximate expression for the steady-state
temperature from the resulting relations between steady-state

operator expectation values. Defining temperature as the
energy difference between the steady-state energy expectation
value and the energy minimum divided by Boltzmann’s
constant, its steady-state value is given by the recoil limit

Tν = γ0�
2|b0|2

2Mν

(
κ + γ 0

sc/2
)
kB

∑
s=1,2

∫
S2

d2n
4π

∣∣∂νA
0
ns

∣∣2
, (11)

for ν = z,α,β with Mz = M , Mα,β = I , and ∂νA
0
n the deriva-

tive in direction ν of An evaluated at the potential minimum.
In particular, for small particles, k� � 1, one has Tz �
γ0�

2k2|b0|2/5MκeffkB and Tα,β � γ0�
2�χ2|b0|2/2Iχ2

mκeffkB

where κeff = κ + γ0/2.
As an example, we consider the silicon rods from Fig. 2.

They are strongly coupled to the cavity, |U0|/κ � 1.1, yielding
the final temperature Tz � 14 μK, which corresponds to a
mean occupation number in the harmonic potential of nz �
0.16. In a similar fashion, we obtain for the rotational degrees
of freedom Tα � 31 μK (nα � 0.34) and Tβ � 29 μK (nβ �
0.23). This demonstrates that reaching the rotranslational
ground state should indeed be possible.

VII. CONCLUSIONS

Our findings open the door for numerous experiments and
applications: The control gained over center of mass and
the orientational degrees of freedom can be used for inertial
sensing [2]. By monitoring the scattered light intensity one
can track the dynamical impact induced by a background gas,
allowing the direct observation of the thermalization of isolated
orientational degrees of freedom [9] or, by using a directed
beam of ultracold atoms, one can measure the scattering cross
section, thus probing the dispersion interaction of nanoscale
dielectrics [53].

Ground-state cooling of the nanoparticle would comprise
a first step towards optomechanical experiments involving
both the center-of-mass and the orientational degrees of
freedom [54,55]. Such deeply trapped particles can be used
as point sources for orientation-dependent interference exper-
iments [56,57] by rapidly switching off the cavity [58,59].
If the laser intensity is reduced adiabatically [60], on the
other hand, a free quantum state of low kinetic and rotational
energy can be generated. Finally, aligning many anisotropic
particles in a single-cavity mode might give rise to novel
phenomena, such as a nonpolar version of a gas of interacting
dipoles [61], where synchronization of the dielectric’s motion
may be observable [22].
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