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Multiphoton absorption in optical gratings for matter waves
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We present a theory for the diffraction of large molecules or nanoparticles at a standing light wave. Such
particles can act as a genuine photon absorbers due to their numerous internal degrees of freedom effecting fast
internal energy conversion. Our theory incorporates the interplay of three light-induced properties: the coherent
phase modulation due to the dipole interaction, a nonunitary absorption-induced amplitude modulation described
as a generalized measurement, and a coherent recoil splitting that resembles a quantum random walk in steps of
the photon momentum. We discuss how these effects show up in near-field and far-field interference schemes,
and we confirm our effective description by a dynamic evaluation of the grating interaction, which accounts for
the internal states.
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I. INTRODUCTION

Exploring matter-wave interference with heavy molecules
and nanoparticles is of fundamental interest, as it allows
exploring the possible limits of quantum mechanics at macro-
scopic scales [1,2], and developing new tools to measure
accurately internal molecular properties [3].

Motivated by experiments [3–11] that use a standing light
field as diffraction element, we focus on the interaction
between a standing-wave laser grating and a delocalized and
internally complex molecule. It has been seen earlier that
spontaneous emission, light scattering, or thermal radiation
induced by an optical grating can lead to decoherence [12–14].
However, complex molecules tend to absorb the light from the
laser grating predominantly without subsequent reemission be-
cause they can rapidly redistribute the photon energy to many
internal states, acting effectively as an energy sink. This applies
all the more so to large, optically levitated nanoparticles, e.g.,
silica spheres, which are candidates for novel optomechanics
and matter-wave interference schemes [15–18]. It is intriguing
to ask whether such molecules are capable to interfere after the
absorption given that it might reveal which-way information
and the position of the molecular center of mass. In the
following we discuss how the molecules are still able to
interfere even after absorption of many laser photons.

Specifically, the theory developed below is required
to quantitatively describe a recent experiment with C70

fullerenes, which featured a high laser power and unprece-
dented velocity resolution [11]. It provides evidence that the
momentum recoil upon photon absorption from a standing
light field is coherent in the sense that it leads to a superposition
of the momentum kicks associated with the two possible
photon directions, rather than to a mixture. Despite the
state-insensitive detection and hence the lack of coherence in
the number of absorptions, the experiment rules out a classical
random-walk description for the absorption process.

The structure of this article is as follows. In Sec. II we make
use of the formalism of generalized measurements [19–23] to
describe all relevant aspects of the light-particle interaction:
the influence of the dipole force, the stochastic impact of
photon absorptions, and the matter-wave amplitude modula-
tion associated with the absorption-induced postselection. The

influence of these effects on matter-wave interferometry is then
discussed in Sec. III by considering near-field and far-field
schemes. In the near-field case, photon absorption modulates
the periodic fringe pattern and lowers the interference visibility
on average, while in the far-field case, photon absorption
leads to new features in the observed interferogram. The
nonclassical nature of the absorption recoil is only visible
in the near field. In Sec. IV we develop dynamic models of the
laser-grating interaction in order to corroborate and generalize
the measurement-based description of Sec. II. A ladder model
for the internal state allows evaluating the center-of-mass
quantum dynamics in presence of absorption, accounting
for possible photoinduced changes of the optical molecular
properties. Moreover, we consider a three-level model with
a dark state in order to incorporate partially coherent Rabi
oscillations expected for resonant transitions. We present our
conclusions in Sec. V.

II. OPTICAL GRATING TRANSFORMATION AS A
GENERALIZED MEASUREMENT

We start by developing an effective measurement-based
description of the interaction between a standing-wave laser
grating and an absorbing molecule in terms of a generalized
measurement transformation. It serves to incorporate the
essential effect of photon absorption on the center-of-mass
motion of complex molecules in the absence of detailed
knowledge about the molecule’s level structure and transition
dipole moments. Hence we avoid such a microscopic treatment
and model the interaction effectively by means of the particle’s
complex susceptibility including the dipole polarizability and
the absorption cross section at a given laser wavelength. Our
approximate model would fail if the lifetimes of the electrically
excited states were long compared with the interaction time,
see Sec. IV C. For large molecules the relaxation time is
typically on the order of picoseconds so that our effective
description should be valid. For even larger nanoparticles,
the optical response is often entirely characterized by a
phenomenological dielectric function, which may exhibit
broad internal (plasmonic) resonances at optical-to-UV wave-
lengths [24].

2469-9926/2016/94(4)/043637(12) 043637-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.043637


KAI WALTER, STEFAN NIMMRICHTER, AND KLAUS HORNBERGER PHYSICAL REVIEW A 94, 043637 (2016)

The model for the scattering of the molecular center-of-
mass motion off the standing light field comprises two inde-
pendent steps: On the one hand, a unitary state transformation
describes the coherent matter-wave phase modulation due to
the dipole interaction, see Sec. II A. On the other hand, the
nonunitary transformation developed in Sec. II B accounts for
the change of state due to photon absorption. In the context
of interferometry, it is convenient to represent the motional
quantum state of the molecular center of mass in phase space.
We therefore formulate the grating transformation in terms of
the Wigner function [25] in Sec. II C. The present formalism
applies to all experimental scenarios where nanoparticles
interact with optical standing waves in the Raman-Nath, or
short-time, regime.

A. Phase modulation

A subwavelength molecule or nanoparticle interacts with
off-resonant light fields mainly through its frequency-
dependent dipole polarizability αSI. The particle is then subject
to the dipole force proportional to the gradient of the local
time-averaged standing-wave light intensity,

I (x,y,z) = 8P

πwywz

exp

(
−2y2

w2
y

− 2z2

w2
z

)
cos2 (kLx). (1)

Here, x denotes the standing-wave axis, while kL, wy , wz,
and P are the wave number, the waists, and the running-wave
power of a retroreflected Gaussian laser beam forming the
standing wave. In the Raman-Nath regime [26] of a short inter-
action time and high kinetic energy, when the molecule rapidly
crosses the laser beam at an approximately constant velocity vz

in the xz plane, the dipole interaction is captured by the time-
dependent potential V (x,t) = −(2παSI/4πε0c)I (x,0,vzt). If
the transverse motion along x and y can also be ne-
glected during the passage, the scattering problem effectively
reduces to one dimension. The molecule acquires an x-
dependent phase [27,28] that results in a unitary scattering
transformation,

U = exp [iφ(x)] =
∫

dx exp [iφ(x)]|x〉〈x|, (2)

with x the one-dimensional position operator in the standing-
wave direction. This position-dependent phase shift φ(x) is
given by the eikonal action accumulated during passage, i.e.,
by the time integral of the interaction potential,

φ(x) = −1

�

∫ ∞

−∞
dt V (x,t) = φ0 cos2 (kLx), (3)

φ0 = 2
√

2√
πε0

αSI

�c

P

wyvz

. (4)

For realistic subwavelength molecules or nanoparticles, cor-
rections to this simple scattering model can be attributed to
their anisotropy and to photon absorption. We focus on the
latter effect in the following. For highly anisotropic molecules,
described in terms of a polarizability tensor, the fast molecular
rotations will lead to phase averaging and thus to degraded
interference [29].

B. Photon absorption

Standing light waves have often been employed as pure
phase gratings [6,30–36]. In the case of atoms and small
molecules, the absorptionless phase-grating regime is achieved
by detuning the laser wavelength sufficiently from internal
resonances. The treatment of large molecules and nanopar-
ticles requires a different approach since the numerous
rovibrational degrees of freedom give rise to a landscape
of broad (collective) resonances in the absorption spectrum
σabs(ω). The linear response of the molecule to the field
is described by a complex susceptibility that accounts for
both the dipole interaction and the absorption, χ = αSI +
icε0σabs/ωL [37]. Photon absorption is negligible as long as
β = Im(χ )/Re(χ ) � 1.

For lack of a microscopic description, we base our absorp-
tion model solely on the knowledge of collective properties
that can be measured independently, such as the absorption
cross section σabs and the heat capacity C, as well as on the
assumption of an internal heat sink: The excess energy �ωL of
an absorbed photon is assumed to be dissipated immediately,
i.e., redistributed among the many internal degrees of freedom.
This results in a mean increase of the internal microcanonical
temperature by 
T = �ωL/C. In practice, this turns out to be
an excellent approximation for many complex molecules and
nanoparticles with C/kB � 1, as long as only few photons are
absorbed and the particle does not heat up too much. In specific
cases, it might be necessary to take a radiative reemission of
internal excess energy into account, either by fluorescence
or by thermal black-body radiation at high temperatures.
This would result in additional decoherence, the theoretical
description of which can be found elsewhere [14,38].

From the point of view of operational quantum mechan-
ics [39], photon absorption can be described as a generalized
measurement transformation [19–23], as specified by a set of
measurement operators {M�} with

∑∞
�=0 M†

�M� = 1. In this
framework, the number � = 0,1,2, . . . of absorbed photons,
as recorded by the excess energy of the internal degrees of
freedom corresponds to the measurement result. In principle,
this thermal encoding can be revealed by a calorimetric
absorption detection scheme, which yields the number � of
absorbed photons by measuring their internal energy. When
the measurement indicates the absorption of � photons the
conditional transformation of the reduced center-of-mass state
ρ reads

ρ → ρ� := M�ρM†
�

P�(ρ)
, P�(ρ) = tr[M†

�M�ρ]. (5)

Considering the particle-laser interaction in the Raman-Nath
regime, i.e., in the limit of the short interaction time, the
transverse motion between two subsequent absorption events
can be neglected. This implies that the measurement operators
M� are diagonal in position, which ensures that the absorption
probability depends only on the spatial probability distri-
bution, P�(ρ) = ∫

dx p�(x)〈x|ρ|x〉. Here, p�(x) = |M�(x)|2
represents the position-dependent absorption probability. The
measurement operator is therefore of the form

M� =
∫

dx M�(x)|x〉〈x| = U�|M�(x)| (6)
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with a unitary, position-dependent phase U� = exp [iφ�(x)],
which does not change the absorption probability p�(x). The
choice of the unitary operator is not arbitrary; it must be
consistent with the coherent phase modulation mediated by
the molecular polarizability, as discussed in the previous
section. Moreover, since the standing-wave field can be seen
as a superposition of two counterpropagating plane wave
modes with wave vectors kLex and −kLex , we expect that
a superposition of recoils with momenta �kL and −�kL is
coherently transferred to the particle upon absorption of a
standing-wave photon. In particular, a relative phase appears
between positions of a half-wavelength distance. If one photon
is absorbed the diagonal elements must be proportional to
M1(x) ∝ cos(kLx) because the momentum transfer of ±�kL is
described by the operator exp(±ikLx). Thus for � subsequent
photon absorptions the diagonal elements of the measurement
operator are M�(x) ∝ cos�(kLx), the zeros taking account for
the fact that absorption does not take place at the nodes of the
standing wave.

As a second step, we assume that the absorption cross
section and the polarizability do not change appreciably upon
absorption, i.e., that the grating interaction does not depend on
the internal state of the molecule or nanoparticle. As discussed
in Sec. IV this is a reasonable approximation for low laser
powers; a generalization to the case of state-dependent internal
properties is also presented in Sec. IV. The assumption of state
independence implies that the number � of absorbed photons
follows a Poisson distribution, p�(x) = e−n(x)n�(x)/�!, with a
mean value of

n(x) =
∫ ∞

−∞
dt

σabs

�ωL
I (x,0,vzt) = n0 cos2(kLx), (7)

n0 = 8√
2π

σabs

�ωL

P

wyvz

. (8)

For the measurement operators (6) this means that the unitary
part is independent of �, φ�(x) = φ(x), as given by the dipole
interaction term (4), and

M�(x) =
√

n�
0

�!
cos� (kLx) exp

(
iφ(x) − n(x)

2

)
. (9)

The conditional state transformation (5) then describes the
diffraction of particles after the absorption of � photons in
the standing-wave grating. In principle, these particles could
be postselected in a detector sensitive to the internal energy.
When the detector is insensitive to the internal state, one must
average over all possible absorption numbers and apply the
unconditional Kraus map [23]

ρ → ρ ′ =
∞∑

�=0

P�(ρ)ρ� =
∞∑

�=0

M�ρM†
�. (10)

As we will see in Sec. IV, this transformation is consistent
with the solution of a dynamical model for photon absorption.

In practice, the Poisson absorption model yields instructive,
mostly analytic results for the relevant states of the incident
particles, as well as for the final interferograms in both the
near field and the far field. Yet, it is known from molecular
spectroscopy that the absorption cross section can grow after
photon absorption and intersystem crossing [40,41]. The

excited-state polarizability might differ as well, and we will
incorporate these effects in Sec. IV B. It turns out that such
complications play only a minor quantitative role in the regime
of low average absorption, n0 � 2.

In order to illustrate the influence of absorption on
matter-wave diffraction, let us examine how the measurement
operators act on a momentum eigenstate |p〉 of the molecule,
i.e., when a coherent plane matter wave hits the grating. The
phase modulation (2)–(4) leads to diffraction peaks separated
by the grating momentum 2�kL [11],

U|p〉 = eiφ0/2
∞∑

ν=−∞
Iν

(
i
φ0

2

)
|p + 2ν�kL〉 , (11)

which follows from a Fourier decomposition of (2). The
Fourier components are the modified Bessel functions Iν(x) =
i−νJν(ix). This constitutes the ideal phase-grating effect for
transparent particles with σabs = 0. If however, σabs > 0, but no
photon is absorbed, we must apply the measurement operator

M0(x) |p〉 = eiφ0/2−n0/4
∞∑

ν=−∞
Iν(iφ0/2 − n0/4)

× |p + 2ν�kL〉 , (12)

and a different interferogram would be observed. Note that the
particle then gets diffracted even for φ0 = 0. This additional
source of diffraction is related to the conditional modulation
of the matter-wave amplitude: The spatial density of the
postmeasurement state is redistributed towards the standing-
wave nodes where it is more likely that no absorption took
place. This conditional transformation is used to describe
diffraction at optical depletion gratings [42–45], where only
those particles arrive at the detector that have not absorbed any
photon.

In the case of � subsequent absorption processes, the
conditional transformation is given by

M�(x)|p〉 = eiφ0/2−n0/4

2�

√
n�

0

�!

∞∑
ν=−∞

Iν(iφ0/2 − n0/4)

×
�∑

n=0

(
�

n

)
|p + 2�kLν + (� − 2n)�kL〉, (13)

as follows from Eq. (9). Apart from the conditional diffraction
by amplitude modulation, the binomial sum accounts for the
coherent transfer of photon recoils in units of �kL. With each
absorption event the momentum state splits coherently into
two branches shifted by ±�kL, a particular quantum analog of
a Galton board. Note, however, that the present model differs
from the well-known quantum random-walk realizations of a
Galton board found in the literature [46–49]. There each step is
described by a unitary transformation conditioned on internal
qubit states.

C. Phase-space description

The theory of center-of-mass interferometry is conveniently
carried out in the Wigner-Weyl phase-space representation;
its merits were repeatedly demonstrated in the context of
near-field interferometry [18,27,28,38,42,45,50]. Here, we
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provide the phase-space counterparts of the state transforma-
tion (5).

Given a matter-wave state ρ prior to the grating, the Wigner
function is defined as

w(x,p) = 1

2π�

∫
ds eips/�

〈
x − s

2

∣∣∣ρ∣∣∣x + s

2

〉
. (14)

The conditional, norm-reducing state transformation
ρ → M�ρM†

� translates into a convolution in phase-space,

w(x,p) → w(x,p; �) :=
∫

dp0 w(x,p − p0)TL(x,p0; �).

(15)
The convolution kernel for a given absorption number � reads

TL(x,p; �) = 1

2π�

∫
ds eips/� M�

(
x − s

2

)
M∗

�

(
x + s

2

)
= 1

2π�

∞∑
j=−∞

e2πijx/d

∫
ds eips/�Bj

( s

d
; �

)
. (16)

The second expression is a Fourier expansion with d =
λL/2 = π/kL the grating period. Note that the so-defined
conditional Wigner function is normalized to the absorption
probability

∫
dxdp w(x,p; �) = P�(ρ).

The Fourier components Bj (s/d; �) generalize the Talbot
coefficients, determining the interference pattern in matter-
wave interferometry [28]. For � = 0 the coefficients are given
by the expressions found for photodepletion gratings [42],

Bj (ξ ; 0) = e−n0/2

(
ζcoh − ζabs

ζcoh + ζabs

)j/2

× Jj

(
sgn(ζcoh + ζabs)

√
ζ 2

coh − ζ 2
abs

)
. (17)

Here, the parameters

ζabs(ξ ) = n0

2
cos (πξ ) and ζcoh(ξ ) = φ0 sin (πξ ) (18)

relate to the photon absorption and the dipole interaction,
respectively. For � �= 0 the conditional Talbot coefficients are

Bj (ξ ; �) =
�∑

n=0

n∑
r=0

(n0

4

)n ζ �−n
abs (ξ )

r!(n − r)!(� − n)!

×Bj−n+2r (ξ ; 0). (19)

When the detector is insensitive to the internal molecular state
one must resort to the unconditional state transformation, i.e.,
sum over all conditional transformations (15), to obtain the
unconditional Wigner function w′(x,p) = ∑∞

�=0 w(x,p; �).
This is equivalent to summing over the conditional Talbot
coefficients in (16), Bj (ξ ) = ∑∞

�=0 Bj (ξ ; �). After rearranging
the terms in (19) and substituting n with m = 2r − n we rec-
ognize a series representation of the modified Bessel function,
Iν(z) = ∑∞

k=0(z/2)2k+ν/k!(ν + k)!. The resulting expression
can be simplified further with help of Neumann’s addition
theorem,

∑∞
j=−∞ Ij−ν(u)Ij (v) = Iν(u + v), and a special case

of Graf’s addition theorem
∑∞

j=−∞ Jj (u)Ij+n(v) = [(u −
v)/(u + v)]n/2J−n(sgn(u + v)

√
u2 − v2) [51]. Finally, we get

the unconditional Talbot coefficients [11,45],

Bj (ξ ) = e−ζ ′
abs

(
ζcoh + ζ ′

abs

ζcoh − ζ ′
abs

)j/2

× Jj

(
sgn(ζcoh − ζ ′

abs)
√

ζ 2
coh − (ζ ′

abs)
2
)
, (20)

with ζ ′
abs = n0 sin2 (πξ/2).

The conditional expression (19) applies if the molecules
or nanoparticles are detected selectively according to their
absorption number �. Otherwise, the expression (20) applies.
We note that this expression resembles an earlier model [28],
where photon absorption was implemented as a classical
random walk in phase space, disregarding the coherent recoil
transfer in a standing wave. Surprisingly, the difference merely
amounts to a sign flip ζcoh → −ζcoh in (20), which is equivalent
to replacing Bj (ξ ) with Bj (−ξ ) = B−j (ξ ), as follows from the
identity(

y − x

y + x

)j/2

sgn(y + x)j =
(

y + x

y − x

)−j/2

sgn(y − x)j , (21)

where x,y ∈ R. Hence, the difference between the two models
disappears in the two extreme cases of no absorption, n0 � φ0,
and dominant absorption, n0 � φ0.

III. ABSORPTION EFFECTS ON INTERFERENCE

The results of the previous section can be readily applied
to assess the effect of absorption in arbitrary matter-wave
diffraction experiments with nanoparticles at optical standing
waves. Here we apply our model to two exemplary set-
tings: The Kapitza-Dirac-Talbot-Lau near-field matter-wave
interferometer (KDTLI) and far-field diffraction at a single
standing-wave grating. In both cases we explore the influence
of absorption and evaluate the predicted interferograms. It
turns out that the predictions of the model are fully captured
only in the near field.

A. Talbot-Lau near-field interferometer

In the KDTLI setting, an initially incoherent beam of
molecules passes through three equidistantly separated grat-
ings with the same period d; first a material grating (G1),
then the standing-wave laser grating (G2), and finally another
material grating (G3). Molecular matter waves emerging from
each source slit at G1 obtain sufficient spatial coherence by
propagating the distance L to G2, where they are diffracted.
Talbot-Lau interference [52] may then yield a high-contrast
fringe pattern of the period d at a distance L further down-
stream. G3 serves as a movable mask to scan the interference
pattern by counting the number of transmitted particles as a
function of the lateral shift xs of G3 relative to G1 and G2.
The two material masks have the same opening fraction, i.e.,
the same ratio f between slit opening and grating period.

For a detailed theoretical derivation of the predicted Talbot-
Lau interference signal, we refer the reader to previous pub-
lications [27,28,45,50]. The detected signal can be expressed
much like in the case of a coherent grating transformation by
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means of the Talbot coefficients (20)

S(xs) =
∞∑

j=−∞
f 2sinc2(jπf )B2j

(
j

L

LT

)
e2πijxs/d . (22)

The Talbot length LT = d2/λdB, including the de Broglie
wavelength λdB of a molecule, appears as the natural unit
for the distance between the gratings.

A robust way to quantify the fringe contrast is to fit a
sine curve of period d to the noisy measurement data. The
ratio between amplitude and offset, i.e., the sine visibility,
corresponds to the ratio of the first and the zeroth Fourier
component in (22),

Vsin

(
L

LT

)
= 2sinc2(πf )B2

(
L

LT

)
. (23)

Negative values indicate a phase-flipped interference pattern.
In the envisaged KDTLI setup, the sinusoidal visibility is close
to the visibility V = (Smax − Smin)/(Smax + Smin) defined in
terms of the interference minima and maxima.

Figure 1(a) compares the expected visibilities for moderate
absorption (n0 = 1, gray-shaded area) with those for no
absorption (n0 = 0, solid blue line), both at φ0 = π . One
observes that, compared to the case of a pure phase modulation
at G2, absorption decreases the unconditional visibility almost
everywhere. This unconditional interferogram results from the
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FIG. 1. (a) Sinusoidal visibility (23) of KDTLI as a function of the
Talbot parameter L/LT, i.e., the grating distance over Talbot length
LT. The case of a pure phase grating (solid blue line, φ0 = π at
σabs = 0) is compared to an absorptive molecule with n0 = 1
(shaded area). A classical random-walk description of absorption
(dashed red line) does not match the correct quantum prediction.
(b) Visibilities (25) of the constituent conditional interferograms
corresponding to � = 0, 1, and 2 photon absorptions (solid, dashed,
and dash-dotted lines, respectively). The shaded area represents the
unconditional visibility as in (a). The opening fraction is f = 0.42
both plots.

incoherent overlay of the conditional interferograms labeled
by �; some of these are phase-flipped with respect to the others
resulting in the negative visibilities depicted in Fig. 1(b). In
addition, in the absence of photon absorptions, the visibility is
periodic in the grating separation L with period LT [solid line
in Fig. 1(a)]. Absorption breaks this symmetry and doubles
the period to 2LT. The reason is that the photon absorption
comes with a recoil transfer in units of half the grating
momentum, �kL.

Curiously, our measurement-based model for absorption
predicts visibilities that look like a mirror image of those
from a classical random-walk model [red dashed line in
Fig. 1(a)]. This difference was not observed in previous
experiments [28,34] because it only shows up in interference
patterns recorded with a sufficiently narrow velocity distribu-
tion. Recent experiments with improved velocity selection [11]
reveal the model discrepancy and provide evidence for the
present quantum model.

The unconditional fringe signal (22) underlying the gray-
shaded area in Figs. 1(a) and 1(b) is a sum of conditional
interferograms,

S(xs; �) =
∑

j

f 2sinc2(jπf )B2j

(
j

L

LT
; �

)
e2πijxs/d . (24)

A molecule detector sensitive to the internal state would be able
to resolve these interferograms. Their individual sinusoidal
visibilities are given by

Vsin

(
L

LT
; �

)
= 2sinc2(πf )

B2(L/LT; �)

B0(0; �)
. (25)

They can reach as high values as 70%, see Fig. 1(b).
In Figs. 2(a) and 2(b) we show cascades of conditional

fringe patterns (24) as a function of the G3 shift xs for the same
parameters as before (n0 = 1, φ0 = π , f = 0.42). Figures 2(a)
and 2(b) correspond to fixed Talbot parameters L/LT = 3.25
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0.3
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 S
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(a) L/LT =3.25

-1 -0.5 0 0.5 1 -0.5 0 0.5 1

(b) L/LT =4.25

position xs/d

FIG. 2. (a) and (b) show the predicted conditional �-dependent
fringe patterns (24) underlying the visibilities in Fig. 1. They are
plotted as a function of the lateral shift xs of the third grating at two
fixed Talbot parameters L/LT = 3.25 and 4.25. Each panel contains
the stacked conditional interferograms for molecules absorbing
� = 0, 1, and 2 photons (thin lines, lower mean signal for greater
� values), as well as the weighted sum over all � (unconditional
interferogram, thick line on top).

043637-5



KAI WALTER, STEFAN NIMMRICHTER, AND KLAUS HORNBERGER PHYSICAL REVIEW A 94, 043637 (2016)

FIG. 3. Sketch of a symmetric far-field configuration for molec-
ular diffraction at a standing-wave grating. A collimated beam
of molecules, as produced by an incoherent pointlike source in
combination with a collimation slit of width D at distance L, is
diffracted at a standing laser wave with grating period d . The resulting
far-field interference pattern can be recorded by a spatially resolving
detector in distance L to the laser grating.

and 4.25, respectively. All conditional patterns (stacked thin
lines) have the same period d as the unconditional signal (thick
top line), but the odd absorption numbers can be phase flipped
with respect to the even ones when the Talbot parameter L/LT

is in the range between an odd and a next even integer. This is
the case in Fig. 2(a), which thus features a lower unconditional
contrast than Fig. 2(b).

The relative weights of the constituent interferograms,
i.e., the transmission probabilities for molecules of given
absorption numbers �, depend on the average absorption
strength n0. They are given by the mean value of (24) with
respect to xs,

S̄� = f 2B0(0; �) = f 2e−n0/2
(n0

2

)�

×
�∑

n=0

n∑
r=0

I2r−n(−n0/2)

2nr!(n − r)!(� − n)!
. (26)

For the case of n0 = 1, illustrated in Fig. 2, we find that the
relative weights of the conditional interferograms decrease
from 64–24% and 8%, for � = 0, 1, and 2, respectively.
The remaining 4% of higher absorption numbers are hardly
relevant.

B. Far-field interferometry

Let us now turn to the influence of photon absorption on
far-field diffraction at a laser grating [6]. A simple setup
is sketched in Fig. 3. We consider a beam of molecules
diverging from a pointlike source and collimated by a slit
aperture of width D at distance L from the source. The
laser grating with period d = λL/2 is placed immediately
behind the aperture. Molecular matter waves are diffracted
and their density distribution far from the grating exhibits a
characteristic interference fringe pattern. For simplicity, we
consider here a symmetric arrangement with equal distances
between source, grating, and detection plane, as well as
a monochromatic beam of molecules at sufficiently high
forward velocity vz to allow for a one-dimensional phase-space
treatment of the Fresnel-Kirchhoff diffraction integral in the
paraxial approximation [53].

We begin with an idealized molecular point source as
presented by the (unnormalized) initial Wigner function

w(x,p) = δ(x). After free propagation by the distance L

described by the shearing transformation w(x,p) → w(x −
pL/mvz,p), the molecular beam is collimated by passing an
aperture of width D. In phase space, this process is described
by a convolution analogous to the grating transformation
(15),

w(x,p) →
∫ ∞

−∞
dp0w(x,p − p0)�

(
|x| − D

2

)
× sin[(2|x| − D)p0/�]

πp0
, (27)

where � is the Heaviside step function. The subsequent
grating transformation (15) followed by a further shearing
transformation associated with the free propagation to the
detector gives the conditional spatial density distribution
w(x; �) = ∫

dp w(x,p; �) on the screen,

w(x; �) = d

D
x

∞∑
j=−∞

∫ D/d

−D/d

dq e2πiqx/
x

×Bj (q; �)
sin [π (D/d − |q|)(j − 2qd/
x)]

j − 2qd/
x
.

(28)

Here, 
x denotes the distance between neighboring diffraction
peaks on the screen plane,


x = h

d

L

mvz

= d
L

LT
. (29)

Once again, the unconditional result is obtained by replacing
the Talbot coefficients in (28) with (20).

We note that Eq. (28) can be equivalently expressed as

w(x; �) = d

D
x

∣∣∣∣ ∫ ∞

−∞
dqe2πiq(x−d q)/
xt�(d q)

∣∣∣∣2

, (30)

where the function t�(x) = �(|x| − D/2)M�(x) describes the
conditional state transformation due to a collimator and an
optical grating. Equation (30) has the form of a Kirchhoff
integral within the Fresnel approximation [53].

The effect of absorption on far-field interferograms is illus-
trated in Fig. 4. We present the expected density distribution on
the screen with and without absorption. In Figs. 4(a) and 4(b),
the shaded areas stand for a pure phase grating, i.e., for
molecules with a vanishing absorption cross section (n0 = 0),
whereas the solid line corresponds to the unconditional
interferogram of strongly absorbing molecules with n0 = 2
(left) and n0 = 10 (right). In all cases the phase modulation
is assumed to be φ0 = 2.5. One observes that the coherent
diffraction peaks at integer multiples of 
x get reduced if there
is a finite absorption probability, while density peaks at half-
integer multiples of 
x get populated. This is again related
to the recoil momentum upon absorption of half a grating
momentum, as becomes apparent in Fig. 4(c), where the
unconditional result (thick line, n0 = 2) is decomposed into its
components (28) representing the conditional interferograms
for fixed absorption numbers � = 0,1,2,3 (thin lines from top
to bottom). Odd absorption numbers are responsible for the
additional peaks as they have their diffraction peaks only at
odd halves of 
x.

043637-6



MULTIPHOTON ABSORPTION IN OPTICAL GRATINGS . . . PHYSICAL REVIEW A 94, 043637 (2016)

FIG. 4. Far-field interferograms on the screen plane behind a
laser grating for nonabsorbing (shaded area) and for absorbing (solid
line) molecules, assuming state-indiscriminate detection. (a) and (b)
correspond to two different absorption strengths, n0 = 2 and n0 = 10,
respectively. The shaded curves represent diffraction at a pure phase
grating (n0 = 0) at φ0 = 2.5. The screen coordinate is given in
units of the expected separations 
x of the coherent diffraction
maxima. (c) Conditional far-field interferograms contributing to the
unconditional fringe signal in (a); the curves are shifted vertically for
better illustration. The thin lines from top to bottom are the result of
evaluating (28) for � = 0,1,2,3 photon absorptions, respectively. The
thick line represents the unconditional result depicted in (a), i.e., the
incoherent sum over all contributions. For this plot, we assume a finite
detector resolution of 0.1
x and a collimator width of D/d = 10.

We note that a classical random-walk model for absorption
produces far-field interferograms that are almost identical to
the results plotted in Fig. 4. In fact, both models give indistin-
guishable predictions for Fraunhofer diffraction. This can be
seen by carrying out the Fraunhofer far-field approximation
d/
x � 1 in (28),

w(x; �) �
∞∑

j=−∞

∫ D/d

−D/d

dq e2πiqx/
xBj (q; �)

× sin [π (D/d − |q|)j ]

j
. (31)

This expression is invariant under the sign flip j → −j , so
that there is no difference between both models in the far-
field limit, see Sec. II C. This means that the coherence in
the photon momentum transfer in a standing-wave grating can
only be observed in the near field. The KDTLI setup with
sufficiently absorptive molecules, where the laser is neither a
pure phase grating nor purely absorptive, is well suited for this
purpose [11].

IV. DYNAMICAL DESCRIPTION OF THE
OPTICAL GRATING

In this section, we present a dynamical description of the
interplay between the center-of mass motion and the internal
state evolution of a molecule interacting with a standing laser
wave. First, we introduce a ladder model for the photon
absorption of molecules whose internal degrees of freedom
act as an effective heat sink. The resulting master equation
for the center-of-mass state of the molecule will be found
to corroborate the measurement-based model for absorption
given in Sec. II. The model is then generalized to include
state-dependent internal properties, which is potentially rel-
evant in experimental scenarios involving highly absorptive
nanoparticles.

Finally, our phenomenological treatment of incoherent
absorption will be compared to an effective three-level Rabi
model for the molecule-light interaction with a finite degree
of coherence. It shows that if Rabi oscillations occur they can
have a significant impact on the interference pattern.

A. Effective ladder model for absorbing particles

We consider the following simple absorption model for
particles that can absorb several photons without reemission
and whose only known properties are the polarizability and
the absorption cross section: Starting from a particle in its
internal ground state |0〉, every subsequent photon absorption
shall excite the internal state to distinct orthogonal states |0〉 →
|1〉 → |2〉 . . . of increasing internal energies E� = E0 + ��ω.
The total state during the interaction with the light field is then
described by the time-dependent density matrix 〈x,�| ρ |x ′,�′〉.
The goal is to find expressions for the conditional and
the unconditional states after the interaction, i.e., for the
projections ρ��(x,x ′; t) := 〈x,�| ρ |x ′,�〉 and for the reduced
center-of-mass operator ρ(x,x ′; t) = ∑∞

�=0 ρ��(x,x ′; t).
In a one-dimensional description, the particle interacts with

the laser while it crosses the Gaussian intensity profile (1)
at a fixed longitudinal velocity vz. This results in a mean
interaction time tL = √

π/2wz/vz and in a time-dependent
Hamiltonian

H =
∞∑

�=0

[E� + V�(x,t)]|�〉〈�|. (32)

The kinetic energy term is omitted since we are neglecting
the transverse motion of the particle during its passage
through the laser grating, see Sec. II. The � dependence of
the dipole interaction potential takes into account that the
particle’s polarizability will in general depend on its internal
state.

Photon absorption can be described as a random jump pro-
cess in terms of a Lindblad-type master equation [22,54], with
the jump rate set by the time-dependent absorption rate at the
antinodes, γ�(t) = (8σabs,�P/πwywz�ωL) exp(−2(vzt)2/ω2

z ),
see Eq. (8). In general, the absorption cross section may depend
on the internal state. When an absorption event occurs, two
effects must be considered: an excitation of the internal state
up the ladder, � → � + 1, and the coherent transfer of photon
recoil from the standing wave to the particle. Both effects can
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be implemented by introducing the Lindblad operator

L =
∞∑

�=0

√
γ�(t) cos (kLx) |� + 1〉 〈�| , (33)

which correlates the internal and external state of the particle.
The evolution of the density operator follows the master
equation ∂tρ = [H,ρ]/i� + LρL† − {L†L,ρ}/2. Expanded in
the basis of internal states, we are left with a sequence
of coupled ordinary differential equations that are diagonal
in position representation. The internally diagonal terms
ρ��(x,x ′; t) of interest decouple from the rest and yield a closed
set of equations,

∂tρ00 =
[
V0(x,t) − V0(x ′,t)

i�

− γ0(t)
cos2(kLx) + cos2(kLx ′)

2

]
ρ00, (34)

∂tρ�� =
[
V�(x,t) − V�(x ′,t)

i�

− γ�(t)
cos2(kLx) + cos2(kLx ′)

2

]
ρ��

+ γ�−1(t) cos(kLx) cos(kLx ′)ρ�−1�−1. (35)

The imaginary terms represent the coherent phase modulation
due to the dipole interaction, while the other terms describe
the redistribution of internal state populations according to
the rates γ�(t). The redistribution is Poissonian if all rates
are equal. The first equation can be integrated directly, and
the remaining sequence of equations can then be solved suc-
cessively starting from the initial condition ρ��(x,x ′; −∞) =
ρ̃(x,x ′)δ�,0.

In the simple case of a state-independent dipole potential
V (x,t) and absorption rate γ0(t), the outgoing solution can be
written in compact form,

ρ��(x,x ′,∞) = M�(x)M�(x ′)ρ̃(x,x ′). (36)

This reproduces our measurement-based result M�(x) defined
as (9) and n0 = ∫

dt γ0(t).

B. Generalized model

We proceed to generalize the ladder model to the case
where the molecular parameters switch to a fixed excited-state
value after the absorption of at least one photon. For this,
we introduce dimensionless parameters ηp and ηa describing
the changed excited-state dipole potential and absorption rate,
V� = ηpV0 and γ� = ηaγ0 for all � > 0. Models with a stepwise
increase of the polarizability and absorption rate have been
employed for the determination of molecular excited-state
properties [41,55].

For simplicity, we approximate the Gaussian laser envelope
by a constant intensity switched on for the effective interaction
time tL = √

π/2ωz/vz. This assumption, which leaves the
time-integrated parameters φ0 and n0 of the Poisson model
unchanged, is well justified in the Raman-Nath regime
and produces analytical results. The coupled equations (34)

and (35) for � > 0 can be evaluated to

ρ��(x,x ′,tL) = ρ̃(x,x ′)M�(x)M�(x ′)

× η�−1
a 1F1[�; � + 1; z(x,x ′)], (37)

where we introduced the abbreviation

z(x,x ′) = i(ηp − 1)[φ(x) − φ(x ′)] − ηa − 1

2
[n(x) + n(x ′)]

(38)

Here, 1F1 denotes the confluent hypergeometric function [51].
The solution for � = 0 is identical to the one given in (36).

It is instructive to make use of an integral represen-
tation of the hypergeometric function, 1F1(�; � + 1; z) =
�
∫ 1

0 dα ezαα�−1, to represent (37) as a conditional postmea-
surement state,

ρ�� = 1

tL

∫ tL

0
dt1 M̃�(t1)ρ̃ M̃†

�(t1). (39)

This allows us to identify generalized measurement opera-
tors analogous to (2) and (6),

M̃�(t1) =
√

(ηa(1 − t1/tL))�−1n�
0

(� − 1)!
cos�(kLx)

× exp

{(
iφ(x) − n(x)

2

)
t1

tL

}
× exp

{(
iηpφ(x) − ηa

n(x)

2

)(
1 − t1

tL

)}
. (40)

They depend on a new parameter t1 ∈ [0,tL], which can be in-
terpreted as the time of the first photon absorption. For t1 = tL,
the operators reduce to their Poissonian counterparts of before.

Figure 5 compares the unconditional visibility (23) of the
Poisson model (solid line) to hypothetical cases where the
excited-state absorption cross section (dash-dotted line) or
the excited-state polarizability (dashed line) are 50% higher
than the ground-state values. It turns out that an increased
excited-state cross section hardly affects the visibility even
though it strongly affects the conditional transmission prob-
ability through the grating. The reason is that high-contrast
interference is mainly produced by the light-induced phase
modulation, and the visibility is therefore more sensitive to
absorption-induced changes of the molecular polarizability.
Indeed, we observe a substantial influence of an increased
excited state polarizability at high laser power. This might open
up a novel spectroscopic application of the KDTLI scheme.

C. Rabi model for partially coherent absorption

So far, we have treated photon absorption by molecules
incoherently, presuming that electronic transitions are not
driven coherently by the light field due to the presence of rapid
internal decay channels that involve the excitation of numerous
rovibrational degrees of freedom. While this is a good
approximation for many large molecules and nanoparticles,
one could think of experimental situations [56,57] that would
permit a few coherent Rabi cycles or even the use of Raman
transitions, as in atomic beam manipulation [58,59].
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FIG. 5. (a) Sinusoidal visibility as a function of the Talbot pa-
rameter L/LT for molecules with different excited-state parameters.
For the solid curve, we assume that the ground-state values of
polarizability and absorption cross section (corresponding to n0 = 1.5
and φ0 = 1.25n0) remain the same no matter how many photons are
absorbed. The dashed and the dash-dotted curve correspond to an
increase of the polarizability and of the absorption cross section,
respectively, by a factor of 1.5 upon absorption of the first photon.
(b) Same visibilities as a function of laser power, i.e., for varying
n0 at a fixed Talbot parameter of L/LT = 2.2. For reference, the
red dot marks the same spot (L/LT,n0) in both panels. A significant
difference between the curves appears at high laser powers.

To study the transition from a coherent atomlike description
to our model for absorption, we consider the three-level system
sketched in Fig. 6. It consists of a ground state |0〉, an exited
state |1〉 with the lifetime τ , and a metastable dark state |2〉. The
excited state shall decay exclusively to the dark state without
emitting a photon. This Rabi toy model is useful as it can be
treated analytically. It is also employed in atomic experiments,
e.g., to describe absorptive optical masks [4,7]. We consider
the experimental situation where only ground-state molecules
are detected in the end.

We resort once again to a one-dimensional description in
the Raman-Nath regime where the transverse motion during
the interaction is negligible. The laser shall drive the transition
between |0〉 and |1〉 with a detuning 
 relative to the energy
difference. The laser-molecule interaction is then characterized

Ω

Δ

τ

0

1

2

FIG. 6. Scheme of a three-level Rabi model, where the laser
drives the transition between the ground state |0〉 and the excited state
|1〉 at a detuning 
 off resonance. The excited state with lifetime τ

can decay without emission into a dark metastable state |2〉.

by a position-dependent Rabi frequency in the rotating wave
approximation [60],

�(x) = −d01 · E0

�
cos(kLx) =: �0 cos(kLx), (41)

given the transition dipole moment d01. In a frame rotating at
the laser frequency ωL, the interaction Hamiltonian then reads
as H = �

2 (�(x) |1〉 〈0| − 
 |1〉 〈1|) + H.c. For the spontaneous
decay to the dark state, we introduce the jump operator
L = |2〉 〈1| /√τ , which yields the final master equation
∂tρ = [H,ρ]/i� + LρL† − {L†L,ρ}/2. Note that a radiative
decay would imply a more complicated decoherence master
equation [61].

A decomposition of the density operator into the matrix
elements ρnn′ (x,x ′; t) := 〈x,n| ρ |x ′,n′〉 yields a linear system
of nine partially coupled differential equations. The system can
be diagonalized exactly, but we will omit the lengthy general
solutions and focus on limiting cases.

In the limit of no decay, τ → ∞, we obtain the well-known
Rabi oscillation between ground and excited state at the
position-dependent frequency �R(x) =

√

2 + �2(x) [60].

For a finite decay time comparable to the interaction period, the
coherences ρ01 and ρ10 get exponentially suppressed, which
leads to a damping of the Rabi oscillations and to a population
transfer to the dark state.

In contrast, if the excitation lifetime is short, τ � tL,
the oscillation dies out before a Rabi cycle is completed.
Dropping all terms containing the fast damping exp(−tL/τ )
and expanding the eigenfrequencies of the system to lowest
order in τ/tL, the approximate matrix element of the ground-
state density operator reads

ρ00(x,x ′) � exp

{
−1

2

tLτ�2
0

1 + 4
2τ 2
[cos2(kLx) + cos2(kLx ′)]

}
× exp

{
−i

tL
τ 2�2
0

1 + 4
2τ 2
[cos2(kLx) − cos2(kLx ′)]

}
.

(42)

We notice that this coincides with the conditional density
matrix (36) for zero absorptions from the above ladder model.
That is, the molecule acts as an incoherent one-photon absorber
in this limit, and we can identify the effective phase shift and
mean absorption number parameters by comparison,

φ0 =̂ − tL
τ 2�2
0

1 + 4
2τ 2
, n0 =̂ tLτ�2

0

1 + 4
2τ 2
. (43)

Similar results were derived and discussed in the case of Bragg
diffraction [62]. As demonstrated in atomic experiments, a
pure phase grating can be realized in the far off-resonant
case [32], with φ0 ≈ −tL�2

0/4
, and an absorptive grating
in the resonant case [4,7], with n0 = tLτ�2

0 [63]. We recall
that deviations from this behavior due to transverse motion are
neglected here [64,65].

When the interaction time is comparable to the decay time
of the excited state, the time evolution is governed by several
cycles of damped Rabi oscillations, and the transmission of

043637-9



KAI WALTER, STEFAN NIMMRICHTER, AND KLAUS HORNBERGER PHYSICAL REVIEW A 94, 043637 (2016)

0

0.2

0.4

0.6

0.8

1

2 pulse(b)

S
(x

s
)

4 pulse(c)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8 6 pulse(d)

-1 0 1 2

8 pulse

third grating shift xs

(e)

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

00
(x

,x
)

(a)

lateral position x/d
/

FIG. 7. (a) Probability density for the transmission of ground-state molecules through a standing wave of period d = λL/2 as a function of
position. The shaded area corresponds to the conditional probability for zero absorptions, taken from the ladder model (26) with n0 = 1.2. An
evaluation of the coherent three-level Rabi model yields the blue solid line, assuming �0tL = 4π (i.e., a 4π pulse length at the antinodes) and
a long excited-state lifetime of τ = tL. (b)–(e) Numerical results for the KDTLI fringe signal in the presence of molecular Rabi oscillations,
according to the three-level model on resonance (
 = 0, τ = tL). We use a setup with L = 2LT grating separation, and f = 0.1 opening
fraction for G1 and G3; only ground-state molecules are detected. The antinode intensity is chosen such that it amounts to an effective pulse
length �0tL increasing from 2π–8π in (b)–(e), respectively. We observe higher-order fringes emerging with each Rabi cycle.

ground-state molecules will depend in an oscillatory fashion
on the precise value tL of the interaction time. We illustrate this
in Fig. 7(a), which depicts the position-dependent probability
(blue solid line) that a molecule passes a resonant standing
laser wave in the ground state. We assume an interaction
of �0tL = 4π mimicking a 4π pulse at the antinodes, and
τ = tL. This is compared to the conditional transmission
probability for zero absorptions in the ladder model using
n0 = 1.2 (shaded area). For the Rabi case, one can observe an
oscillation of the transmission probability. Here the minima
correspond to π pulses [60], where all particles are either in
the excited or in the dark state. At an antinode, the transmission
is below 100% due to losses into the dark state.

As a consequence of the Rabi features in the laser grating,
higher-order fringe oscillations should appear in the molecular
near-field interferograms. This is demonstrated for KDTLI in
the four interferograms of Fig. 7(b)–7(e). They were computed
by evaluating the ground-state density operator ρ00(x,x ′; tL)
and inserting this solution into expression (24).

This assumes that excited-state molecules decay to the
dark state before detection, and that dark-state molecules are
not recorded. As before, we consider the resonant situation,

 = 0, and a fairly long lifetime, τ = tL. The parameters were
chosen such that the light intensity at the antinodes and the
interaction time amount to an effective pulse length of one to
four full Rabi cycles in Figs. 7(b)–7(e). Here, we assume
the KDTL setup to operate at a grating separation of two
Talbot lengths and with a small open fraction f = 0.1 at
G1 and G3, not to wash out higher harmonics in the fringe
pattern. The panels clearly show the appearance of these higher
harmonics emerging with each additional Rabi cycle during the
interaction time.

Higher fringe oscillations may serve to increase the phase
sensitivity of near-field interference schemes with standing-
wave gratings, thus boosting the precision in potential metro-
logical applications.

V. CONCLUSIONS AND OUTLOOK

We have presented a measurement-based model for photon
absorption at standing laser waves to describe matter-wave
diffraction at laser gratings. The model is particularly well
suited for complex molecules and clusters, which can dissipate
the heat of several light quanta among their numerous internal
degrees of freedom. We noted a subtle and intricate difference
compared to a classical random-walk model for absorption,
which goes unnoticed in far-field diffraction. In the near
field it can be observed that quantum interference prevails
even in the case of significant absorption and state-insensitive
particle detection—a consequence of the interplay between
coherent phase modulation at the standing-wave potential and
a discrete coherent random walk in steps of single photon
recoils in momentum space. Only recently, measurements in
a near-field KDTLI setup with C70 molecules provided sound
experimental evidence for the validity of our measurement-
based model [11], which is also corroborated by a dynamical
master-equation approach based solely on phenomenological
parameters: The dipole polarizability and the absorption cross
section of the particle. We also showed that our approach is
extendable to the more general case of parameters that depend
on the internal state of the particle.

Finally, we studied the impact of coherent Rabi cycles
on the absorption behavior of molecules in cases where
the photoinduced internal excitation has a sufficiently long
lifetime. We found that Rabi oscillations imprint an additional
oscillatory structure onto the particle state upon transmission
through a laser grating, which creates higher harmonics in
near-field interferograms. This may be relevant for increasing
the precision in potential metrological applications.
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