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We develop a Monte Carlo wave function algorithm for the quantum linear Boltzmann equation, a Markov-
ian master equation describing the quantum motion of a test particle interacting with the particles of an
environmental background gas. The algorithm leads to a numerically efficient stochastic simulation procedure
for the most general form of this integrodifferential equation, which involves a five-dimensional integral over
microscopically defined scattering amplitudes that account for the gas interactions in a nonperturbative fashion.
The simulation technique is used to assess various limiting forms of the quantum linear Boltzmann equation,
such as the limits of pure collisional decoherence and quantum Brownian motion, the Born approximation, and
the classical limit. Moreover, we extend the method to allow for the simulation of the dissipative and deco-
hering dynamics of superpositions of spatially localized wave packets, which enables the study of many
physically relevant quantum phenomena, occurring e.g., in the interferometry of massive particles.
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I. INTRODUCTION

The motion of a quantum particle interacting with a sur-
roundings particle gas is characterized by collision-induced
decoherence as well as dissipation and thermalization effects.
An appropriate master equation which provides a unified
quantitative description of both phenomena in a mathemati-
cally consistent way is the quantum linear Boltzmann equa-
tion �QLBE�, proposed in its weak-coupling form in �1,2�,
and in final form in �3�. This equation represents the quan-
tum mechanical generalization of the classical linear Boltz-
mann equation which describes the motion of a distinguished
test particle under the influence of elastic collisions with an
ideal, stationary background gas. The QLBE may be derived
on the basis of a monitoring approach �4� which permits a
nonperturbative treatment of the interactions with the envi-
ronmental gas particles �3,5�. These interactions may there-
fore be strong and the test particle may be in a state which is
far from equilibrium. A condition for the applicability of the
monitoring approach is that three-particle collisions are suf-
ficiently unlikely, and that successive collisions of the test
particle with the same gas particle are negligible on the rel-
evant time scale. These conditions are fulfilled in the case of
an ideal background gas in a stationary equilibrium state. A
further condition is that the interactions are short-ranged so
that scattering theory may be applied.

The mathematical structure of the QLBE is rather in-
volved and analytical solutions of this equation are known
only for some specific limiting cases �6�. Moreover, the spa-
tially nonlocal structure of this equation makes a direct nu-
merical integration through deterministic methods extremely
demanding. However, being in Lindblad form, the QLBE
allows one to apply the Monte Carlo wave function tech-
niques �7–11�. As has been demonstrated in Ref. �12�, these
techniques lead to a simple and numerically efficient sto-
chastic simulation method in the momentum representation
of the test particle’s density matrix, employing the transla-
tional covariance of the QLBE.

The simulation technique developed in �12� is restricted to
the QLBE within the Born approximation �1,2�, in which the
scattering cross section depends only on the momentum
transfer of the scattered particles, yielding a considerably
simplified equation of motion. Here we generalize this sto-
chastic approach to the full QLBE allowing for an arbitrary
form of the microscopic interaction between the test particle
and the ambient gas particles and, thus, arbitrary scattering
amplitudes. In addition, we show how the algorithm can be
extended to simulate efficiently the dynamics of spatially
localized wave packets. This enables the exact numerical
treatment of many physically relevant phenomena, such as
the loss of coherence in position space and the determination
of the fringe visibility in interferometric devices, as well as
the assessment of the quality of various approximations of
the QLBE.

The paper is organized as follows. Section II contains a
brief account of the QLBE and summarizes the most impor-
tant limiting forms of this equation. In Sec. III we develop
the Monte Carlo simulation algorithm for the full three-
dimensional QLBE in momentum space. Our numerical
simulation results are presented in Sec. IV. We discuss ex-
amples for the decoherence of superpositions of momentum
eigenstates, the loss of coherence of superpositions of spa-
tially localized wave packets, the decohering influence of the
background gas on the fringe visibility of interference ex-
periments, relaxation and thermalization processes, and the
diffusion limit. Finally, Sec. V contains a brief summary of
the results and our conclusions.

II. QUANTUM LINEAR BOLTZMANN EQUATION

A. General form of the master equation

The quantum linear Boltzmann equation �QLBE� is a
Markovian master equation for the reduced density operator
� describing the evolution of a test particle in an ideal gas
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environment. It has the form �̇=L�, where the generator is
of Lindblad structure,

L� =
1

i�
� P2

2M
+ Hn�P�,�� + D� . �1�

Here Hn�P� describes the energy shift due to the interaction
with the background gas; it will be neglected in the follow-
ing, since it is usually small. The incoherent part of the in-
teraction is accounted for by the superoperator D, which can
be expressed as �3,5,6�

D� = �
R3

dQ�
Q�

dk��eiQ·X/�L�k�,P,Q��L†�k�,P,Q�

�e−iQ·X/� −
1

2
	�,L†�k�,P,Q�L�k�,P,Q�
� , �2�

with X= �X1 ,X2 ,X3� the position and P= �P1 ,P2 ,P3� the
momentum operator of the test particle. The integration vari-
ables are given by Q, the momentum transfer experienced in
a single collision, and k�, corresponding to the momentum
of a gas particle. The k�-integration is carried out over the
plane Q�= 	k��R3 �k� ·Q=0
 perpendicular to the momen-
tum transfer Q.

The operator-valued function L�k� ,P ,Q� contains all the
details of the collisional interaction with the gas; these are
the gas density ngas, the momentum distribution function
��p� of the gas, and the elastic scattering amplitude f�p f ,pi�.
It is defined by �3,5,6�

L�k�,P,Q�

=ngasm

m�
2Q

f�prel�k�,P�Q� −
Q

2
,prel�k�,P�Q� +

Q

2
�

���k� +
m

m�

Q

2
+

m

M
P�Q� . �3�

Here m��mM / �m+M� is the reduced mass, Q��Q� gives
the modulus of the momentum transfer Q, and the function

prel�p,P� �
m�

m
p −

m�

M
P , �4�

defines relative momenta. The subscripts �Q and �Q denote
the parts of a given vector P parallel and perpendicular to Q,
i.e.,

P�Q =
�P · Q�Q

Q2 , �5�

P�Q = P − P�Q. �6�

We note that the QLBE described by Eqs. �1� and �2� has the
structure of a translation-covariant master equation in Lind-
blad form, according to the general characterization given by
Holevo �13–17�. This feature will be important below when
applying the stochastic unraveling of the QLBE.

B. Limiting forms

Suitable limiting procedures reduce the QLBE to other
well-known evolution equations, whose solutions are �at

least partly� understood. These relations allow us to interpret
the numerical solutions of the QLBE later on. At the same
time, the stochastic simulation technique of the full QLBE
permits us to study the range of validity of these approximate
evolution equations.

1. Classical linear Boltzmann equation

To establish the connection to the classical linear Boltz-
mann equation one may consider the evolution of the diago-
nal elements w�P���P���P� in the momentum basis. As is
shown in �3,5,6� the incoherent part of the QLBE implies
that

�tw�P� =� dQ�Mcl�P − Q → P�w�P − Q�

− Mcl�P → P + Q�w�P�� , �7�

where the transition rates Mcl are given by

Mcl�P → P + Q�

= �
Q�

dk��L�k�,P,Q��2 �8�

=
ngasm

m�
2Q
�

Q�
dk���k� +

m

m�

Q

2
+

m

M
P�Q�

� ��prel�k�,P�Q� −
Q

2
,prel�k�,P�Q� +

Q

2
� . �9�

Here ��p f ,pi���f�p f ,pi��2 denotes the quantum mechanical
scattering cross section.

According to Refs. �3,5,6�, Eqs. �7� and �9� agree with the
collisional part of the classical linear Boltzmann equation
�18�. In addition, it is argued in �6� that the solution of the
QLBE becomes asymptotically diagonal in the momentum
basis for any initial state �0, that is �P�eLt�0�P��P�→0 as
t→�. It follows that the QLBE asymptotically approaches
the classical linear Boltzmann equation for the population
dynamics in momentum space. This fact will be important
below when analyzing the diffusive behavior exhibited by
the numerical solution of the QLBE.

2. Pure collisional decoherence

The complexity of the QLBE reduces considerably if one
assumes the test particle to be much heavier than the gas
particles. By setting the mass ratio m /M equal to zero the
Lindblad operators in Eq. �2� no longer depend on the mo-
mentum operator P of the tracer particle, so that the
k�-integration in Eq. �2� can be carried out �5,6�. The QLBE
then turns into the master equation of pure collisional deco-
herence �19,20�,

d

dt
� =

1

i�
� P2

2M
,�� + �eff� dQG�Q��eiQX/��e−iQX/� − �� ,

�10�

where G�Q� denotes the normalized momentum transfer dis-
tribution and �eff is the collision rate of the gas environment,
defined by the thermal average

BUSSE et al. PHYSICAL REVIEW E 82, 026706 �2010�

026706-2



�eff � ngas�
R3

dp
p

m
��p���p� . �11�

It leads to a localization in position space as can be seen by
neglecting the Hamiltonian part in Eq. �10� for large M. The
solution then takes the form

�X���t��X�� = e−F�X−X��t�X���0��X�� . �12�

The decay rate of spatial coherences is given by the local-
ization rate F��X�	0 which is related to the momentum
transfer distribution G�Q� by

F�X − X�� = �eff�1 −� dQG�Q�exp� i

�
Q · �X − X���� .

�13�

The localization rate can be determined from the micro-
scopic quantities as �6�

F�X − X�� = �eff − 2
ngas�
0

�

dv��v�v

��
−1

1

d cos � �f�cos �;Ekin��2

� sinc�2 sin��

2
�mv�X − X��

�
� , �14�

where � denotes the scattering angle. Here we have assumed
isotropic scattering, so that f�p f ,pi�= f�cos�p f ,pi� ;Ekin
= pi

2 /2m�. Equation �14� will allow us below to predict the
decoherence dynamics exhibited by the numerical solution of
the QLBE in the limit M �m.

3. Born approximation

Another simplification results when the interaction poten-
tial V�x� is much weaker than the kinetic energy E= p2 /2m.
One may then replace the exact scattering amplitude f by its
Born approximation fB, which is determined by the Fourier
transform of the interaction potential,

fB�p f − pi� = −
m�

2
�2� dxV�x�exp�− i
�p f − pi� · x

�
� .

�15�

The approximated scattering amplitude therefore depends on
the momentum transfer p f −pi only, so that the function f in
Eq. �3� is not operator-valued anymore. Taking � to be the
Maxwell-Boltzmann distribution

��p� =
1

�2
mkT�3/2exp�−
�p�2

2mkT
� , �16�

one may then perform the k�-integration in Eq. �2�, such that
the dissipator D defined by Eq. �2� becomes �1,2,5,6�

DB� =� dQ�eiQ·X/�LB�P,Q��LB
†�P,Q�e−iQ·X/�

−
1

2
	�,LB

†�P,Q�LB�P,Q�
� . �17�

Here the Lindblad operators contain the functions LB�P ,Q�,
given by the expression �1,2,6�

LB�P,Q� = �m

2

�1/4ngas�B�Q�

m�
2Q

� exp�−


16mQ2��1 +
m

M
�Q2 + 2

m

M
P · Q�2� ,

�18�

where �B�Q���fB�Q��2 denotes the differential cross section
in Born approximation and �1 /kT is the inverse tempera-
ture. The QLBE in Born approximation defined by Eqs. �17�
and �18� was first proposed by Vacchini in Refs. �1,2�. As
already mentioned, its solution may be obtained numerically
by the stochastic simulation algorithm constructed in Ref.
�12�.

4. Limit of quantum Brownian motion

The quantum Brownian motion or diffusion limit applies
when the state of the test particle is close to a thermal equi-
librium state and when its mass is much greater than the
mass of the gas particles �5,6�. The momentum transfer Q is
then small compared to the momentum of the tracer particle.
As discussed in �21�, this permits the expansion of the Lind-
blad operators in Eq. �2� up to second order in the position
and momentum operators. This expansion yields the
Caldeira-Leggett equation �11,22� in the minimally extended
form as required to ensure a Lindblad structure �6,21�,

d

dt
� =

1

i�
�HS,�� +

�

i�
�X,P� + �P� −

4
�

�th
2 �X,�X,���

−
��th

2

16
�2 �P,�P,��� . �19�

Here, �th
2 =2
�2 /M gives the thermal de Broglie wave-

length, and � is the relaxation rate. It is remarkable that the
derivation leads to a microscopic expression for the latter �6�,

� = ngas
8m

3M
 2


m
�

0

�

duu5e−u2�
0




d� sin � �1 − cos ��

��f�cos �,up��2. �20�

The velocities of the gas particles are here assumed to be
Maxwell-Boltzmann distributed, and the scattering to be iso-
tropic so that the amplitude f depends only on the scattering
angle � and the modulus of the momentum p��pi�= �p f�. The
integration variable u� p / p denotes the momentum in di-
mensionless form, where p=2m / is the most probable
momentum at temperature T=1 / �kB�.

STOCHASTIC SIMULATION ALGORITHM FOR THE … PHYSICAL REVIEW E 82, 026706 �2010�

026706-3



III. MONTE CARLO UNRAVELING

To solve the QLBE we now employ the Monte Carlo
wave function method �7–11�. The underlying idea of this
approach is to regard the wave function as a stochastic pro-
cess in the Hilbert space of pure system states, with the prop-
erty that the expectation value ��t�=E����t�����t��� satisfies a
given Lindblad master equation, �t�= �i��−1�H ,��+�i�Li�Li

†

− 1
2 	Li

†Li ,�
�. Any process with this property is called an un-
raveling of the master equation. An appropriate stochastic
differential equation defining such a process is given by �11�

�d�t� = −
i

�
Heff��t�dt +

1

2�
i

�i�Li��t��2��t�dt

+ �
i
� Li��t�

�Li��t��
− ��t��dNi�t� , �21�

where Heff represents the non-Hermitian operator

Heff = H −
i�

2 �
i

�iLi
†Li. �22�

The random Poisson increments dNi�t� in Eq. �21� satisfy the
relations

dNi�t�dNj�t� = �ijdNi�t� , �23�

and their expectation values are given by

E�dNi�t�� = �i�Li��t��2dt . �24�

The Monte Carlo method consists of generating an ensemble
of realizations 	����t��
 of the process defined by the stochas-
tic differential Eq. �21�, and of estimating the density matrix
��t� through an ensemble average �7–11�.

In the following, we briefly summarize a general algo-
rithm which is often used for the numerical implementation
of the stochastic differential Eq. �21� �7�. This method forms
the basis for the stochastic algorithm presented below, which
extends the procedures presented in Ref. �12�.

A. General algorithm

We start with the normalized state ��t� which has been
reached through a quantum jump at time t �or is the initial
state�. Subsequently, the state follows a deterministic time
evolution which is given by the nonlinear equation of motion

�t��t� = −
i

�
Heff��t� +

1

2�
i

�i�Li��t��2��t� , �25�

with the formal solution

��t+�� =
exp�− iHeff�/����t�

�exp�− iHeff�/����t��
. �26�

The probability for a jump to occur out of this state is char-
acterized by the total jump rate

���t� =
1

dt
�

i

E�dNi�t�� = �
i

�i�Li��t��2. �27�

It allows one to evaluate the corresponding waiting time dis-

tribution W�� ��t�, the cumulative distribution function rep-
resenting the probability that a jump occurs in the time in-
terval �t , t+��,

W����t� = 1 − �exp�− iHeff�/����t��2. �28�

In practice, a realization � of the random waiting time can be
obtained by the inversion method, i.e., by numerically solv-
ing the equation

� = �exp�− iHeff�/����t��2 �29�

for �, with � a random number drawn uniformly from the
interval �0, 1�. At time t+� a discontinuous quantum jump
occurs, i.e., the wave function ��t+�� is replaced according to

��t+�� →
Li��t+��

�Li��t+���
. �30�

The corresponding jump operator, labeled by the index i, is
drawn from the probability distribution given by the ratio of
the jump rate �i��t+��=E�dNi�t+��� /dt of the Poisson pro-
cess Ni�t� and the total jump rate ���t+��,

Prob�i��t+�� =
�i��t+��
���t+��

=
�i�Li��t+���2

���t+��
. �31�

B. Unraveling the QLBE

We now adapt the Monte Carlo method to solve the
QLBE, which is characterized by the family of Lindblad op-
erators eiQ·X/�L�k� ,P ,Q�. For this purpose, the index i is
replaced by the continuous variables Q and k�, and the sums
over i are substituted by the integrals

�
i

→ �
R3

dQ�
Q�

dk�. �32�

Although the procedure is straightforward, we repeat here
the main steps since the obtained formulas are required for
reference later on.

The Monte Carlo unraveling of the QLBE is described by
the stochastic Schrödinger equation

�d�t� = −
i

�
Heff��t�dt +

1

2
�

R3
dQ�

Q�
dk�

��L�k�,P,Q���t��2��t�dt + �
R3

dQ�
Q�

dk�

�� eiQ·X/�L�k�,P,Q���t�
�L�k�,P,Q���t��

− ��t��dNQ,k�
�t� , �33�

where the effective Hamiltonian has the form

Heff = H −
i�

2
�

R3
dQ�

Q�
dk�L†�k�,P,Q�L�k�,P,Q� .

�34�

The Poisson increments in Eq. �33� have the expectation val-
ues
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E�dNQ,k�
�t�� = �L�k�,P,Q���t��2dt , �35�

and satisfy

dNQ,k�
�t�dNQ�,k

��
�t� = ��3��Q − Q����2��k� − k�� �dNQ,k�

�t� .

�36�

These relations represent the continuous counterpart of the
discrete set of Eqs. �23�. The deterministic part of the Monte
Carlo unraveling is generated by the nonlinear equation

�t��t� = −
i

�
Heff��t� +

1

2
�

R3
dQ�

Q�
dk��L�k�,P,Q���t��2��t� ,

�37�

whose formal solution is given by Eq. �26�. The jump prob-
ability is determined by the rate

���t� = �
R3

dQ�
Q�

dk��L�k�,P,Q���t��2, �38�

and a realization of the random waiting time � is obtained by
solving Eq. �29� for � with the effective Hamiltonian �34�.
The jump at time t+� is effected by

���t + ��� →
eiQ·X/�L�k�,P,Q���t+��

�L�k�,P,Q���t+���
, �39�

where the continuous parameters k� and Q characterizing
the jump operator are drawn from the probability density

Prob�k�,Q��t+�� =
1

����t+���
�L�k�,P,Q���t+���2. �40�

C. Unraveling the QLBE in the momentum basis

The implementation of the above algorithm is particularly
simple when the initial state is a discrete superposition of a
finite number of momentum eigenstates �12�,

���0�� = �
i=1

N

�i�0��Pi�0��, with �
i=1

N

��i�0��2 = 1. �41�

Due to the translation-covariance of the QLBE the Lindblad
operators have the structure eiQ·X/�L�k� ,P ,Q�. This implies
that the effective Hamiltonian is a function of the momentum
operator only, so that the deterministic evolution of Eq. �41�
affects solely the amplitudes of the superposition, that is

���t�� = �
i=1

N

�i�t��Pi�0�� . �42�

The jumps, on the other hand, cause a translation of the
momentum eigenstates and a redistribution of the ampli-
tudes,

eiQ·X/�L�k�,P,Q����t�� = �
i=1

N

�i��t��Pi + Q� . �43�

This shows that the quantum trajectory ���t�� remains a su-
perposition of N momentum eigenstates at all times. The

stochastic process therefore reduces to a process in the finite-
dimensional space of the amplitudes �i and momenta Pi.
Here the momentum eigenstates are taken to be normalized
with respect to a large volume �, such that they form a
discrete basis, �Pi �P j�=�ij.

In the following it is convenient to work with dimension-
less variables

U �
P

Mv

, K �
Q

m�v

, W� �
k�

mv

, �44�

where the scale is given by the most probable velocity of the
gas particles v=2kBT /m. Note that W�, being proportional
to k�, lies in the plane perpendicular to K. The quantum
trajectories are then represented as

���t�� = �
i=1

N

�i�t��Ui�t��, with �
i=1

N

��i�t��2 = 1. �45�

Before discussing the unraveling of the QLBE in more de-
tail, let us evaluate the jump rate �Eq. �38�� for momentum
eigenstates, ��t�= �P�. This quantity appears frequently in the
algorithm described below. By inserting ��t�= �P� into Eq.
�38�, one obtains

��P� = �
R3

dQ�
Q�

dk��L�k�,P,Q��2. �46�

Noting Eq. �8�, one finds that the jump rate agrees with the
total collision rate for a particle with momentum P,

��P� =� dQMcl�P → P + Q� . �47�

It follows that ��P�=��P� is a function of the modulus of P
only, since the collision rate must be independent of the ori-
entation of P for a homogeneous background gas. Upon us-
ing the dimensionless quantities �Eq. �44��, and after insert-
ing Eq. �3� for L, as well as the Maxwell-Boltzmann
distribution �Eq. �16��, one finds

��U� = �
R3

dK�
K�

dW�g�W�,U,K�p�K
�K�p�W

�W�� ,

�48�

with

g�W�,U,K� =
8
ngasv

�K�
� f�m�v�W� − U�K

−
K

2
�,m�v�W� − U�K +

K

2
���2

� e−K·Ue−U�K
2

. �49�

The densities p�K
�K� and p�W

�W�� denote three- and two-
dimensional normal distributions, respectively,

p�K
�K� =

1

�2
�K�3/2exp�−
K2

2�K
2 � ,
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p�W
�W�� =

1

2
�W
exp�−

W�
2

2�W
2 � , �50�

with variances �K=2 and �W=1 /2.
The integral �Eq. �48�� can be evaluated numerically us-

ing a Monte Carlo method with importance sampling �23�.
For this purpose, one draws n samples Ki from the normal
distribution p�K

�K� and computes orthonormal vectors e1i

and e2i which are orthogonal to Ki, i.e., e1i ·Ki=0, e2i ·Ki=0,
e1i ·e2i=0 using the Gram-Schmidt method. As a next step, n
further samples �ui ,vi� are drawn from the two-dimensional
Gaussian distribution p�W

, which yields a sample of scaled
momentum vectors Wi�=uie1i+vie2i. The jump rate �Eq.
�48�� is then approximated by the average

��U� �
1

n
�
i=1

n

g�Wi�,U,Ki� . �51�

Let us now discuss in more detail the unraveling of the
QLBE in the momentum basis. To this end, suppose the state

���t�� = �
i=1

N

�i�t��Ui�t�� �52�

was obtained through a quantum jump at time t. As men-
tioned above, the effective Hamiltonian �34� depends on the
momentum operator only, so that the momenta Ui stay con-
stant during the deterministic evolution. The propagation of
the state �Eq. �52�� with the non-Hermitian operator �Eq.
�34�� thus yields �12�

���t + ��� = �
i=1

N

�i�t + ���Ui�t�� . �53�

Here the weights have the form

�i�t + �� =
1

N
exp�−

i

2�
MvUi

2��exp�−
�

2
��Ui���i�t� ,

�54�

with the normalization

N2 = �
i=1

N

��i�t + ���2 = �
i=1

N

��i�t��2exp�− ���Ui�� . �55�

As a next step, one must evaluate the waiting times �. For
this purpose, consider the expression

�exp�− iHeff�/����t��2 = �
i,j=1

N

�i
��t�� j�t�

��Ui�t��eiHeff
† �/�e−iHeff�/��U j�t�� .

�56�

By using the definition of Heff �Eq. �34��, the fact that the
two summands in Heff commute, and the jump rate �Eq.
�48��, this yields

�exp�− iHeff�/����t��2 = �
i=1

N

��i�t��2exp�− ���Ui�� . �57�

It follows from Eq. �29� that samples of the waiting times �
are obtained by numerically inverting the non-algebraic
equation

� = �
i=1

N

��i�t��2exp�− ���Ui�� , �58�

with � drawn from the uniform distribution on �0, 1�.
To be able to carry out the quantum jumps, we have to

determine the momentum parameters K and W�, which char-
acterize the jump operator. These vectors are obtained by
sampling from the probability distribution �Eq. �40��. Upon
inserting states of the form �Eq. �53��, Eq. �40� becomes

Prob�W�,K��t+��

= �
i=1

N ��i�t + ���2��Ui�

�
j=1

N

�� j�t + ���2��Uj�

�L�W�,Ui,K��Ui��2

��Ui�

� �
i=1

N

pi Prob�W�,K�Ui� . �59�

This distribution is a mixture of the probabilities

pi =
��i�t + ���2��Ui�

�
j=1

N

�� j�t + ���2��Uj�

, �60�

and the probability densities

Prob�W�,K�Ui� =
�L�W�,Ui,K��Ui��2

��Ui�

=
8
ngasv

��Ui��K�
� f�m�v�W� − Ui�K

−
K

2
�,m�v�W� − Ui�K +

K

2
���2

� ��mv�W� + Ui�K +
K

2
�� . �61�

In order to draw a sample from the mixture �Eq. �60��, one
may proceed as follows �12�. First, an index i is drawn from
the probabilities �Eq. �60��. Then, the momenta K and W�

are drawn from the probability distribution Prob�W� ,K �Ui�
using a stochastic sampling method, such as the Metropolis-
Hastings algorithm �23�.

Having the momenta W� and K at hand, one can now
perform the quantum jump. According to Eq. �39�, the state
�Eq. �53�� is transformed as
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���t + ��� → Ñ−1 exp� i

�
mvK · X�L�W�,U,K�

��
i=1

N

�i�t + ���Ui�t��

= �
i=1

N

Ñ−1L�W�,Ui,K��i�t + ���Ui�t� + m�/MK� ,

�62�

where the normalization Ñ is determined by

Ñ2 = �
i=1

N

�L�W�,Ui,K��i�t + ���2. �63�

This shows that the momentum eigenstates are shifted

�Ui� → �Ui + m�/MK� , �64�

while the weights are redistributed as

�i�t + �� → �i��t + �� = xi�i�t + �� , �65�

where the factors xi are given by xi=Ñ−1L�W� ,Ui ,K�. Upon
using the explicit form �Eq. �3�� of L, and by inserting the
Maxwell-Boltzmann distribution �Eq. �16��, we find

xi =
1

Ñ
f�m�v�W� − Ui�K −

K

2
�,m�v�W� − Ui�K +

K

2
��

� exp�−
1

2
�K

2
+ Ui�K�2� . �66�

According to Eq. �64�, the momentum eigenstates are all
shifted with the same momentum K in a quantum jump. This
fact is decisive for the numerical performance of the algo-
rithm, since it implies that the time consuming Metropolis-
Hastings algorithm must be applied only once for all i
� 	1, . . . ,N
. This suggests that the algorithm can be applied
also to initial states which are superpositions of many mo-
mentum eigenstates.

This fact is substantiated by the numerical analysis de-
picted in the logarithmic plot of Fig. 1. Here, the CPU time
of the above algorithm is shown as a function of the number
N of basis states involved in the initial superposition state
���0��=�i=1

N �Ui� /N, with Ui= �0,0 , i�. The simulation is
based on 102 quantum trajectories in each run. The curve
shown in Fig. 1 is almost a straight line with a slope a
�1.1, implying that the CPU time T grows almost linearly
with N, T�N1.1.

We conclude that the Monte Carlo unraveling can be
implemented for initial superposition states that are com-
posed of a large number of momentum eigenstates �say, on
the order of 102 to 103�. This implies that one may choose
even well localized initial states and consider scenarios
where a particle crosses a slit or a grid. The following sec-
tions present numerical results obtained with such kinds of
states.

IV. SIMULATION RESULTS

We proceed to apply the stochastic algorithm to two dif-
ferent types of scattering interactions with the surrounding
gas particles. Specifically, we consider the simplest possible
scattering process �s-wave hard-sphere scattering� as well as
the case of a general potential, which is treated exactly
through partial wave decomposition. Having discussed the
determination of the scattering amplitudes, we start out with
the simulation of short-time effects. At first, the loss of co-
herence of an initial superposition of two momentum eigen-
states is measured, followed by the treatment of superposi-
tions of spatially localized wave packets. The latter permits
in particular to extract the localization rate discussed in Sec.
II B 2. As a further example of a decoherence process, coun-
terpropagating localized initial states are considered which
lead to the formation of interference patterns. In the course
of the evolution, fringe visibility is lost, so that the interplay
between coherence and decoherence can be demonstrated.

We then discuss long-time effects which exhibit a classi-
cal counterpart, starting with energy relaxation and the ap-
proach to thermal equilibrium. Then, the spread in position
of initially spatially localized states is measured, allowing us
to observe a transition from quantum dispersion to classical
diffusion.

As discussed in Sec. II B, the QLBE has several limiting
forms for some of which analytical solutions are known. This
permits to demonstrate the validity of the numerical results
and to verify the limiting procedures discussed in �6�. Fur-
ther simulations correspond to situations where the full
QLBE is required. This way physical regimes are entered
which have not been accessible so far, such as decoherence
phenomena where the mass of the test particle is comparable
to the mass of the gas particles.

A. Scattering amplitudes

1. s-wave hard-sphere scattering

In s-wave hard-sphere scattering the particles are assumed
to be hard spheres with radius R, and the kinetic energy to be
sufficiently small, pR��, such that only the lowest partial
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FIG. 1. CPU time of the Monte Carlo unraveling as a function
of the number N of basis states involved in the initial superposition.
The curve is almost a straight line with slope a�1.1 in the loga-
rithmic plot. It follows that the CPU time grows almost linearly
with N, that is T�N1.1.
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wave contributes. In this case the scattering amplitude is in-
dependent of the scattering angle and the kinetic energy,
�f�cos � ;Ekin��2=R2. For a constant cross section one can do
the k�-integration in the QLBE �2�. The equation then coin-
cides with the QLBE in Born approximation �Eq. �17��, such
that the numerical results with this interaction should agree
with the stochastic algorithm of Breuer and Vacchini �12�. In
the s-wave examples presented below the system of units is
defined by setting �=1, M =1 and R=1; the temperature is
chosen to be kBT=1 and the gas density is set to one, ngas
=1.

An important ingredient for implementing the Monte
Carlo unraveling is the jump rate ��U� presented in Eq. �48�.
It is obtained numerically by Monte Carlo integration with
importance sampling �Eq. �51��, based on n=104 steps. We
find that the collision rate grows linearly for large momenta,
while it saturates for vanishing U at a value close to

�0 = ngasv4
R2, �67�

in agreement with the analytical prediction in �12�.

2. Gaussian interaction potential

Generic scattering processes are characterized by many
partial waves with energy dependent scattering phases. To
illustrate the treatment of this general scattering situation, we
choose the scattering amplitudes defined by an attractive
Gaussian interaction potential

V�r� = − V0 exp�−
r2

2d2� . �68�

The corresponding scattering amplitude in Born approxima-
tion is obtained from Eq. �15�, which yields

fB�cos �,p� =


2

2m�V0d3

�2 exp�−
d2p2

�2 �1 − cos ��� .

�69�

While this approximation is reliable only for weak interac-
tion potentials, V0�Ekin, the exact scattering amplitudes re-
quire the energy dependent partial scattering amplitudes f l
�24�,

f�p,cos �� = �
l=1

�

�2l + 1�f l�p�Pl�cos �� , �70�

with Pl the Legendre-polynomials.
The f l�p�= �� / p�exp�i�l�sin��l� are related to the partial

wave phase shifts �l, which can be computed numerically by
means of the Johnson algorithm �25� for a given interaction
potential. If the kinetic energy is large compared to the po-
tential, V� p2 /2M, the partial waves are hardly affected by
the collision, so that the scattering amplitudes and phases
vanish, �l�p→��=0. For small energies, on the other hand,
they behave as �24�

�l�p� � nl
 − alp
2l+1, for p → 0, �71�

with al the scattering lengths and nl�N0. According to the
Levinson theorem �24�, the integer nl equals the number of

bound states with angular momentum l. Figure 2 shows the
first four phase shifts for V0=20, d=1, and �=1, in agree-
ment with the Levinson theorem �Eq. �71�� and with the
expected high energy limit.

For the simulations presented below it is sufficient to in-
clude the first 30 partial waves when evaluating the scatter-
ing amplitudes �Eq. �70��. In particular, this ensures that the
optical theorem is satisfied �24�.

Figure 3 shows the numerically evaluated jump rate ��U�
for the Gaussian interaction potential. It is obtained by a
Monte Carlo integration of Eq. �48� with importance sam-
pling with n=104 steps. The jump rate is given in units of the
collision rate as defined by the thermal average �Eq. �11��.
The simulation shown by the solid line in Fig. 3 is based on
the exact scattering amplitude, while the dashed line corre-
sponds to its Born approximation. One observes that the two
results differ drastically, in particular for large interaction
potentials V0, while they tend to agree for large momenta p,
where the Born approximation is more reasonable.

The Gaussian interaction potential is applied in several
examples below. In these cases, the system of units is defined

FIG. 2. The first four phase shifts �l as a function of the relative
momentum p for the interaction potential �Eq. �68�� and mass ratio
m /M =1. Their asymptotic behavior is in agreement with �Eq. �71��.
�There are two bound states for l=0,1, one for l=2, and no bound
state for l=3.�
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FIG. 3. Jump rate � as a function of the momentum U assuming
the Gaussian interaction potential with V0=1 �left� and V0=20
�right�. The solid line corresponds to the exact scattering amplitude,
while the dashed line gives the Born approximation. As one ex-
pects, the results deviate strongly for large interaction potentials.
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by setting �=1, m=1, and d=1; moreover, we chose kBT
=1 for the temperature of the gas environment and the gas
density is set to unity, ngas=1.

B. Decoherence in momentum space

We now apply the Monte Carlo algorithm to the analysis
of decoherence effects in momentum space. For this purpose
the initial state is taken to be a superposition of two momen-
tum eigenstates,

���0�� = ��0��U�0�� + �0��V�0�� , �72�

which are assumed to have the form U�0�=−V�0�
= �U0 ,0 ,0�.

Since the states �U�0�� and �V�0�� are genuine momentum
eigenstates, any collision necessarily leads to an orthogonal
state. It follows that the coherences are expected to decay
exponentially

��U�0����t��V�0���
��U�0����0��V�0���

= e−��U0�t, �73�

with the decay rate given by the total collision rate ��U0�.
Alternatively, one may view the states �U�0��, �V�0�� as

representing states which are well localized in momentum
space, but with a finite width greater than the typical momen-
tum transfer. Here a suitable measure for the degree of co-
herence is the ensemble average of the coherences exhibited
by the individual quantum trajectories ���t�� �12�, that is

C�t� = E� ��U�t����t�����t��V�t���
��U�0����0��V�0��� � . �74�

To evaluate this term, recall that the quantum trajectories
remain in a superposition of two momentum eigenstates all
the time, so that ���t�� has the form ���t��=��t��U�t��
+�t��V�t��. By inserting this expression into Eq. �74�, one
finds �12�

C�t� = 2E����t���t��� . �75�

Figure 4 shows a semilogarithmic plot of the “coherence”
C�t� for the Gaussian interaction potential, choosing an ini-

tial momentum U0=6, equal amplitudes ��0�=�0�=1 /2,
and the mass ratio M /m=1. The left-hand side represents a
weak interaction potential, and the right-hand side a strong
one. In the latter case, the result obtained with the exact
scattering amplitude �solid line� differs markedly from the
corresponding Born approximation �dashed line�. The simu-
lation is based on 5�103 trajectories.

This result shows that the full QLBE �Eq. �2�� may lead to
physical predictions which deviate significantly from the
ones obtained with the QLBE in Born approximation �Eq.
�17�� if the interaction potential is sufficiently strong. A simi-
lar conclusion is drawn below, when studying relaxation
rates.

The design of experimental tests for decoherence effects
in momentum space is a challenging task �6,26,27�. Such a
setup would have to provide a source of states with momen-
tum coherences �as in nonstationary beams�, and it would
require an interferometric measurement apparatus able to de-
tect these coherences. A further difficulty lies in the inevi-
table presence and dominance of position decoherence. Dur-
ing the free evolution a superposition state characterized by
two different momentum values will evolve into a superpo-
sition of spatially separated wave packets, which is affected
by decoherence mechanisms in position space �6�.

Position decoherence, in contrast, has already been ob-
served experimentally in fullerene interference experiments
�28�. The following section therefore focuses on the predic-
tion of spatial decoherence effects based on the Monte Carlo
unraveling of the QLBE.

C. Decoherence in position space

1. Measuring spatial coherences

In order to quantify the loss of spatial coherences, i.e., the
off-diagonal elements in position representation, ��X ,X��
��X���X�� one must assess ��X ,X�� given the quantum tra-
jectories in the momentum representation, ���t��
=� j=1

N � j�t��U j�t��. For this purpose, it is convenient to ex-
press the position variable X in units of the thermal wave-
length �th=2
�2 /mkBT,

S �
X

�th
. �76�

The spatial coherences are then obtained by taking the en-
semble average of the coherences of the individual quantum
trajectories, that is

��S,S�,t� = E��S���t�����t��S��� . �77�

By inserting the momentum representation of ���t�� into this
expression, we find

��S,S�,t� =
1

�2
�3�
j,k

N

E�� j�t��k
��t�

�exp� i

�
Mv�th�S · U j�t� − S� · Uk�t���� ,

�78�

which allows us to compute the time evolution of the coher-

0 5 10 15 20
10

−2

10
−1

10
0

C

Γ
eff

t

exact
Born

0 1 2 3 4 5
10

−2

10
−1

10
0

C
Γ

eff
t

exact
Born

FIG. 4. Semilogarithmic plot of the “coherence” C�t� defined in
Eq. �75� for the state of Eq. �72� with U0=6. The interaction is
described by the Gaussian potential �Eq. �68�� with V0=1 �left� and
V0=20 �right�. The solid line is obtained using the exact scattering
amplitude, while the dashed line corresponds to the Born approxi-
mation. The predictions of the decoherence rates differ substantially
in case of the large interaction potential with V0=20.
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ences �Eq. �77�� by means of the amplitudes � j�t� and the
scaled momenta U j�t�.

A typical application might describe a particle passing
through an interferometer, where it is spatially localized in
one spatial direction, and is characterized by an incoherent
distribution of momenta in the other two directions. From
now on, we therefore restrict the discussion to initial states of
the form

���0�� = �
j=1

N

� j�0��Uj�0�,V�0�,W�0�� , �79�

where �Uj�0� ,V�0� ,W�0�� denote scaled eigenstates of the
momentum operator P��Px ,Py ,Pz�. By taking N to be suf-
ficiently large, Eq. �79� may represent states which are local-
ized in one spatial direction. Due to the conservation of mo-
mentum superpositions, the ensuing quantum trajectories
have the structure

���t�� = �
j=1

N

� j�t��Uj�t�,V�t�,W�t�� . �80�

The assessment of spatial coherences �Eq. �78�� can be sim-
plified in this case by focusing on the coherences in x direc-
tion,

���S,0,0�,�S�,0,0�,t�

=
1

�2
�3�
j,k

N

E�� j�t��k
��t�

�exp� i

�
Mv�th�SUj�t� − S�Uk�t���� . �81�

To visualize the evolution of the density matrix in position
representation, we consider an initial superposition of two
resting Gaussian wave packets, with scaled mean positions
�S�1,2= �1.2 and width �1,2=0.2 �in units of �th�. This state
may be written in the form of Eq. �80� by using a finite-
dimensional representation of the corresponding Fourier
transform. Figure 5 depicts the ensuing evolution of the ma-
trix elements �Eq. �81��, obtained by solving the QLBE un-
der the assumption of s-wave hard-sphere scattering and
equal masses m=M. It shows four snapshots of the density
matrix for the scaled times t�0� 	0,1 /3,2 /3,4 /3
. The
simulation is based on 103 realizations of the stochastic pro-
cess and the state is represented using N=55 momentum
eigenstates.

2. Measuring the localization rate

As discussed in Sec. II B 2, the QLBE simplifies to the
master equation of pure collisional decoherence if one as-
sumes the tracer particle to be much heavier than the gas
particles. In this model the decay rate F of spatial coherences
is a function of the distance x= �X−X�� only; it does not
depend on the particular matrix elements of the state, see Eq.
�14�. Hence, the decoherence process is completely charac-
terized by the localization rate F�x�.

By evaluating the decoherence rates for various mass ra-
tios and initial states, we found that this behavior is observed

even in regimes where the QLBE does not reduce to the
master equation of collisional decoherence. This suggests
that the decoherence dynamics of the QLBE is generally
characterized by a one-dimensional function F�x�.

Figure 6 shows the localization rate for the Gaussian in-
teraction potential with V0=1 and the mass ratios M /m
=100 �left� and M /m=1 �right�. The dots give the decay rate
as evaluated from Eq. �81�, obtained by 5�104 realizations
of the Monte Carlo unraveling of the QLBE. The solid line
represents the localization rate of collisional decoherence
�Eq. �14��, calculated by numerical integration. As expected,
one finds an excellent agreement between the predictions of
collisional decoherence and the solution of the QLBE if the
test particle mass is much larger than the gas mass, M /m
=100.

Moreover, it turns out that the results of the two models
do not differ substantially even for equal masses m=M. This

FIG. 5. Evolution of the density matrix in the position represen-
tation for an initial superposition of two Gaussian wave packets,
obtained by solving the three-dimensional QLBE for s-wave hard-
sphere scattering. The spatial coherences ��x /�th ,y /�th� are ex-
pressed in units of the thermal wavelength.

FIG. 6. Decay rate of the spatial coherences as a function of the
wave packet separation for a Gaussian interaction potential and the
mass ratios M /m=100 �left� and m=M �right�. The solid line shows
the prediction of pure collisional decoherence, Eq. �14�, and the
dots give the result of the stochastic simulation of the QLBE. One
observes that the predictions of the two models agree for M �m,
while they deviate for m=M. The localization rate saturates in all
cases at the average collision rate �eff. We note that the decay rate
of the QLBE does not vanish for m=M as x→0, since there is a
loss of the populations due to diffusion.
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holds in particular for large distances, where the decay rates
converge to the average collision rate �eff �in all cases�. In-
deed, in this limit one collision should be sufficient to reveal
the full “which path” information, so that a saturation at �eff
is expected. For equal masses the prediction of the QLBE
does not tend to zero in the limit of small distances, F�0�
�0. This is due to the contribution of quantum diffusion,
which is more pronounced when the test particle is lighter.

D. Interference and decoherence

To illustrate the interplay between coherent and incoher-
ent dynamics, let us study how the formation of interference
patterns is affected by the interaction with the background
gas. To this end, consider the scenario depicted in Fig. 7.
Here the x component of the three-dimensional initial state is
prepared in a superposition of two counterpropagating
minimum-uncertainty wave packets �1,2, while the other two
components have a definite momentum. The wave packets
start overlapping in the course of the evolution, and their
interference leads to oscillations of the spatial probability
density ��x ,x , t�, with a period given by the de Broglie wave-
length �dB associated to the relative momentum between the
minimum-uncertainty wave packets. Besides this coherent
effect, one observes an increasing signature of decoherence,
the gradual loss of fringe visibility; this becomes evident in
particular in the bottom panel of Fig. 7.

Figure 7 is obtained by the Monte Carlo unraveling of the
QLBE, assuming s-wave hard-sphere scattering and a mass
ratio M /m=100. The parameters of the simulation are con-
veniently expressed in terms of the de Broglie wavelength
�dB and the scattering rate �0 �Eq. �67��, which serve to
define the dimensionless variables

SdB �
X

�dB
, UdB �

P

M�dB�0
. �82�

In this system of units the position and momentum expecta-
tion values of the coherent states �1,2 read as �SdB�1,2
= �15 and �UdB�1,2= �0.9; their width is characterized by
the standard deviation �1,2 /�dB=4, and the de Broglie wave-
length is fixed by setting �dB /�th=2.5�10−2. The figure
shows three snapshots of the populations of the density ma-
trix for the scaled times �0�t0 , t1 , t2�= �0,9 ,18�. The simula-
tion is based on 2.5�104 realizations of the stochastic pro-
cess.

As mentioned above, an important quantity to character-
ize the loss of quantum coherence is the fringe visibility,
which we define here as the difference between the central
maximum and the neighboring minimum divided by their
sum. In the last snapshot, shown at the bottom of Fig. 7, one
extracts a visibility of V=55%. To understand this result
quantitatively, let us estimate the decay rate of the visibility
by means of the integrated localization rate,

V��� = exp�− �
0

�

d��F�S��������V�0� , �83�

where S���= ��X����1− �X����2� /�th denotes the distance of
the minimum-uncertainty wave packets in units of the ther-
mal wavelength at time �. By noting that the wave packets
move in absence of an external potential, one finds

S��� =
�dB

�th
���SdB�1 − �SdB�2� − ���UdB�1 − �UdB�2�� . �84�

Since the tracer particle is much heavier than the gas mol-
ecules the dynamics described by the QLBE should be well
approximated by the master Eq. �10� of pure collisional de-
coherence. In this case F is described by the formula �14�,
which can be evaluated analytically in the case of s-wave
hard-sphere scattering,

F�S� = 2
ngasR
2v�4 − S−1 exp�− 4
S2�erfi�2
S�� ,

�85�

where erfi�x��−ierf�ix� denotes the imaginary error func-
tion.

A prediction for the visibility �Eq. �83�� may then be ob-
tained by a simple numerical integration. This yields V�t2�
�56%, in good agreement with the value of V=55% ob-
tained by the stochastic solution of the full QLBE.

E. Relaxation and thermalization

We now study the long-time behavior of the energy ex-
pectation value. As discussed in �6� any solution of the
QLBE will approach the canonical thermal state asymptoti-
cally. The kinetic energy in the simulation must therefore
converge to the thermal energy 3 / �2�. Expressed in dimen-
sionless units, this means that �6�

�U2�t → �U2�eq =
3

2

m

M
, for t � �−1, �86�

with � the relaxation rate.
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FIG. 7. Evolution of the position diagonal elements of the den-
sity matrix ��x /�dB,x /�dB� for an initial superposition of two coun-
terpropagating minimum-uncertainty wave packets. The figure, ob-
tained by solving the QLBE for s-wave hard-sphere scattering,
shows three snapshots of the dynamics at times �0�t0 , t1 , t2�
= �0,9 ,18�. The increasing influence of decoherence manifests itself
as a reduced visibility of the interference fringes as time progresses.
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If the state is close to thermal, and if the tracer particle is
much heavier than the gas particles the QLBE reduces to the
Caldeira-Leggett �CL� equation in Lindblad form �Eq. �19��.
The corresponding energy behavior is then well understood
�6,11�.

�U2�t = �U2�eq + ��U2�t0
− �U2�eq�e−4�t. �87�

Moreover, the relaxation rate � can be expressed in terms of
the microscopic quantities, see Eq. �20�. The integral can be
evaluated analytically for the case of a constant cross section
�6�,

� =
4

3


m

M
�0. �88�

Figure 8 shows the energy relaxation exhibited by the sto-
chastic solution of the QLBE for a weak and a strong Gauss-
ian interaction potential, with V0=1 �left� and V0=20 �right�,
respectively. The solid line depicts the solution of the QLBE
based on the exact scattering amplitude, while the corre-
sponding Born approximation is represented by the dashed
line; both simulations are based on 5�103 trajectories. The
initial state is here a momentum eigenstate with dimension-
less eigenvalue U0=6 �top� and U0=0.6 �bottom�, corre-
sponding to mass ratios of M /m=1 and M /m=10, respec-

tively. In case of a relatively large tracer mass �bottom� one
obtains a good agreement with the prediction of the CL Eq.
�87� �open dots�. Here the relaxation rate was obtained by
numerical integration of the right-hand side of Eq. �20�. For
equal masses, on the other hand, the results deviate notice-
ably �top�. As expected, all of the solutions converge to the
correct equilibrium values, given by the scaled energies 3/2
�top� and 3/20 �bottom�. The Born approximation yields re-
liable results only in the situation depicted by the top left
panel, where the kinetic energy is much larger than the po-
tential.

Again, we are led to conclude that the full QLBE �Eq. �2��
may give rise to predictions which deviate significantly from
the ones obtained with the QLBE in Born approximation
�Eq. �17��. This holds in particular for strong interaction po-
tentials, where the corresponding scattering amplitudes are
different. Furthermore, this result verifies that the expression
�20� obtained in �5,6� yields the correct relaxation rate in the
quantum Brownian limit.

F. Diffusion

As a final aspect we study the quantum diffusion process
described by the QLBE. To this end, a localized initial state
is prepared and the growth of the position variance is mea-
sured. Before discussing the numerical result, we summarize
analytical predictions based on �6�.

On short time scales, where the number of collisions is
small, one expects the variance growth to be dominated by
quantum dispersion. This implies that the variance growth is
parabolic; for an initial state of minimum uncertainty one
expects

�X
2�t� = �X

2�0� +
�2

4M2�X
2�0�

t2. �89�

At time scales after which many collisions have occurred the
variance growth is expected to be dominated by classical
diffusion. The corresponding diffusion constant can be esti-
mated by considering that the QLBE approaches asymptoti-
cally the classical linear Boltzmann equation asymptotically.
The latter can be simplified, by taking the Brownian limit of
heavy tracer particles with a momentum P close to the typi-
cal thermal value P=2M / �6,29,30�. Under these condi-
tions, the classical linear Boltzmann Eq. �7� reduces to the
Kramers equation �6�.

�tw�P� = ��
i=1

3 � �

�Pi
�Piw�P�� +

M



�2

�Pi
2w�P�� �90�

for the momentum distribution w�P�, with � the friction co-
efficient. The latter can be expressed in terms of the micro-
scopic details of the gas �6,31�, yielding �=2�, with � the
relaxation rate appearing in the Caldeira-Leggett equation,
see Sec. II B 4, Eq. �20�.

The Kramers equation predicts normal diffusion, i.e., a
linear growth of the variance �X

2�t�=�X
2�0�+2Dt, with diffu-

sion constant D=�M / �32�. This leads to the prediction
that

FIG. 8. �Color online� Energy relaxation as obtained by using
the exact scattering amplitude of the Gaussian interaction potential,
compared to the corresponding Born approximation and the solu-
tion of the CL Eq. �20�. We choose the potential strengths V0=1
�left� and V0=20 �right� and the mass ratios M /m=1 �top� and
M /m=10 �bottom�. The correct equilibrium values �Eq. �86�� of 3/2
�top� and 3/20 �bottom� are obtained in all cases. One observes that
the exact result agrees with the solution of the CL equation for a
heavy tracer particle �bottom�, while it deviates strongly for M =m
�top�. The Born approximation gives reliable results only when the
kinetic energy is much greater than the potential one �top left�,
which indicates that it may underestimate the energy relaxation
even for weak interactions if the test particle has a large mass �bot-
tom left�.
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�X
2�t� = �X

2�0� +
1

M�
t �91�

whenever the Brownian limit of the QLBE is applicable. For
the case of a constant cross section, where � can be evalu-
ated analytically �see Eq. �88��, Eq. �91� provides an analyti-
cal prediction for the diffusion constant. It is expected to be
valid when M �m.

The solid line in Fig. 9 shows the variance growth of the
spatial populations, obtained by solving the QLBE for
s-wave hard-sphere scattering and mass ratios M /m=100
�left� and M /m=1 �right�. This stochastic simulation is based
on 4�103 trajectories. The initial state is chosen to be a
Gaussian with width �X

2�0� /�th
2 =1.6�10−3 �left� and

�X
2�0� /�th

2 =1.6�10−1 �right�.
Let us first focus on the left-hand side panel which corre-

sponds to a very massive particle. Here the solution of the
QLBE starts with a quadratic dependence at small times. The
curvature is unrelated to that of free quantum dispersion
�dashed line�, Eq. �89�, which is clearly due to the large
number of collisions occurring on the time scale of the wave
packet broadening. �Time is given in terms of the average
period between collisions in our dimensionless units.�

After a time corresponding to about 200 collisions the
curve displays the straight line behavior expected for classi-
cal diffusion. A linear fit to this straight part, indicated by the
dotted line, has a slope of approximately 7.5�10−6. This
differs by about 12% from the analytical considerations pre-
sented above, where one expects a straight line of the form

�X
2�t�
�th

2 =
�X

2�0�
�th

2 + �M��th
2 �0�−1t�0

= 1.6 � 10−3 + 6.7 � 10−6t�0. �92�

For equal masses �right panel� one obtains a straight line

already starting from small times, which indicates that clas-
sical diffusion dominates over quantum dispersion. The slope
of about 3.2�10−2 implies that the diffusion constant is
much greater for light test particles. However, these results
cannot be related to Kramers equation, since the latter is
valid only in the Brownian limit of large tracer masses.

V. CONCLUSIONS

We presented a stochastic algorithm for solving the full
quantum linear Boltzmann equation given an arbitrary inter-
action potential. By exploiting the translational invariance of
the QLBE it allows one to efficiently propagate superposi-
tions of momentum eigenstates without increasing the di-
mension of the state space. Since the computation time
scales almost linearly with the number of basis states, arbi-
trary states can be represented in practice, in particular spa-
tially localized ones. This enables us to simulate many im-
portant physical processes, ranging from short-time effects,
such as the loss of fringe visibility in interference experi-
ments, to long-time relaxation and thermalization phenom-
ena.

For the cases of s-wave hard-sphere scattering and a
Gaussian interaction potential, we analyzed the range of va-
lidity of different limiting forms of the QLBE, including the
collisional decoherence model, the quantum Brownian limit
and the classical linear Boltzmann equation. Moreover, we
compared the solutions of the full QLBE to those of the
simplified equation in Born approximation. Here it is found,
for the above interactions, that the full QLBE may lead to
physical predictions which deviate significantly from the
ones obtained with the QLBE in Born approximation if the
interaction potential is sufficiently strong.

This method will find applications, e.g., in describing in-
terference experiments with species, whose mass is smaller
than or comparable to the mass of the gas particles. The
existing methods are not able to quantify the loss of coher-
ence in such a situation. Moreover, future studies might con-
sider extensions of the discussed method to the recently de-
veloped quantum master equation for the collisional
dynamics of particles with internal degrees of freedom
�33–35�. Even though this equation is more involved than the
QLBE, it is also translational invariant. Since this property is
the main prerequisite for the present algorithm, it should be
extensible to the quantum master equation of �35�.
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FIG. 9. The solid lines give the time dependence of the spatial
variance, as obtained by solving the QLBE for s-wave hard-sphere
scattering and mass ratios of M /m=100 �left� and M /m=1 �right�.
Left: after an initial quadratic increase the variance displays the
straight line behavior expected of classical diffusion. The fit dis-
played by the dotted line has a slope close to the diffusion constant
predicted by the Kramers equation �relative error: 12%�. For com-
parison, the dashed line gives the dispersive broadening of the ini-
tial wave packet in absence of a gas. Right: for a test particle with
a mass equal to that of the gas particles the variance growth is
dominated by classical diffusion even on the time scale of a single
collision.
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