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Molecular Feshbach dissociation as a source for motionally entangled atoms
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We describe the dissociation of a diatomic Feshbach molecule due to a time-varying external magnetic field
in a realistic trap and guide setting. An analytic expression for the asymptotic state of the two ultracold atoms
is derived, which can serve as a basis for the analysis of dissociation protocols to generate motionally entangled
states. For instance, the gradual dissociation by sequences of magnetic field pulses may delocalize the atoms into
macroscopically distinct wave packets, whose motional entanglement can be addressed interferometrically. The
established relation between the applied magnetic field pulse and the generated dissociation state reveals that
square-shaped magnetic field pulses minimize the momentum spread of the atoms. This is required to control the
detrimental influence of dispersion in a recently proposed experiment to perform a Bell test in the motion of the
two atoms [C. Gneiting and K. Hornberger, Phys. Rev. Lett. 101, 260503 (2008)].
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I. INTRODUCTION

The emerging field of ultracold atoms makes it possible to
perform hitherto unprecedented experiments on the quantum
nature of material objects, thus introducing a new quality
compared to previous quantum experiments with immaterial
photons. This is owing to the experimental control over the
atomic state reaching a level where quantum mechanical
effects become relevant. Given that Bose-Einstein condensates
(BECs) are nowadays routinely produced, they can serve
as an ideal starting point, for example, to probe condensed
matter physics in a highly controlled environment provided
by optical lattices [1–4]. A considerable extension of the
scope of such experiments has been achieved by exploiting
Feshbach resonances to produce molecules and molecular
BECs (mBECs) [5–12]. The ability to control the interaction
between the atoms with an external magnetic field permits
one to realize, for example, the BCS-BEC crossover [1]
or Efimov states [13], and to establish coherent atom-
molecule oscillations [14–18], hinting at quantum-coherent
chemistry.

Beyond that, it has been recognized that the controlled
dissociation of mBECs can also serve as a resource for
entangled atom pairs that would permit the demonstration
of nonclassical correlations on a macroscopic level [19,20].
The use of such a controlled dissociation for spectroscopic
purposes has already been discussed theoretically [21,22] and
demonstrated experimentally [23,24]. In a recent proposal, we
investigated the possibility of using an arranged dissociation
of Feshbach molecules in order to violate a Bell inequality
in the motion of two atoms [25]. There, a sequence of two
short magnetic field pulses dissociates a single molecule out
of a dilute mBEC such that each atom is delocalized into
two macroscopically distinct wave packets propagating along
the laser guide. The associated dissociation-time entangled
(DTE) state can be considered the matter wave analog of a Bell
state [26], whose capability to yield nonclassical correlations
can be revealed by an interferometric protocol reuniting the
wave packets on each side [27,28]. The violation of a Bell
inequality, however, imposes stringent requirements on the

DTE state, which makes it necessary to know the generated
dissociation state in detail [26].

The theory of Feshbach molecules is mainly concerned with
an accurate description of the molecules in the bound regime
and its vicinity, where the atoms interact strongly. For instance,
it has been investigated in great detail that the molecular state
at constant magnetic field exhibits universal properties in the
vicinity of a Feshbach resonance, as well as the association and
dissociation behaviors under a linear magnetic field sweep,
with emphasis on the converted fraction (see [22,29,30] and
references therein). An appropriate description of the situation
proposed in [25], however, requires a detailed knowledge of the
dissociation state for a more general temporal behavior of
the magnetic field, varying on short time scales compared to
the inverse resonance width. While in the interaction regime
of the atoms one is then forced to resort to numerical methods
[31], the restriction to the asymptotic situation (i.e., for large
interatomic distances and times long after the dissociation
process) comes with significant simplifications that permit one
to evaluate the generated dissociation state analytically.

In this article we present a coupled-channel formulation
of the dissociation process of an initially trapped Feshbach
molecule exposed to a time-varying homogeneous magnetic
field. These single-molecule dynamics yield an adequate
description in the relevant case of the dissociation of a single
molecule out of a dilute mBEC, where interactions between
the molecules and statistical effects do not play a role. The
formulation includes the center of mass motion required for
the complete description of the two-particle system. The
dissociation is considered to take place in a shallow trap from
where the dissociated atoms are injected into a strong guiding
potential, which confines them to the longitudinal motion
along the guide axis. Based on the time-dependent coupled-
channel equations, we derive an analytic expression for the
asymptotic dissociation state of the ultracold atoms, allowing
us to investigate the relation between the form of the applied
magnetic field pulse and the resulting two-particle dissociation
state. While Gaussian-shaped dissociation pulses turn out to
yield a rather bulky momentum distribution of the two-particle
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state, we demonstrate that idealized square-shaped magnetic
field pulses optimize the momentum distribution with respect
to its sharpness.

The structure of this article is as follows. In Sec. II we
describe the assumed geometry of trap and guiding potentials,
which is the natural configuration for dissociation experiments.
The time-dependent coupled-channel equations are formulated
in Sec. III and then reduced to an integro-differential equation
for the closed-channel amplitude and an associated equation
for the background channel state. Section IV shows how the
asymptotic dissociation state can be expressed in terms of
the Fourier transform of the closed-channel amplitude. The
approximate dynamics of the latter for a given shape of the
magnetic field pulse is described in Sec. V; this allows us,
in Sec. VI, to discuss the optimal form of the pulse if a
narrow momentum distribution of the dissociation products
is required, such as for the test of the Bell inequality proposed
in [25]. Applications of the Feshbach dissociation scheme as a
resource of entangled atom states beyond the scenario in [25]
are discussed in Sec. VII.

II. TRAP AND GUIDE CONFIGURATION

Before presenting the coupled-channel formalism, we out-
line an experimental setup that meets the conditions assumed in
our dissociation scenario. An explicit quantitative elaboration
was given in [32].

Consider a BEC of Feshbach molecules in an optical dipole
trap, which can be established by two perpendicularly crossing
laser beams [see Fig. 1(a)]. The weak trap laser guarantees

(a)

(b)

FIG. 1. (Color online) (a) Setup for generating pairs of motionally
entangled atoms by the Feshbach dissociation of molecules. Initially,
a BEC of on the order of 102 Feshbach molecules, resides in a dipole
trap produced by two crossing laser beams. An externally controlled,
homogeneous magnetic field induces the dissociation of one molecule
per trial and thus generates a pair of atoms moving along the laser
guide at a velocity on the order of 1 cm/s. The asymptotic two-atom
state in the wave guide is determined by the trap and guide geometry
and by the shape of the dissociation pulse. (b) The dissociation pulse
promotes the trapped molecule to a pair of counter-propagating atoms.
The laser parameters are chosen such that the energy supply from the
magnetic field sweep exceeds the trap laser potential, while it cannot
lead to an additional transversal excitation if the kinetic energy of the
atoms Ekin remains below the harmonic energy gap, h̄ωG > Ekin.

longitudinal confinement within the wave guide produced by
the strong guiding laser. We take the BEC, of the order of
102 molecules, to be sufficiently dilute such that one may
neglect interactions between different molecules. This may be
accomplished by choosing a mBEC of fermionic constituents,
for example, 6Li2, where Pauli blocking further reduces the
effect of intermolecular interactions and thus enhances the
lifetime of the mBEC [33].

The molecules can then be considered to be in a product
state with the center of mass motion given by the ground state
of the trap, whereas the relative motion is in a bound molecular
state. The latter can be turned into a Feshbach resonance by
varying the external magnetic field, allowing one to dissociate
the atoms in a controlled way. By applying one or several
appropriately chosen dissociation pulses, a single molecule
dissociates into two counter-propagating atoms on average,
and we postselect the single-dissociation events.

The pulses provide the atoms with a kinetic energy
sufficiently large to overcome the trap potential in longitudinal
direction, but still below the threshold to get beyond the ground
state transversally [see Fig. 1(b)]. This way we may end up with
two dissociated atoms, counter-propagating with a velocity on
the order of 1 cm/s along the guiding laser axis, whose two-
particle state is determined by the initial state of the molecule
and the dissociation pulse shape. By applying sequences
of dissociation pulses, one can design highly nonclassical,
motionally entangled states that can further be processed for
various fundamental tests of quantum mechanics, such as to
violate a Bell inequality [25].

III. COUPLED-CHANNEL FORMULATION

The dynamics of Feshbach molecules is appropriately
described by the coupled-channel formulation. In our case,
the channels are characterized by different nuclear spin
configurations of the two-atom system. The different magnetic
field dependences of the corresponding energy levels make it
possible to manipulate the system externally. In the following
we adopt the notation and the conventions from [29] as
far as possible. As a novelty, we must include also the
center-of-mass motion of the two atoms. We assume that
the magnetic field remains always in the vicinity of a single
Feshbach resonance, allowing us to restrict the description to
two channels: the closed channel of the energetically more
favorable spin configuration supporting the molecular bound
state, and the background channel, where the dissociated atoms
are asymptotically free.

A. Hamiltonian and coupled-channel equations

The two-channel Hamiltonian for the two atoms (here taken
to be of equal mass m) can be written as

Htot = Hcl|cl〉〈cl| + Hbg|bg〉〈bg| + W |bg〉〈cl| + W †|cl〉〈bg|,
(1)

with the closed-channel Hamiltonian

Hcl = − h̄2

2m
∇2

1 − h̄2

2m
∇2

2 + Vcl(|x1 − x2|, B(t))

+VT(x1) + VT(x2) + VG(x1) + VG(x2) (2)
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and the background (open) channel Hamiltonian

Hbg = − h̄2

2m
∇2

1 − h̄2

2m
∇2

2 + Vbg(|x1 − x2|)
+VT(x1) + VT(x2) + VG(x1) + VG(x2). (3)

Here VT(xi) and VG(xi) denote the trapping and guiding
laser potential, respectively (VG may contain a linear shift
due to the gravitational potential). Vcl(|x1 − x2|, B(t)) and
Vbg(|x1 − x2|), on the other hand, describe the interatomic
potentials for each channel. In general, these potentials differ
for the different channels, reflecting their dependence on the
spin configuration. In the chosen convention, the zero of
total energy is defined in the absence of the laser potentials
by the background channel dissociation threshold with the
center of mass at rest. Then only the closed-channel potential
Vcl(|x1 − x2|, B(t)) depends on the external magnetic field
B(t), describing an overall shift with respect to the background
channel dissociation threshold.

The off-diagonal elements W denote the energies associated
with the spin exchange interaction and provide the interchannel
coupling. We assume W to be diagonal in position (i.e.,
independent of momentum) and to depend only on the
interatomic distance |x1 − x2| from now on. For the following
it is useful to reformulate the Hamiltonian in center of mass
(c.m.) and relative (rel) coordinates, xc.m. = (x1 + x2)/2 and
xrel = x1 − x2, respectively, with total mass M = 2m and
reduced mass µ = m/2. The closed-channel Hamiltonian thus
reads as

Hcl = − h̄2

2M
∇2

c.m. −
h̄2

2µ
∇2

rel + Vcl(|xrel|, B(t))

+VT(xc.m. + xrel/2) + VT(xc.m. − xrel/2)

+VG(xc.m. + xrel/2) + VG(xc.m. − xrel/2), (4)

and similar for Hbg with Vcl(|xrel|, B(t)) replaced by
Vbg(|xrel|). Note that the center-of-mass motion is only
indirectly affected by the homogeneous external magnetic field
B, due to the presence of the trapping potentials. Writing

|�tot(t)〉 = �cl(xc.m., xrel, t)|cl〉 + �bg(xc.m., xrel, t)|bg〉,
(5)

we can infer from the time-dependent Schrödinger equation
the coupled-channel equations

ih̄|�cl(t)〉 = Hcl(B(t))|�cl(t)〉 + W |�bg(t)〉,
(6)

ih̄|�bg(t)〉 = Hbg|�bg(t)〉 + W |�cl(t)〉.
The closed-channel and background channel two-particle state
components |�cl(t)〉 and |�bg(t)〉 are thus not normalized in
general. It is reasonable to assume the transverse motion of
the atoms to be constrained to the region of validity of the
harmonic approximation of the guiding laser potential, and the
harmonic approximation to be applicable also for the trap laser
potential in the closed channel. We then can write (adopting
cylindrical coordinates)

VG(x1) + VG(x2) = −U0,G + m

2
ω2

Gρ2
1 − U0,G + m

2
ω2

Gρ2
2 ,

(7)
VT(x1) + VT(x2) = −U0,T + m

2
ω2

Tz2
1 − U0,T + m

2
ω2

Tz2
2.

The harmonic approximation comes with the virtue not to
couple the center of mass and relative motion,

VG(x1) + VG(x2) = −2 U0,G + M

2
ω2

Gρ2
c.m. +

µ

2
ω2

Gρ2
rel,

(8)
VT(x1) + VT(x2) = −2 U0,T + M

2
ω2

Tz2
c.m. +

µ

2
ω2

Tz2
rel.

The initial bound state can therefore be taken to be separable
with respect to its center of mass and relative motion.
Of course, the harmonic approximation for the trap laser
potential breaks down when the dissociated atoms leave the
trap. Then, the center of mass motion ceases to be bound by the
trap potential but rather undergoes a free propagation resulting
in a dispersive broadening on the spot. So, even though initially
only the relative motion is affected by the external magnetic
field, its effective coupling in the background channel to the
center of mass also couples the motion of the latter indirectly
to the external magnetic field.

B. Single-resonance approximation

It is legitimate [29] to take the relative motion of the closed-
channel state component to be proportional to the underlying
bare resonance state |φres〉, which is defined by[
− h̄2

2µ
∇2

rel + Vcl(|xrel|, B(t))
]

φres(xrel) = Eres(B(t))φres(xrel).

(9)

Note that the time-dependent external magnetic field affects
only its energy, which is taken to vanish at the resonance,
Eres(Bres) = 0, such that Eres describes the energetic offset of
|φres〉 from the background channel dissociation threshold.

Since the laser potentials vary weakly over the spatial extent
of |φres〉, this resonance state remains a valid approximation
even in the presence of the trap. We assume that |φres〉 is
spherically symmetric and thus supports an s-wave resonance.
If we further take into account that the center of mass
motion of the closed channel is completely determined by
the longitudinal and transversal trap ground states |ψT〉 and
|ϕc.m.

0,0 〉, respectively, we can write

�cl(xc.m., xrel, t) = C(t)ψT(zc.m.)ϕ
c.m.
0,0 (ρc.m.)φres(xrel), (10)

where[
− h̄2

2M
∇2

c.m. + 2VT(zc.m.) + 2VG(ρc.m.)

]
ψT(zc.m.)ϕ

c.m.
0,0 (ρc.m.)

= [−2U0,T + h̄ωT/2 − 2U0,G + h̄ωG]ψT(zc.m.)ϕ
c.m.
0,0 (ρc.m.).

(11)

In the single-resonance approximation (extended by the
trapped center-of-mass motion) (10), the spatial shape of
the closed-channel state component is not affected by the
external magnetic field and therefore is time independent.
The closed-channel amplitude C(t) therefore captures the
complete effect of the time-varying magnetic field. Using
the single-resonance approximation (10) and introducing the
abbreviation Ucl = −2U0,T + h̄ωT/2 − 2U0,G + h̄ωG, we can
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thus rewrite the coupled-channel equations (6) as

ih̄∂tC(t) = [Eres(B(t)) + Ucl]C(t)

+ 〈ψT|〈ϕc.m.
0,0

∣∣〈φres|W |�bg(t)〉, (12)

(ih̄∂t − Hbg)|�bg(t)〉 = C(t)W |ψT〉∣∣ϕc.m.
0,0

〉|φres〉. (13)

C. Formal Green’s solution

Interpreting the right-hand side of (13) as a source term
for the background channel state component |�bg(t)〉 suggests
that one solve (13) formally using the Green’s function of the
background channel Gbg(t, t ′), which satisfies

(ih̄∂t − Hbg)Gbg(t, t ′) = δ(t − t ′). (14)

If we further make use of the connection between the (retarded)
Green’s function and the time evolution operator, Gbg(t, t ′) =
Ubg(t, t ′)
(t − t ′)/(ih̄), we can write the background channel
state component as

|�bg(t)〉 = 1

ih̄

∫ t

−∞
dt ′C(t ′)Ubg(t, t ′)W |ψT〉∣∣ϕc.m.

0,0

〉|φres〉.
(15)

In our scenario, the boundary conditions prohibit a homo-
geneous solution. Physically, this reflects the fact that the
closed channel is the only source for the background channel,
in particular there are no further sources at infinity (e.g.,
incoming and scattered particles). A closed equation for the
closed-channel amplitude C(t) arises from inserting the formal
solution (15) into (12), which yields

[ih̄∂t − Eres(B(t)) − Ucl]C(t)

= 1

ih̄

∫ t

−∞
dt ′C(t ′)〈ψT|〈ϕc.m.

0,0

∣∣〈φres|WUbg(t, t ′)

×W |ψT〉∣∣ϕc.m.
0,0

〉|φres〉. (16)

With (15) and (16) we arrived at a decoupled set of equations
that divides the determination of the background channel
dissociation state into two parts, first solving (16) for C(t),
and then using the solution in (15) for the calculation of
|�bg〉. The dynamics of the closed-channel amplitude C(t) is
explicitly driven by the external magnetic field B(t), reflected
in the left-hand side of (16). The bare background channel
Hamiltonian Hbg, on the other hand, does not depend on
the external magnetic field, which allows us in Sec. IV to
expand the right-hand side of (15) in terms of its (time- and
coupling-independent) energy eigenfunctions. The right-hand
side of (16) describes the back action of the background
channel state component on the dynamics of C(t) due to the
coupling W . A solution to (16) is given in Sec. V.

As a last remark, we note that it might seem suggestive
to first solve the time-independent coupled-channel equations
for a stationary magnetic field B and then to take the
corresponding static decay rate to describe the dissociation in
the time-dependent case B(t), as was done in [23]. However,
we will see later in this article that this quasi-stationary
approach is not sufficient for our purposes.

IV. ASYMPTOTIC DISSOCIATION STATE

The formal expression (15) describes the background chan-
nel state component in full generality. In the scenario described
in Sec. II, however, we only need to know the dissociation
state for large interatomic distances and for times long after
the dissociation process. Moreover, the relevant dissociation
states are sharply peaked in the ultracold regime, in the sense
that the width of the momentum distribution is much smaller
than its average momentum, because only then are they useful
with respect to further employment such as the Bell test in the
motion [25]. The aforementioned restrictions admit significant
simplifications that permit us to provide an analytic expression
for the dissociation state in the asymptotic regime.

A. Large time limit

As a first step, we expand the background channel time evo-
lution operator Ubg(t, t ′) in an appropriate energy eigenbasis
of the background channel Hamiltonian,

Ubg(t, t ′) = e−iHbg(t−t ′) =
∑
E

e−iE(t−t ′)/h̄|E〉bg〈E|bg, (17)

where Hbg|E〉bg = E|E〉bg; adequate quantum numbers for
our setup are specified later in this article. Note that the
involved vectors are two-particle states. As mentioned above,
this representation is only possible for the bare background
Hamiltonian, which does not depend on the external magnetic
field. Since at large interatomic distances only the continuum
states survive, we can drop the bound states in (15) for large
|xrel| and get

〈xc.m., xrel|�bg(t)〉

∼
|xrel|→∞

1

ih̄

∑
E>Ubg

∫ t

−∞
dt ′C(t ′)e−iE(t−t ′)/h̄

×〈E|bgW |ψT〉∣∣ϕc.m.
0,0

〉|φres〉〈xc.m., xrel|E〉bg. (18)

The sum over the energy eigenstates takes into account that
the zero of energy is defined in the absence of the confining
lasers, whose presence shifts the (longitudinal) continuum
threshold by an offset Ubg = −2U0,G + 2h̄ωG. We arrange the
dissociation such that after its completion the magnetic field
persists at a base value B0 below the dissociation threshold.
The closed-channel amplitude then shows a simple time
dependence in the large time regime, C(t) = C0exp(−iE0t/h̄),
such that for times long after the completion we can replace
the upper integration boundary by infinity without modifying
the integral for energies above the dissociation threshold. This
allows us to interpret the integration over t ′ as the Fourier
transform C̃(ω) = ∫ ∞

−∞ dt exp(iωt)C(t) of the closed-channel
amplitude C(t), yielding

〈xc.m., xrel|�bg(t)〉
≈

|xrel |→∞
t→∞

1

ih̄

∑
E>Ubg

e−iEt/h̄C̃(E/h̄)

×〈E|bgW |ψT〉∣∣ϕc.m.
0,0

〉|φres〉〈xc.m., xrel|E〉bg. (19)

We thus find that the asymptotic dissociation state can be inter-
preted as evolving in the background channel with the initial
state in energy representation given by C̃(E/h̄)〈E|bgW |ψT〉
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|ϕc.m.
0,0 〉|φres〉. We will see that this expression describes two

counterpropagating atoms with well-defined momenta if C̃(ω)
is peaked at an energy in the ultracold regime. The corre-
sponding wave functions then have de Broglie wavelengths
and spatial extensions on the order of micro- to millimeters,
all being features desired for applications such as further
interferometric manipulation.

B. Quantum numbers

Note that the energy eigenvalues in (17) are highly degener-
ate; in order to single out a unique energy basis, we choose as
asymptotically well-defined, commuting observables the com-
plete set p̂c.m., p̂rel, and H⊥, where H⊥ denotes the transversal
Hamiltonian. Assuming harmonic transversal confinement, we
can write∑
E>Ubg

|E〉bg〈E|bg =
∑

nc.m.
G ,mc.m.

G
nrel

G ,mrel
G

∫ ∞

−∞
dpc.m.

∫ ∞

−∞
dprel

× ∣∣pc.m., n
c.m.
G ,mc.m.

G , prel, n
rel
G ,mrel

G

〉
bg

× 〈
pc.m., n

c.m.
G ,mc.m.

G , prel, n
rel
G ,mrel

G

∣∣
bg.

(20)

Here nG = 0, 1, . . . denotes the radial occupation number and
mG = −nG, . . . , nG the corresponding angular momentum.
Since we assume that W |φres〉 is spherically symmetric (s-wave
resonance), W |ψT〉|ϕc.m.

0,0 〉|φres〉 is both cylindrically symmetric
and symmetric under exchange of the two particles; hence only
the states |pc.m., n, 0, prel, n, 0〉 sharing these symmetries can
be occupied.

If we take C̃(E/h̄) to be peaked at a sufficiently low
energy and if the laser guide is chosen appropriately, we can
ensure that only the transversal ground state is energetically
accessible. In this single-mode regime we have

〈xc.m., xrel|�bg(t)〉
≈

|xrel |→∞
t→∞

1

ih̄

∫ ∞

−∞
dpc.m.

∫ ∞

−∞
dprel e

−i(Ubg+p2
c.m./2M+p2

rel/2µ)t/h̄

× C̃

(
Ubg + p2

c.m./2M + p2
rel/2µ

h̄

)
×〈pc.m., 0, 0, prel, 0, 0|bgW |ψT〉∣∣ϕc.m.

0,0

〉|φres〉
× 〈xc.m., xrel|pc.m., 0, 0, prel, 0, 0〉bg. (21)

Even taking C̃(E/h̄) to be sharply peaked in energy, it still
admits the whole class of degenerate eigenstates that fall
into that energetic region. As we show next, the matrix
element 〈pc.m., 0, 0, prel, 0, 0|bgW |ψT〉|ϕc.m.

0,0 〉|φres〉 effects a
further restriction of the accessible eigenstates, yielding the
physically appropriate description of the situation.

C. Asymptotic center-of-mass motion

The main effect of the longitudinal trap is to correlate
the motion of the interatomic distance with the center of
mass, since the center of mass evolution is confined for small
interatomic distances, while it is free for distances beyond the
size of the trap. For a sufficiently narrow energy distribution
this merely results in a global time delay for the start of the

free center of mass propagation, which may be neglected at
the time scales of the asymptotic regime. The longitudinal
center of mass motion can thus be described by the momentum
eigenstates |pc.m.〉, that is, by

|pc.m., 0, 0, prel, 0, 0〉bg ≈ |pc.m.〉
∣∣ϕc.m.

0,0 〉∣∣prel, 0, 0〉bg.

Here |prel, 0, 0〉bg denotes the eigenstates of the Hamiltonian
for the relative motion, which still contains the traps and the
interatomic potential Vbg. The dissociation state then reads

〈xc.m., xrel|�bg(t)〉
≈

|xrel |→∞
t→∞

1

ih̄

∫ ∞

−∞
dpc.m.

∫ ∞

−∞
dprele

−i(Ubg+p2
c.m./2M+p2

rel/2µ)t/h̄

× C̃

(
Ubg + p2

c.m./2M + p2
rel/2µ

h̄

)
〈pc.m.|ψT〉

× 〈prel, 0, 0|bgW |φres〉〈zc.m.|pc.m.〉
〈
ρc.m.

∣∣ϕc.m.
0,0

〉
×〈xrel|prel, 0, 0〉bg. (22)

The matrix element 〈pc.m.|ψT〉, given by the longitudinal
harmonic trap ground state, guarantees that the center of
mass motion remains centered at vanishing momentum,
as required by momentum conservation in the dissociation
process. Since we take the energy to be in the ultracold
regime of the background channel potential Vbg, the matrix
element 〈prel, 0, 0|bgW |φres〉 is practically constant and does
not impose any further structure on the momentum distribution
of the dissociation state.

D. Connection to spectroscopy

We now give an estimate of the matrix element
〈prel, 0, 0|bgW |φres〉 in terms of spectroscopically available
quantities such as the width of the Feshbach resonance and
the background channel scattering length. A natural basis
of energy eigenstates is provided by the scattering states
|φ(+)

p 〉, where [p̂2
rel/2µ + Vbg(r)]|φ(+)

p 〉 = p2/(2µ)|φ(+)
p 〉 [29].

It describes the scattering in the relative motion in the absence
of the confining laser potentials, with an incoming plane wave
with momentum p as a boundary condition.

In order to relate 〈prel, 0, 0|W |φres〉 to the spectroscopically
available matrix element 〈φ(+)

p |W |φres〉, we note that the spatial
extension of the longitudinal trap is much larger than the
support of the channel coupling W |φres〉. This scale separation
permits one to approximate the effect of the longitudinal trap
by a mere energy shift,

〈prel, 0, 0|bgW |φres〉 ≈ 〈prel + pT, 0, 0|woW |φres〉, (23)

where |prel, 0, 0〉wo denotes the background channel energy
eigenstates of the relative motion without the trap potential
(without loss of generality prel > 0). The momentum shift pT

is related to the trap depth by U0,T = p2
T/2µ. Inserting the

identity in terms of the basis |φ(+)
p 〉, we can rewrite the matrix

element as

〈prel + pT, 0, 0|woW |φres〉
=

∫
d3p〈prel + pT, 0, 0

∣∣
woφ

(+)
p

〉〈
φ(+)

p

∣∣W |φres〉. (24)

The matrix element 〈prel + pT, 0, 0|woφ
(+)
p 〉 can be evaluated

for a vanishing background channel potential, Vbg(r) ≡ 0,
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since the scattering due to Vbg should not result in a substantial
modification of the overlap. We thus have

〈prel + pT, 0, 0|woφ
(+)
p 〉

≈ 〈prel + pT|pz〉
〈
ϕrel

0,0

∣∣px〉|py〉

= δ(prel + pT − pz)
1√

h̄ωGµπ
e−(p2

x+p2
y )/2µh̄ωG . (25)

Insertion into (24) yields 〈prel + pT, 0, 0|woW |φres〉 ≈√
4πµh̄ωG〈φ(+)

0 |W |φres〉, where we use that prel + pT still lies
in the ultracold regime such that W |φres〉 cannot be resolved
and hence 〈φ(+)

p |W |φres〉 ∼= 〈φ(+)
0 |W |φres〉. This is justified

given that prel is mainly determined by C̃. With (23) we thus
obtain the desired connection to the spectroscopically available
quantity 〈φ(+)

0 |W |φres〉,
〈prel, 0, 0|bgW |φres〉 ≈

√
4πµh̄ωG〈φ(+)

0 |W |φres〉. (26)

According to Feshbach scattering theory [29]

|〈φ(+)
0 |W |φres〉|2 = 4πh̄2

m(2πh̄)3
abg µres �Bres, (27)

with abg being the background channel scattering length, �Bres

the resonance width, and µres the difference between the
magnetic moments of the Feshbach resonance state and a pair
of asymptotically separated noninteracting atoms.

E. Asymptotic relative motion

Finally, let us approximate the basis states |prel, 0, 0〉bg in
the asymptotic regime zrel → ∞, where the scattering states
differ from the longitudinally free energy eigenstates only in
a scattering phase ϕsc(prel),

〈xrel|prel, 0, 0〉bg ∼
zrel→∞ eiϕsc(prel)〈zrel|prel〉

〈
ρrel

∣∣ϕrel
0,0

〉
. (28)

The phase ϕsc(prel) has two contributions, stemming from
Vbg and VT. Since we are in the ultracold regime of Vbg, its
contribution is a linear shift given by the background channel
scattering length abg. The contribution from VT, on the other
hand, can be linearized due to our requirement that the energy
be sharply peaked, because the width of the energy distribution
is then small compared to the characteristic energy scale of the
trap potential. The latter is determined by the trap depth U0,T

and is thus on the same order of magnitude as the kinetic energy
after dissociation. This situation is similar to the scattering of a
narrow wave packet with spread �E at a broad resonance with
width , �E �  [34]. Confinement-induced resonances [35]
due to the guide potential are negligible provided the ground
state size a⊥ = (h̄/mωG)1/2 greatly exceeds the background
channel scattering length, a⊥  abg.

As described by a linear scattering phase, the potentials
thus merely effect an overall spatial displacement of the
generated dissociation state. Physically, this shift stems from
the faster propagation of the particles in the trap region. Since
we are mainly interested in the structure of the generated
dissociation state, we can safely neglect this displacement and
approximate

〈xrel|prel, 0, 0〉bg ≈
zrel→∞〈zrel|prel〉

〈
ρrel

∣∣ϕrel
0,0

〉
. (29)

F. Canonical dissociation state

Putting this all together, the asymptotic dissociation state
reads as

〈xc.m., xrel|�bg(t)〉
≈

|xrel |→∞
t→∞

1

ih̄

√
4πµh̄ωG〈φ(+)

0 |W |φres〉

×
∫ ∞

−∞
dpc.m.

∫ ∞

−∞
dprele

−i(Ubg+p2
c.m./2M+p2

rel/2µ)t/h̄

× C̃

(
Ubg + p2

c.m.

/
2M + p2

rel

/
2µ

h̄

)
〈pc.m.|ψT 〉

× 〈zc.m.|pc.m.〉
〈
ρc.m.

∣∣ϕc.m.
0,0

〉〈zrel|prel〉
〈
ρrel

∣∣ϕrel
0,0

〉
. (30)

Normalizing the spectrum with

‖C̃‖2 =
∫ ∞

−∞
dpc.m.

∫ ∞

−∞
dprel

× ∣∣C̃(
Ubg/h̄+p2

c.m.

/
2Mh̄+p2

rel

/
2µh̄

)∣∣2|〈pc.m.|ψT〉|2
(31)

and introducing the abbreviation

Cbg = 1

ih̄

√
4πµh̄ωG〈φ(+)

0 |W |φres〉‖C̃‖, (32)

we can express the dissociation state in canonical form,

|�bg(t)〉 ≈
|xrel |→∞

t→∞
CbgU

(0)
z,t |�z〉

∣∣ϕc.m.
0,0

〉∣∣ϕrel
0,0

〉
. (33)

Here U
(0)
z,t = exp[−i(p̂2

c.m./2M + p̂2
rel/2µ + Ubg)t/h̄] is the

free longitudinal time evolution operator, and the longitudinal
state component |ψz〉 is defined by the momentum representa-
tion

〈pc.m.|〈prel|�z〉

= C̃
(
Ubg/h̄ + p2

c.m.

/
2Mh̄ + p2

rel

/
2µh̄

)
‖C̃‖ 〈pc.m.|ψT〉. (34)

The dissociation probability is given by |Cbg|2, which can
be expressed in terms of the aforementioned spectroscopic
quantities using (27),

|Cbg|2 = ωGabgµres�Bres

πh̄2 ‖C̃‖2. (35)

It is mainly controlled by the applied magnetic field pulse
which determines ‖C̃‖2. We now focus on choices of the
resonance width �Bres and the magnetic field pulse such that
the dissociation probability is on the order of a few percent.

Taking Eqs. (33), (34), and (35) together, we have found the
desired expression for the asymptotic dissociation state. It is
characterized by the trap geometry and, most importantly, by
the Fourier transform of the closed-channel amplitude C̃(ω),
which is in turn determined by the applied magnetic field
pulse sequence. In order to answer what kind of states can
be generated, we thus have to determine the dynamics of the
closed-channel amplitude C(t).
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V. CLOSED-CHANNEL AMPLITUDE DYNAMICS

In the previous section we found that the momentum
representation (34) of the asymptotic dissociation state is
mainly determined by the Fourier transform C̃(ω) of the
closed-channel amplitude. In order to determine the generated
state for a given magnetic field pulse sequence, we thus have to
determine the dynamics of the closed-channel amplitude C(t)
as determined by Eq. (16).

A. Separation of decay and driving dynamics

Let us rewrite the integral equation (16) as

[
ih̄∂t − Eres(B(t)) − Ucl

]
C(t) =

∫ t

−∞
dt ′f (t − t ′)C(t ′),

(36)

with the kernel

f (τ ) = 1

ih̄
〈ψT|〈ϕc.m.

0,0

∣∣〈φres|WUbg(τ )W |ψT〉∣∣ϕc.m.
0,0

〉|φres〉

= 1

ih̄

∑
E

e−iEτ/h̄
∣∣〈E|bgW |ψT〉∣∣ϕc.m.

0,0

〉|φres〉
∣∣2, (37)

where we used the decomposition of the background channel
time evolution operator (17). The right-hand side of Eq. (36)
describes the effect of the coupling between the channels on the
closed-channel amplitude. It is quadratic in the interchannel
coupling W and, hence, for a weak coupling and sufficiently
short dissociation windows, its effect is expected to yield
a small correction to the unperturbed dynamics given by
the left-hand side. Physically, we expect it to describe the
decay of the closed-channel amplitude due to the escaping
wave packet in the background channel. The kernel (37)
may be viewed as the time-dependent overlap between the
“initial state,” W |ψT〉|ϕc.m.

0,0 〉|φres〉, and its evolved version,
Ubg(τ )W |ψT〉|ϕc.m.

0,0 〉|φres〉, which vanishes at large times due
to the unbounded propagation in the background channel. It
does not depend on the external magnetic field B(t).

The kernel (37) is expected to drop off on a microscopic
(“memory”) time scale tm, which can be roughly estimated
from the spatial width �x of the closed-channel bound state
|φres〉. Denoting the corresponding momentum uncertainty by
�p, one obtains the drop-off time scale tm = m�x2/h̄ from
�p tm/m = �x and the uncertainty relation. The spatial width
of the closed-channel bound state |φres〉 is on the order of
the closed-channel scattering length, with typical values on
the order of �x ≈ 100 a0. Taking the mass of lithium atoms
(6Li) one thus gets the estimate tm ≈ 10 ns, which should be
compared to the inverse decay rate of the resonance, which is
much greater in our case. Given this shortness of tm, one might
consider taking the limit tm → 0, which is equivalent to setting
f (τ ) ∝ δ(τ ), but it will become clear later in this article that
this approximation is too crude and cannot even qualitatively
account for the correct decay behavior.

In order to separate the anticipated decay from the unitary
dynamics due to the left-hand side, we switch over to a
“comoving frame” defined by

C(t) = C0(t)D(t), (38)

where the uncoupled closed-channel amplitude C0(t) follows
by definition from[

ih̄∂t − Eres(B(t)) − Ucl
]
C0(t) = 0, (39)

which implies

C0(t) = C0(t0) exp

{
−i

∫ t

t0

dt ′[Eres(B(t ′)) + Ucl]/h̄

}
. (40)

Applying the ansatz (38) on (36) and using (39) and (40), one
finds that the evolution of the coupling dynamics is governed
by

ih̄∂tD(t) =
∫ t

−∞
dt ′D(t ′)f (t − t ′)

× exp

{
i

∫ t

t ′
dt ′′[Eres(B(t ′′)) + Ucl]/h̄

}
. (41)

Since D(t) is driven only by the coupling between the two
channels, we expect it to vary slowly for sufficiently small
interchannel coupling W , such that it can be considered
constant to good approximation on the time scale tm of
nonvanishing kernel f (t − t ′). This allows us to pull D(t)
out of the integral, leading to

∂tD(t) = α(t)D(t),

with the (in general complex) coupling coefficient

α(t) = 1

ih̄

∫ t

−∞
dt ′f (t − t ′)

× exp

{
i

∫ t

t ′
dt ′′[Eres(B(t ′′)) + Ucl]/h̄

}
. (42)

By writing

α(t) = −(t)/2 − i�E(t)/h̄, (43)

we make explicit that the real and imaginary parts of α(t)
describe the decay rate (t) and an energy shift �E(t),
respectively, as induced by the coupling between the two
channels.

B. Decay dynamics

One can evaluate the coupling coefficient (42) further in
the case of sufficiently smooth steering of the magnetic field,
such that the resonance energy varies slowly on the scale of
the drop-off time tm,

d

dt
Eres(t) tm � h̄

tm
. (44)

In the vicinity of the resonance Bres one can linearize,

Eres(t) = µres[B(t) − Bres], (45)

leading to

d

dt
B(t) � h̄

t2
mµres

. (46)

This assumption allows one to approximate the integral in the
exponent of (42) as∫ t

t ′
dt ′′[Eres(B(t ′′)) + Ucl]/h̄ ≈ [Eres(B(t)) + Ucl](t − t ′)/h̄,

(47)
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such that we can rewrite the coupling coefficient (42) as

α(t) = 1

ih̄

∫ ∞

−∞
dt ′
(t − t ′)f (t − t ′) ei [Eres(B(t))+Ucl] (t−t ′)/h̄.

(48)

This can be read as the Fourier transform of the product of
f (τ ) and the Heaviside step function 
(τ ), implying

α(t) = − i

2h̄
f̃

[
Eres(B(t)) + Ucl

h̄

]
+ 1

2πh̄

× P
∫ ∞

−∞

dω

ω
f̃

[
Eres(B(t)) + Ucl

h̄
− ω

]
, (49)

where P denotes the Cauchy principal value. Making use
of (37), the Fourier transform f̃ (ω) = ∫ ∞

−∞ dt eiωtf (t) of the
kernel reads

f̃ (ω) = 2π

ih̄

∑
E

δ(ω − E/h̄)
∣
∣〈E|bgW |ψT〉∣∣ϕc.m.

0,0

〉|φres〉
∣
∣

2
. (50)

We thus find the decay rate according to (43) to be given by

(t) = 2π

h̄

∑
E

δ(Eres(B(t)) + Ucl − E)

× ∣
∣〈E|bgW |ψT〉∣∣ϕc.m.

0,0

〉|φres〉
∣
∣

2
, (51)

and the coupling-induced energy shift by

�E(t) =
∑
E

P

[
1

Eres(B(t)) + Ucl − E

]

× ∣
∣〈E|bgW |ψT〉∣∣ϕc.m.

0,0

〉|φres〉
∣
∣

2
. (52)

Eq. (51) shows that a nonvanishing decay rate is obtained
only when Eres(t) + Ucl matches a background channel energy
eigenvalue. In particular, the gap in the spectrum between
the dissociation threshold and the highest excited bound
state explains why decay occurs only when the resonance
energy lingers above the continuum threshold. (We always stay
off-tuned from bound states of Vbg [with Vbg as in Eq. (3)].
This also explains why the naive approximation for the kernel,
f (τ ) ≈ f0 δ(τ ), is not applicable; since the Fourier transform
of δ(τ ) is constant, it cannot distinguish energies above and
below the continuum threshold and thus predicts an unphysical
decay below the threshold.

Note that (51), which coincides for constant magnetic
field with the decay rate of the corresponding Feshbach
scattering resonance, may also be viewed as a generalized
version of Fermi’s Golden rule, where the decay rate is
determined by the instantaneous resonance energy Eres(B(t)),
which in turn is externally controlled via the magnetic field
B(t). This coincidence is not accidental, of course, since the
limit of a slowly varying magnetic field (46) admits both
interpretations. The condition (46) quantifies the applicability
of this approximation.

Let us now use the results of the preceeding section by
specifying the energy eigenbasis according to (20). Assuming
again that the resonance state energy Eres(B(t)) only sweeps
over energies in the vicinity of the background channel con-
tinuum threshold, remaining in the ultracold energy regime,
below the first excited transversal state and off-tuned from the
highest bound state of Vbg, we can write

�E(t) = ∣
∣
〈
prel = 0, nrel

G = 0,mrel
G = 0

∣∣
bgW |φres〉

∣
∣

2
∫ ∞

−∞
dpc.m.

∫ ∞

−∞
dprel

× P

[
1

Eres(B(t)) + Ucl − Ubg − p2
c.m.

/
2M − p2

rel

/
2µ

]
|〈pc.m.|ψT〉|2 (53)

and

(t) = 2π

h̄

∣
∣
〈
prel = 0, nrel

G = 0,mrel
G = 0

∣∣
bgW |φres〉

∣
∣

2
∫ ∞

−∞
dpc.m.

∫ ∞

−∞
dprel|〈pc.m.|ψT〉|2

× δ
(
Eres(B(t)) + Ucl − Ubg − p2

c.m.

/
2M − p2

rel

/
2µ

)
. (54)

We have omitted transitions into bound states of the lon-
gitudinal trap; they are negligible given the pulse sweeps
sufficiently fast over the corresponding energies. Moreover,
one can arrange the dissociation pulse B(t) such that the offset
of the resonance state energy from the background channel
continuum threshold greatly exceeds the trap state momentum
uncertainty σp,T for most of the time, Eres(B(t)) + Ucl −
Ubg  σ 2

p,T/2M . In that case the integrals are dominated by
prel  pc.m., and we can approximate

|〈pc.m.|ψT〉|2 ≈ δ(pc.m.). (55)

This yields a vanishing energy shift, �E(t) = 0, since the
principal value integration cancels. For the decay rate, on the

other hand, we find

(t) = 2ωGabgµres�Bres

h̄

×
√

2µ

Eres(B(t)) − 2U0,T + h̄ωT/2 − h̄ωG

×
(Eres(B(t)) − 2U0,T + h̄ωT/2 − h̄ωG), (56)

where we substituted |〈prel = 0, nrel
G = 0, mrel

G = 0|bg

W |φres〉|2 = ωGabgµres�Bres/π , Ubg = −2U0,G + 2h̄ωG and
Ucl = −2U0,T + h̄ωT/2 − 2U0,G + h̄ωG. As expected, we find
that the decay rate (56) is nonvanishing only for mag-
netic field values that lift the resonance state above the
(longitudinal) background channel continuum threshold.
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The offset −2U0,T + h̄ωT/2 − h̄ωG in the step function gives
the energy to be provided in addition to the free dissociation
threshold; there, the trap depth to be overcome by both atoms
is reduced by the closed-channel center-of-mass ground state
energy h̄ωT/2, while the transversal relative motion, tightly
bound in the closed channel, must make the transition to the
transversal ground state of the guide. The square root pole
stems from the one-dimensional state density and does not lead
to appreciable effects as long as the pulse sweeps sufficiently
fast over it.

In summary we find, under appropriate conditions on
the dissociation pulse, that the decay dynamics of the
closed-channel amplitude is described by

∂tD(t) = −(t)

2
D(t), (57)

with the decay rate (t) given by (56). By noting the
formal solution D(t) = D(t0) exp[− ∫ t

t0
dt ′(t ′)/2], the overall

closed-channel amplitude C(t) then follows from C(t) =
C0(t)D(t), with the uncoupled closed-channel amplitude C0(t)
given by (40).

For the asymptotic dissociation state as described in
Sec. IV we ultimately need to know the Fourier transform of the
closed-channel amplitude, which is given by the convolution
of the Fourier transforms of C0(t) and D(t),

C̃(ω) = 1

2π

∫ ∞

−∞
dω̄C̃0(ω̄)D̃(ω − ω̄). (58)

In the limiting case of strong interchannel coupling or
long-lasting, slowly varying dissociation pulses, the kinetic
energy distribution of the dissociated atoms, denoted by
n (E), is determined by the decay dynamics D (t) alone. In
this quasi-stationary situation one may take the dissociation
to occur monoenergetically, at the momentary resonance
energy, by writing n(E)dE = (t)|D(t)|2dt . For a monoton-
ically increasing pulse energy Eres (t) the inverse t(E) exists
[defining Ėres(E) = ∂tEres(t(E))], and also the decay rate (56)
can be viewed as a function of energy. Since D (t) decays
exponentially it then follows that the energy distribution is
given by

n (E) = − d

dE
exp

[
−

∫ E

E0


(
E′)

Ėres (E′)
dE′

]
. (59)

This kind of quasistationary approach was used in [23] for
the case of a linear field sweep, Ėres = const, and the above
formula is consistent with their treatment when evaluated in
the absence of confining lasers.

On the other hand, in the case of a sudden magnetic
field jump to a constant value B0 + �B above the threshold
(which can be considered a square-shaped pulse in the limit
of infinite pulse duration), the Fourier transform C̃0(ω) gets
sharply peaked at Eres(B0 + �B), as is shown later in this
article. The function C̃(ω) then reduces to C̃(ω) ≈ D̃(ω −
Eres(B0 + �B)/h̄), with D̃(ω) being a Lorentzian according
to D(t) ∝ exp[−(Eres(B0 + �B))t/2], which recovers the
corresponding situation in [22].

However, in the following we are interested in the case
where a magnetic field pulse dissociates on average only
a single molecule out of the BEC. This implies that the

decay of D(t) can be neglected compared to the dynamics
of C0(t), such that the Fourier transform C̃(ω) is essentially
given by C̃0(ω). We will therefore focus on the uncou-
pled closed-channel amplitude C0(t), from now on, and in
particular on magnetic field pulses that result in a sharply
peaked momentum distribution, as required for interferometric
purposes. The following section is devoted to magnetic
field pulses that optimize C̃0(ω) with that respect. Eq. (58)
shows that any non-negligible decay of the closed-channel
amplitude then merely results in an undesired smearing of the
spectrum.

VI. OPTIMAL MAGNETIC FIELD PULSE

We proceed to characterize the magnetic field pulse shape
that is optimal in terms of providing wave packets with well-
defined momentum in the undepleted molecular field limit. To
this end, we can restrict the discussion to the case of a single
dissociation pulse, since the generalization to sequences of
pulses is straightforward. In addition, as explained previously,
we are interested in situations where the depletion of the
BEC can be neglected, such that the closed-channel amplitude
C(t) is well approximated by the uncoupled component C0(t),
whose dynamics is given by (39) and (40).

A. Dimensionless formulation

We start by switching to a more convenient representation.
Since the resonance state energy Eres(B(t)) is proportional to
the magnetic field B(t) in the vicinity of the Feshbach reso-
nance, see (45), it is sufficient to investigate the dependence on
Eres(B(t)). We rewrite the integrand in the exponent of (40) as

Eres(B(t)) + Ucl = E0 + �EP (t/T ), (60)

where P (t/T ) describes a pulse with unit height, E0 denotes
the base value, and �E and T characterize the height and the
width of the pulse, respectively. Introducing the dimensionless
energy ε = �ET/h̄ and the phase function

φ(t/T ) =
∫ t/T

t0/T

dt̃P (t̃) + φ0, (61)

we can write the Fourier transform of C0(t) as

e−iE0t0/h̄

C0(t0)
C̃0(ω + E0/h̄) =

∫ ∞

−∞
dteiωt e−iεφ(t/T ). (62)

Given that the pulse function P (t̃) is positive and has a compact
support, the phase function φ(t) undergoes a monotonic ascent
interpolating between two constant levels. If the pulse is also
symmetric, P (−t̃) = P (t̃), the constant of integration φ0 can
be chosen such that the phase function φ(t) is antisymmetric,
φ(−t) = −φ(t). The constant prefactor on the left-hand side
of (62) is irrelevant and is neglected in the following.

B. Gaussian magnetic field pulse

We now ask for phase functions φ(t) that yield a well-
behaved spectrum C̃0(ω). A natural starting point is to consider
the spectrum resulting from a Gaussian-shaped pulse function
P (t̃). In this case, as for most other pulses, the integral on
the right-hand side of (62) cannot be calculated exactly. But
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asymptotic expansion techniques can be applied if we take the
dimensionless energy ε to be large, ε  1. This is a justified
assumption in realistic scenarios. An estimate with µres ≈
10−2µB, �B = 100 mG [where B(t) = B0 + �BP (t/T )],
and T = 100 ms yields ε = 103.

The Gaussian pulse leads to the error function,

φ(t̃) = erf(t̃),

whose analyticity admits a uniform asymptotic expansion [36],
which is capable of handling stationary points both lying on
the real axis and in the complex plane. Dropping the prefactor
on the left-hand side of (62), the result reads

C̃0(ω + E0/h̄)

T
= 2πi

a0

ε1/3
Ai(ε2/3γ 2), (63)

with the coefficients

γ =
{

i
(

3
2

[
erf (α) − ωT

ε
α
])1/3

if ωT
ε

� 2√
π

− (
3
2

[
ωT
ε

α − erfi(α)
])1/3

if ωT
ε

> 2√
π

,

and

a0 =
⎧⎨
⎩−i

( 3
2 [erf(α)−ωT α/ε])1/6

(ωT α/ε)1/2 if ωT
ε

� 2√
π

−i
( 3

2 [ωT α/ε−erfi(α)])1/6

(ωT α/ε)1/2 if ωT
ε

> 2√
π

,

where

α =

⎧⎪⎪⎨
⎪⎪⎩

√
− ln

(√
π

2
ωT
ε

)
if ωT

ε
� 2√

π√
ln

(√
π

2
ωT
ε

)
if ωT

ε
> 2√

π

.

Numerical analysis verifies excellent agreement with the exact
result for large ε. A plot of the corresponding spectrum for
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FIG. 2. (Color online) Fourier transform C̃0(ω) of the uncoupled
closed-channel amplitude, here evaluated for a Gaussian magnetic
field pulse with the dimensionless energy ε = 100. In the plot the
numerically exact result is indistinguishable from the asymptotic
evaluation as given by Eq. (63). As described in Sec. IV, C̃0(ω)
essentially determines the momentum distribution of the asymptotic
dissociation state, see Eq. (34). One observes that the spectrum
does not exhibit a narrow peak-structure as one would require for
atoms propagating with well-defined momenta. Rather, the spectrum
exhibits contributions from all energies the pulse sweeps over. The
oscillations stem from the interference between the contributions of
the ascending and the descending slope of the pulse.

ε = 100 is given in Fig. 2. It clearly does not exhibit a well-
behaved peak structure, but rather shows contributions from all
energies covered by the pulse sweep. The oscillating structure
can be understood as due to the interference between the con-
tributions from the ascending and the descending slope of the
pulse.

C. Square-shaped magnetic field pulse

A clearer and more general insight into the relation between
the pulse and the corresponding spectrum can be obtained by
retreating to the stationary phase approximation. This comes
at the cost of losing the spectrum in the tail region where
the stationary points of the exponent in (62) leave the real
axis. On the other hand, also nonanalytic functions can now
be treated. For the sake of simplicity, we consider symmetric
pulses, P (−t̃) = P (t̃). In stationary phase approximation, we
then get from (62)

C̃0(ω + E0/h̄)

T
=

√
8π

ε|P ′(t̃ω)| cos
[
ωT t̃ω − εφ(t̃ω) + π

4

]
for ωT/ε < φ′′

max, (64)

where t̃ω denotes the positive (dimensionless) stationary point,
defined implicitly by φ′(t̃ω) = ωT/ε. Since t̃ω is associated
with the instant at which the pulse sweeps over the frequency ω,
it is manifest from (64) that the corresponding contribution to
the spectrum is the more suppressed the faster the pulse sweeps
over the corresponding energy, as one expects physically.

Aiming at a spectrum that is well peaked at a specific energy,
we thus must strive for magnetic field pulses that sweep as fast
as possible over the region of undesired energies and then rest
at a plateau determined by the desired energy. The (idealized)
optimal pulse with that respect is a square-shaped pulse,

P (t̃) = 
(t̃ + 1/2)
(t̃ − 1/2), (65)

for which (62) can be calculated directly, yielding

C̃0(ω + E0/h̄)

T
= 2π cos

(ε

2

)
δ(ωT )

+ sinc

(
ωT − ε

2

)
P
( ε

ωT

)
. (66)

The pole at ωT = 0 can be traced back to the fact that the pulse
function (65) is nonvanishing only on a finite time interval.
For E0 < 0, which corresponds to an asymptotic magnetic
field in the bound regime, this pole lies at a negative energy
irrelevant for the shape of the dissociation state, as was shown
in Sec. IV. For our purposes it is thus sufficient to restrict
the discussion to positive frequencies with ω + E0/h̄ > 0. A
plot of (66) for ε = 100 is shown in Fig. 3. As anticipated,
the spectrum exhibits a pronounced peak at ωT = ε, whose
width is characterized by the pulse duration T . According to
(34), the corresponding dissociation state therefore exhibits
a narrow momentum distribution. This was used in [32]
where the two-particle momentum distribution generated by a
square pulse has been worked out for a specific experimental
scenario.

This concludes the quest for the optimal magnetic field
pulse shape. As indicated in the stationary phase calculation
(64), by sweeping as fast as possible over undesired energies
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FIG. 3. (Color online) Fourier transform C̃0(ω) of the uncoupled
closed-channel amplitude component for a square-shaped magnetic
field pulse with dimensionless energy ε = 100. In contrast to the
Gaussian pulse spectrum, it exhibits a pronounced peak at ωT = ε.
Together with the connection (34) between C̃(ω) and the asymptotic
dissociation state, this proves the capability of the scheme to provide
relatively well-defined atom momenta, even though there is no way
to tailor arbitrary dissociation states. In particular, sequences of such
pulses then can serve to generate highly nonclassical motionally
entangled states. (Since E0 < 0 the pole at ωT = 0 does not affect
the asymptotic behavior of the atoms.)

one singles out a spectrum peaked at the desired energy. This
has been verified numerically for a large variety of pulse forms.
In particular, it is now clear that smoothening the edges of
the square shape inevitably enhances the undesired ripples in
the region of the energies swept over, contradicting the naive
expectation that they stem from the nondifferentiable ansatz
(65) for the pulse.

More generally, we found that the nature of Feshbach
dissociation dynamics puts strong limitations on the possible
range of states that can be generated. It is in general not
possible to find a pulse shape so as to generate a specified
dissociation state. On the other hand, as was demonstrated in
[25], the combination of a sequence of two dissociation pulses
yields a promising perspective to generate highly nonclassical
motionally entangled two-atom states with the capacity to
violate a Bell inequality.

VII. CONCLUSIONS

We described the dissociation of Feshbach molecules as
triggered by a time-varying external magnetic field in a
realistic trap and guide setting. Employing a coupled-channel
formulation including the center of mass motion, we derived an
analytic expression for the asymptotic dissociation state in the
laser guide. It is essentially determined by the Fourier trans-
form of the closed-channel amplitude C(t). The established
relation between applied dissociation pulse and resulting
spectrum C̃(ω) puts strong limitations on the possibility to
tailor a pulse shape in order to obtain a desired dissociation
state. However, a square-shaped magnetic field pulse is
shown to optimize the momentum distribution with respect
to its width, as it is required for subsequent interferometric
processing.

The use of the Feshbach dissociation scheme as a source
for entangled atom states was demonstrated in [25]. There,
a sequence of two equal magnetic field pulses dissociates
the molecules such that each atom is delocalized into a
pair of macroscopically separated, consecutive wave packets.
Their subsequent interferometric processing on each side
then constitutes a Bell test whose success requires a sharp
momentum distribution as provided by the discussed square-
shaped pulses.

An alternative protocol that can do without the interferom-
eters employs a sequence of dissociation pulses of different
heights. Given that the second pulse is the stronger one, the
corresponding wave packets propagate faster as compared
to the ones associated with the first pulse, such that time
evolution alone effects their overlap. Position measurements
in the overlap region on each side and their appropriate
dichotomization may again reveal nonclassical correlations
that entail a Bell violation.

One may also discard the restriction to the dissociation
of a single pair and consider the simultaneous dissociation
of a multitude of molecules in a multipair Bell setting [37].
Statistical effects due to the indistinguishability of the particles
then require a theoretical treatment beyond the single-molecule
dissociation dynamics. For this, the previously derived two-
body transition amplitude (between molecular initial state
and asymptotic dissociation state) could serve as an essential
building block, for example, with respect to a cumulant
expansion [38].
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