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We show that the Schrödinger-Newton equation, which describes the nonlinear time evolution of self-
gravitating quantum matter, can be made compatible with the no-signaling requirement by elevating it to a
stochastic differential equation. In the deterministic form of the equation, as studied so far, the nonlinearity
would lead to diverging energy corrections for localized wave packets and would create observable
correlations admitting faster-than-light communication. By regularizing the divergencies and adding
specific random jumps or a specific Brownian noise process, the effect of the nonlinearity vanishes in the
stochastic average and gives rise to a linear and Galilean invariant evolution of the density operator.
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I. INTRODUCTION

The Schrödinger-Newton (SN) equation has gained
growing attention as a possibility both to explain the
absence of quantum superpositions at the macroscale
and to reconcile nonrelativistic quantum mechanics with
classical Newtonian gravity [1–5]. According to this
equation, the wave function ψðrÞ of a test mass m creates
its own potential energy through gravitational interaction
with its “mass density” mjψðrÞj2, thereby contributing a
nonlinear term to the Schrödinger equation. The validity of
this approach is, however, still under debate.
For example, the SN equation is often assumed to be

the low-energy manifestation of relativistic gravity in the
dynamics of nonrelativistic quantum matter. Indeed, the SN
equation can be obtained from a semiclassical mean-field
approximation of gravitating relativistic field dynamics
[6,7]. But this only holds in the many-particle limit, where
each particle interacts with the gravitational field of its own
and all of the other masses in the system. Hence it is not
clear whether this description makes sense in the case of a
single particle. In addition, the self-gravitational potential
diverges as the particle’s wave function covers an increas-
ingly broad range of momenta, approaching, say, a position
eigenstate. As a nonrelativistic low-energy approximation,
the SN equation should certainly not be applied to such
limiting cases.
Another conceptual issue is related to the nonlinear

deterministic nature of the SN equation. It is well known
[8,9] that such nonlinearities may facilitate superluminal
communication via entangled states.
Moreover, a thorough analysis of whether the SN

equation can help explaining the quantum-classical tran-
sition and turn delocalized into localized wave packets has
barely begun [3,4,10]. Gravitationally induced or sponta-
neous collapse models [11–16] are well-studied alternatives
to the SN equation when it comes to the objective reduction
of quantum superposition states. It was pointed out within
this context that any nonlinear addition to the Schrödinger

equation, such as the SN potential, must be complemented
by an appropriate stochastic term in order to meet the no-
signaling condition [9,10,17]. This should result in a linear
master equation for the statistically averaged density
operator describing a gradual decay of quantum coherence
similar to the predictions of standard decoherence theory
[18,19]. On the level of the wave function the previously
deterministic time evolution is then affected by discrete
jumps or continuous noise.
Here, we present two simple stochastic extensions of the

SN equation: one with discrete jumps determined by a
Poissonian random process, and one with continuous white
noise following a Wiener process. Both comply with the
no-signaling constraint and result in a linear, Markovian,
and Galilean-covariant master equation—thus providing a
bridge between the SN equation and objective collapse
models. For this, it will be necessary to operate with a
regularized version of the SN equation, where a high-
energy cutoff in the gravitational potential implements the
above mentioned limitation of the SN equation to low-
energy wave functions. Divergent energies, which would
lead to conceptual problems in the statistically averaged
time evolution, are thus avoided from the start. We first
restrict to the simple and instructive single-particle case,
and we postpone the treatment of the general N-body
problem to Sec. IV.

II. REGULARIZED SCHRÖDINGER-NEWTON
EQUATION

The SN equation,

iℏ∂tψðrÞ ¼
�
−
ℏ2

2m
Δþ VðrÞ

�
ψðrÞ þ VSN

ψ ðrÞψðrÞ; ð1Þ

was proposed as a nonlinear modification of the standard
Schrödinger equation to describe the influence of classical
gravity on the quantum motion of matter [2,3,5,20]. Given
the wave function ψðrÞ for a single particle of mass m, the
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nonlinear modification describes the gravitational self-
interaction potential of the particle with its own mass
probability density μψðr0Þ ¼ mjψðr0Þj2,

VSN
ψ ðrÞ ¼ −Gm

Z
d3r0

μψðr0Þ
jr − r0j

: ð2Þ

The SN potential is unbounded in the sense that it diverges
if applied to eigenstates of the position operator. Its
contribution to the potential energy exceeds all bounds
as the particle’s wave function gets increasingly localized in
space, i.e., delocalized in momentum. For a Gaussian wave
packet of spatial width σ, the expectation value of the SN
term scales likeGm2=σ, whereas the average kinetic energy
scales in proportion to ℏ2=mσ2. Clearly, the SN equation (1)
ceases to be applicable as soon as relativistic energy scales
are reached, e.g., for nucleons at σ ∼ 1 fm. Yet, at this point
the average kinetic energy of the point particle exceeds the
SN energy correction by orders of magnitude.
A standard practice to avoid divergence beyond the

nonrelativistic low-energy domain is to introduce an
effective high-energy cutoff by replacing the δ-peaked
mass density in the gravitational potential with a regular
function,

μðr0Þ ¼ mhψ jδðr − r0Þjψi → mhψ j~gðjr − r0jÞjψi; ð3Þ

where
R
d3r~gðrÞ ¼ 1 and r the position operator. The

necessity of this regularization will be discussed below,
after we introduce stochastic extensions of the SN equation;
the unregularized case is restored by setting gðkÞ ¼ 1.
With the help of the Fourier transforms

R
d3reik·r=r ¼

4π=k2 and gðkÞ ¼ R
d3r~gðrÞeik·r, the regularized SN modi-

fication can be expressed in terms of the nonlinear operator

HSN
ψ ¼ VSN

ψ ðrÞ ¼ −
Z

d3k
Gm2

2π2k2
gðkÞhψ jeik·rjψie−ik·r: ð4Þ

It complements a given system Hamiltonian H ¼ p2=2mþ
VðrÞ. In terms of the defined operators, the nonlinear
SN equation (1) reads as iℏ∂tjψi ¼ ðHþ HSN

ψ Þjψi.
Numerical studies indicate that the (unregularized) SN

term prevents the dispersion of wave packets for suffi-
ciently macroscopic masses [4]. However, it is not yet clear
whether this term will generally turn delocalized wave
functions into sufficiently localized classical states, a
feature required to explain the quantum-classical transition
at the macroscale [10].
Moreover, such a nonlinear equation would, in principle,

allow for superluminal information transfer [8,9]: One
could construct an entangled bipartite state where the time
evolution of the reduced state on one side would depend on
the choice of measurement basis on the other, arbitrarily
distant, side. This problem can be alleviated by adding an
appropriate stochastic term to the SN equation which

restores the linear time evolution of the statistically
averaged density operator [9,10].

III. STOCHASTIC EXTENSIONS

Let us now present two stochastic extensions of a
particularly compact form, which will give rise to the same
master equation (10). They are determined by the same
nonlinear operator:

AψðkÞ ¼ e−ik·r þ ihψ je−ik·rjψi: ð5Þ

The first is a piecewise deterministic extension,

jdψi ¼ −
i
ℏ
ðHþ HSN

ψ Þjψidt

þ
Z

d3k

�
Aψ ðkÞ

‖Aψ ðkÞjψi‖
− 1

�
jψidNk; ð6Þ

with dNk a family of Poissonian stochastic increments
characterized by Eq. (8) below. Alternatively, one can
consider a diffusive extension (using Itô calculus),

jdψi ¼ −
i
ℏ
ðHþ HSN

ψ Þjψidtþ
Z

d3kAψðkÞjψidWk

−
1

2

Z
d3k

Gm2

2π2ℏk2
gðkÞA†

ψðkÞAψðkÞjψidt; ð7Þ

with dWk a family of Wiener stochastic increments; see
Eq. (9) below.

A. Piecewise deterministic extension

The first stochastic extension (6) of the regularized SN
equation describes discrete quantum jumps interrupting the
unitary time evolution of the state vector jψi, as governed
by a given system Hamiltonian H plus the nonlinear SN
term (4). A multivariate Poisson processNkðtÞ [21,22] shall
decide which jump event (labeled by k) occurs at what
time; a jump associated with the momentum ℏk corre-
sponds to the nonlinear, norm-preserving state transforma-
tion jψi → Aψ ðkÞjψi=‖AψðkÞjψi‖.
The Poissonian increments dNk determine whether or not

a jump occurs within the time interval ½t; tþ dtÞ. They are
statistically independent, E½dNkdNq� ¼ E½dNk�δðk − qÞ. In
order for the SN nonlinearity to vanish in the statistical
average, the increments must have the state-dependent
expectation values

E½dNk� ¼
Gm2

2π2ℏk2
gðkÞ‖AψðkÞjψi‖2dt

¼ Gm2

2π2ℏk2
gðkÞð1þ jhψ je−ik·rjψij2Þdt: ð8Þ

This can be easily confirmed by computing the expectation
value E½dðjψihψ jÞ� and dropping all terms of higher order
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than dt. Note that positivity requires gðkÞ ≥ 0, and a finite
overall jump rate is guaranteed when

R
∞
0 dkgðkÞ < ∞.

B. Diffusive extension

The second stochastic SN equation (7) describes a
Brownian-type diffusion of the state vector in Hilbert
space, formulated in Itô calculus [21,22]. It is governed
by a (state-independent) multivariate complex white noise
process WkðtÞ, with centered Wiener increments dWk
describing independent random variables, E½dWk� ¼ 0
and

E½dW�
kdWq� ¼ δðk − qÞ Gm2

2π2ℏk2
gðkÞdt: ð9Þ

The noise effect on the state vector is again described by the
operator (5). Since this transformation does not preserve the
norm, the second line is required in the stochastic SN
equation (7). It does not contribute to the coherent part of
the time evolution, which is again determined by Hþ HSN

ψ .
As before, the regularizing function gðkÞ must be positive
and integrable.
Although the diffusive extension (7) leads to very

different individual quantum trajectories of the state vector,
it is straightforward to show, using the well-known rules
of Itô calculus [21,22], that the statistical average assumes
the same linear time evolution as in the piecewise deter-
ministic case.

C. Effective classicalization in the ensemble average

Both presented stochastic extensions of the regularized
SN equation give rise to the same time evolution of the
statistically averaged state operator ρ ¼ E½jψihψ j� for the
motion of a single particle. It is described by the Lindblad-
type master equation,

∂tρ ¼ −
i
ℏ
½H; ρ� þ

Z
d3k

Gm2gðkÞ
2π2ℏk2

½e−ik·rρeik·r − ρ�: ð10Þ

This result connects the SN equation with standard collapse
models, such as the Diósi-Penrose (DP) model of gravi-
tational collapse [13,15,23] and the theory of continuous
spontaneous localization (CSL) [9,14], since these can all
be brought to the form (10) by an appropriate choice of the
positive function gðkÞ of finite width.
The DP model, for instance, always assumes a finite

extension of the particle’s mass [13,24] from the start
to avoid divergencies. Diósi’s original master equation
reads as

∂tρ ¼ −
i
ℏ
½H; ρ� − G

2ℏ

Z
d3s1d3s2
js1 − s2j

½ϱðs1 − rÞ; ½ϱðs2 − rÞ; ρ��;

ð11Þ

with ϱðrÞ the (supposedly isotropic) mass density of the
particle. By introducing the Fourier transform ~ϱðkÞ of the
latter, one arrives at the form (10) with gðkÞ ¼ j~ϱðkÞj2=m2.
In the CSL model the function gðkÞ=k2 is assumed to be

a Gaussian whose inverse width is set to about 100 nm
[9,14,18]. Extensive studies on whether such collapse
models can be probed in mechanical superposition experi-
ments [16,24–32] may also serve, via the common master
equation (10), as a test criterion for stochastic SN
equations.
In general, gðkÞ can be any positive and integrable

function. The above form (10) then falls into a generic
class of Galilean-covariant master equations [33], which
gradually “classicalize” the state of motion ρ, rendering it
indistinguishable from a classical mixture in phase space
[34,35]. In fact, Eq. (10) resembles collisional decoherence-
type master equations [19], which describe the decay of
spatial coherence in combination with momentum diffusion
and whose stable pointer-state solutions are solitonic wave
packets moving on Newtonian trajectories [36,37].

D. Discussion

Equations (6) and (7) demonstrate that there exist
mathematically simple stochastic extensions of the SN
equation which cancel the nonlinearity (4) in the sta-
tistically averaged time evolution (10). For this, the
originally unbounded SN potential (2) is to be regularized;
and assuming the associated function gðkÞ vanishes beyond
a characteristic width σk, the jumps (or the noise amplitude)
can be neglected in the stochastic SN equation for jkj ≳ σk.
It must be stressed that the regularizing function gðkÞ

may not be easily dispensed with. Omitting it in (4) and
(10) would, for instance, result in a divergent average
momentum diffusion rate ∂thp2i. One may even argue that
a “high-energy cutoff” in the form of gðkÞ should appear
anyway in the SN potential (4) if the latter is supposed to be
the effective low-energy remnant of quantized gravity.
Other, more complicated stochastic extensions can be

conceived as well, e.g., via unitary mixing of the jump
operators (5). A straightforward example can be con-
structed by Fourier transforming the jump operators,

BψðsÞ ¼
Z

d3k

ffiffiffiffiffiffiffiffiffi
gðkÞp

ð2πÞ3=2k e
ik·sAψ ðkÞ

¼
Z

d3k

ffiffiffiffiffiffiffiffiffi
gðkÞp

ð2πÞ3=2k ½e
ik·ðs−rÞ þ ihψ jeik·ðs−rÞjψi�: ð12Þ

The associated piecewise deterministic extension,

jdψi ¼ −
i
ℏ
ðHþ HSN

ψ Þjψidt

þ
Z

d3s

�
BψðsÞ

‖Bψ ðsÞjψi‖
− 1

�
jψidNs; ð13Þ
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leads again to the same statistically averaged master
equation (10) as before if E½dNs�=dt ¼ Gm2‖BψðsÞjψi‖2=
2π2ℏ; the diffusive form follows by analogy.
The physical meaning of the presented stochastic

Schrödinger equations remains to be clarified—not least
the peculiar form of the jump operators (5) and (12). They
are given in terms of momentum kick operators to which an
expectation value is added with a phase. This construction,
in combination with the regularizing function gðkÞ, is the
price to pay for reconciling the nonlinear SN equation for
the state vector jψi with the linear decoherence-type master
equation (10) for the ensemble state ρ. It is a price hard to
bargain if nonlinear time evolutions of ρ and possible
violations of no-signaling are to be avoided.

IV. MANY-PARTICLE GENERALIZATION

As already mentioned, the single-particle SN equation
can be put into question because of the mean-field origin of
the SN potential [6]. However, many-particle formulations
of the SN equation exist both for the center-of-mass motion
of harmonically bound compounds [38] and the general
case of a dynamical N-body system with total mass M ¼
m1 þm2 þ � � � þmN [2,7]. There, an N-particle wave
function Ψðr1;…; rNÞ is subject to the total gravitational
potential

VSN
Ψ ðr1;…; rNÞ ¼ −G

XN
n;l¼1

mnml

×
Z

d3r01…d3r0N
jΨðr01;…; r0NÞj2

jrn − r0lj
; ð14Þ

consisting of both mutual interactions and self-interactions.
The stochastic extensions given in Sec. III are readily

generalized to N-particle systems of distinguishable or
indistinguishable species: We consistently replace all uni-
tary single-particle momentum shift operators expð−ik · rÞ
by nonunitary, mass-weighted sums of single-particle
shifts,

Mk ¼
XN
n¼1

mn

M
e−ik·rn : ð15Þ

The N-particle SN Hamiltonian can now be expressed in
terms of these operators after applying the same Fourier
transformation and regularization procedure as in the
single-particle case (4),

HSN
Ψ ¼ VSN

Ψ ðr1;…; rNÞ

¼ −
Z

d3k
GM2

2π2k2
gðkÞhΨjM†

kjΨiMk: ð16Þ

The same replacement rule applies to the nonlinear jump
operators (5) as well,

AΨðkÞ ¼ Mk þ ihΨjMkjΨi: ð17Þ

The piecewise deterministic extension (6) then generalizes
to

jdΨi ¼ −
i
ℏ
ðHþ HSN

Ψ ÞjΨidt

þ
Z

d3k

�
AΨðkÞ

‖AΨðkÞjΨi‖ − 1

�
jΨidNk

þ 1

2

Z
d3k

GM2

2π2ℏk2
gðkÞ

× ½‖AΨðkÞjΨi‖2 − A†
ΨðkÞAΨðkÞ�jΨidt; ð18Þ

with E½dNk� ¼ ðGM2=2π2ℏk2ÞgðkÞ‖AΨðkÞjΨi‖2dt. Note
that the last term is required here for norm conservation
in the statistical average because the operators (15) are
nonunitary. This additional term vanishes only in the
single-particle case.
The diffusive extension (6) generalizes to

jdΨi ¼ −
i
ℏ
ðHþ HSN

Ψ ÞjΨidtþ
Z

d3kAΨðkÞjΨidWk

−
1

2

Z
d3k

GM2

2π2ℏk2
gðkÞA†

ΨðkÞAΨðkÞjΨidt; ð19Þ

with the Wiener increments fulfilling E½dW�
kdWq� ¼

δðk − qÞðGM2=2π2ℏk2ÞgðkÞdt in Itô calculus.
Both cases yield the same master equation for the

statistically averaged time evolution of the density operator,

∂tρ ¼ −
i
ℏ
½H; ρ�

þ
Z

d3k
GM2gðkÞ
2π2ℏk2

�
MkρM

†
k −

1

2
fM†

kMk; ρg
�
: ð20Þ

This is once again confirmed by computing the expectation
value E½dðjψihψ jÞ�=dt and noting that M†

k ¼ M−k. It is
important to notice that this N-particle master equation still
falls under the class of generic classicalizing modifications
of the von Neumann equation, which are invariant under
Galilean symmetry transformations [35]. Moreover, it still
resembles the CSL model if gðkÞ=k2 is chosen to be a
Gaussian [9]. It may also serve as an N-body version of
Diósi’s master equation (11), which assumes that the mass
of every particle is distributed according to the same (real
and isotropic) distribution function fðrÞ, R d3rfðrÞ ¼ 1.
The mass density of each particle is then given by ϱnðrÞ ¼
mnfðrÞ. Setting gðkÞ ¼ j ~fðkÞj2, the above master
equation (20) can be rewritten as [39]
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∂tρ ¼ −
i
ℏ
½H; ρ�

−
G
2ℏ

XN
n;l¼1

Z
d3s1d3s2
js1 − s2j

½ϱnðs1 − rnÞ; ½ϱlðs2 − rlÞ; ρ��:

ð21Þ

This is a generalization of the single-particle DP model (11)
describing mutual gravity and self-gravity in an equal
manner. The fact that the unitary part of Eqs. (20) and
(21) does not involve the standard gravitational pair
interaction raises the question of whether this equal treat-
ment of self- and mutual gravity in the many-body
description is meaningful.

V. CONCLUSION

We presented two stochastic versions of the SN equation
for self-gravitating quantum particles, which circumvent
the violation of no-signaling by regularizing the SN
potential and compensating it with a random jump or
diffusion process. This renders the ensemble-averaged time
evolution (10) linear. Single-particle equations (6) and (7)

can both be generalized consistently to many-particle
systems, Eqs. (18) and (19), which results in the linear
master equation (20). The latter serves as a link between the
many-particle formulations of the original SN equation
[2,7,38] and the many-body versions of the CSL model [9],
of the DP model [39], and of Galilean-covariant classic-
alizing modifications of the von Neumann equation in
general [35].
A common feature of the presented stochastic equations

is the peculiar form of the jump or noise operators (5) and
(17). They split a wave function into a momentum-shifted
and an unshifted part, where the relative weight depends on
the initial delocalization in momentum space. An interest-
ing direction for further study would be to analyze the
quantum trajectories in the presence of such random jumps
(or Brownian noise). Might these jumps be signatures of a
deeper theory of quantum gravity [40]?
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