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We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in
a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and
nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular
and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory
describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.
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I. INTRODUCTION

A particle moving and revolving in a rarefied gas expe-
riences a nonconservative force and torque [1] due to its
random collisions with the surrounding gas atoms [2]. The
resulting dynamics proved relevant for phenomena as diverse
as the size distribution of dust grains in protoplanetary disks
[3,4], the motion of satellites in the outermost layer of the
atmosphere [5–7], or the drag on dust particles in dirty plasmas
[8]. However, only recent experiments [9–11] in the field of
levitated optomechanics [12,13] are capable of resolving the
stochastic effect of individual scattering events.

An optically levitated nano- to microscale particle in high
vacuum can be efficiently isolated from environmental dis-
turbances, rendering it attractive for highly accurate measure-
ments of force and torque [14,15] as well as for the observation
of single-particle equilibration in a controlled environment
[9–11,16,17]. Cooling the levitated object into the quantum
regime [18–24] will further increase the degree of accuracy and
eventually allow tests of the quantum superposition principle
for massive objects [12,13,25–27]. Even before such inter-
ference tests will become available, the observed absence of
collapse-induced heating [28–34] can be used to falsify objec-
tive collapse models [35–37]. All such experiments require a
detailed understanding of how a nanoparticle is affected by the
inevitable interaction with background gases.

In this article we provide a microscopic and comprehensive
classical theory of the coupled translational and rotational
dynamics of an arbitrarily shaped rigid rotor in a rarefied
homogeneous background gas. We derive the rotranslational
Boltzmann and Fokker-Planck equations in terms of the mo-
mentum transfer characterizing the scattering of single gas
atoms at the individual surface points. This extends previous
work for special interaction types and particle symmetries [38].
Our results are directly applicable to recent experiments with
nonspherical levitated objects in high vacuum [11,15,39–43].
Beyond optomechanics, the here derived equations may be rel-
evant for explaining planet formation in interstellar dust [3,4],
the interplanetary trajectory of elongated asteroids [44,45], and
dusty plasma dynamics [46].

This paper is structured as follows. In Sec. II we provide
a microscopic derivation of the rotranslational Boltzmann

equation describing the dynamics of a particle in the free
molecular regime for arbitrary shape and momentum transfer.
In Sec. III it is shown how the Fokker-Planck equation arises if
the particle is slow in comparison to the surrounding gas atoms.
We determine the nonconservative force and torque together
with the resulting friction and diffusion tensors in Sec. IV
for the special cases of specular and diffuse reflection. The
expressions are evaluated for spheres, cylinders, and cuboids
in Sec. V, and we conclude in Sec. VI.

II. ROTRANSLATIONAL BOLTZMANN EQUATION

We consider an arbitrary convex rigid body of mass M with
moments of inertia (I1,I2,I3) moving through a homogeneous
rarefied gas of number density ng and atomic mass m. Denoting
the rigid body degrees of freedom by (R,�), with the center-
of-mass position R and the orientation � (given, e.g., by the
Euler angles), one can write its tensor of inertia as I(�) =
R(�)I0RT(�), where R(�) rotates from the initial orientation
to � and I0 = diag(I1,I2,I3).

It is our aim to derive the dynamical equation of the
rotranslational state, represented by the probability density
ft (R,�,P,J) with P and J the center-of-mass and angular
momentum, respectively. In absence of collisions the con-
servative dynamics of the particle ∂cons

t ft follow from the
Hamilton function H = P2/2M + J · I−1(�)J/2 + V (R,�)
with the external potential V (R,�). Whereas the conservative
dynamics can be conveniently expressed in the phase space of
canonically conjugate variables using the Poisson bracket, we
will see that the gas-induced motion can be formulated much
more efficiently in terms of the angular momentum vector J.
A detailed discussion of the transformation between ft and the
canonical phase space distribution can be found in Appendix A.

Denoting the nonconservative change of state due to the
surrounding gas by ∂coll

t ft the total time evolution is given by
the rotranslational Boltzmann equation

∂tft = ∂cons
t ft + ∂coll

t ft . (1)

In what follows we will determine the rotranslational Boltz-
mann collision integral ∂coll

t ft by considering individual scat-
tering processes off the particle surface.
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FIG. 1. Convex nanoparticle (gray) of mass M with momentum P′ and angular momentum J′ moving through a dilute gas (blue) of density
ng and atomic mass m. The rate of scattering events off the infinitesimal surface element dA at r depends on the incident relative velocity
v′

rel and the surface normal vector n. The type of scattering process, such as specular and diffuse reflection, is incorporated by specifying a
momentum transfer function.

We will see that the essential ingredients are the particle
shape, the gas distribution μ(p), and the scattering dynamics
of a single atom with the nanoparticle, expressed in terms
of the distribution function g(q|q′) for the reflected relative
momentum q given the incident momentum q′ and the position
of impact. [Section IV provides g(q|q′) for the special cases
of specular and diffuse reflection.]

A. Scattering rate and transfer function

We assume the mean free path of the gas atom to exceed
the extension of the particle. This is referred to as the free
molecular regime or Knudsen regime [1,2], and it is typically
obeyed in optomechanical experiments and for objects in
the outermost layer of the atmosphere. For particles with a
convex surface we can thus take the impinging gas atoms
to be independent of the motion of the particle and to be
characterized only by their momentum distribution μ(p).

To define the collision rate consider the relative velocity
between a gas atom with momentum p′ and an infinitesimal
surface element dA at position r,

v′
rel = p′

m
− P′

M
+ r × I−1(�) J′, (2)

depending on the current nanoparticle orientation �, its center-
of-mass momentum P′, and angular momentum J′; see Fig. 1.
The number of atoms impinging the surface area dA per time
increment dt gives the infinitesimal collision rate,

d� = −ngdA · v′
rel�(−n · v′

rel), (3)

where n = dA/dA denotes the normal vector of the surface
element and ng the gas density. The Heaviside function �(·)
ensures that only incident gas particles contribute. Integrating
the rate (3) over the surface ∂V of the particle gives the total
rate of scattering events as a function of p′, P′, and J′.

The effect of a single collision on the joint state of particle
and gas can be expressed by the conditional probability density

Q(P,J,p|P′,J′,p′) = δ(P − P′ + p − p′)δ[J − J′ + r

× (p − p′)] u(p|p′,P′,J′), (4)

describing the probability of obtaining the momenta p, P, and
J if they were p′, P′, and J′ prior to the collision. Here we

dropped the dependence on r, n, and � for brevity. The δ

functions in Eq. (4) take into account the conservation of total
linear and angular momentum, and the function u(p|p′,P′,J′)
describes the probability that the gas atom leaves the particle
with momentum p.

It follows from the principle of relativity that the latter
can only depend on the relative momenta before and after the
collision, i.e.,

u(p|p′,P′,J′) = g(q|q′), (5)

where q = p−mP′/M+mr×I−1(�)J′ and q′ = p′−
mP′/M+mr×I−1(�)J′.

The transfer function g(q|q′) thus contains all the details of
the scattering process. It provides the distribution of outgoing
atom momenta q given an incident momentum q′, in the
frame of reference where the position of impact r is at rest
immediately before the collision.

B. Collision integral

We are now in the position to express the collision integral
in terms of the rate (3) and the change in linear and angular
momentum (4). Exploiting that the particle is uncorrelated with
the state of the impinging atom one can write the particle state
after the infinitesimal time dt as

ft+dt (P,J) =
∫

d3p d3p′d3P ′d3J ′ft (P′,J′)μ(p′)

× wdt (P,J,p|P′,J′,p′), (6)
where we introduced the conditional probability density wdt

for having p, P, and J after the time dt with initial momenta p′,
P′, and J′. We omitted the dependence on R and � for brevity.

The probability for the number of independent collisions in
an impact region dA is given by the Poisson distribution with
mean d� dt . Assuming that at most a single collision occurs
within dt and taking into account that every surface element is
hit independently one obtains

wdt (P,J,p|P′,J′,p′)

=
∫

∂V

d� dt Q(P,J,p|P′,J′,p′)

+
[

1 −
∫

∂V

d� dt

]
δ(p − p′)δ(P − P′)δ(J − J′). (7)
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The first term accounts for a single collision in dt , while the
second describes that no collision occurs.

Inserting (7) into (6), exploiting the normalization of μ and
Q, and drawing the limit dt → 0 yields the rotranslational
collision integral

∂coll
t ft (P,J) =

∫
d3P ′d3J ′[K(P,J|P′,J′)ft (P′,J′)

− K(P′,J′|P,J)ft (P,J)], (8)
involving the rate densities K(P,J|P′,J′) =∫

d3p d3p′ ∫
∂V

d� μ(p′)Q(P,J,p|P′,J′,p′). The latter are
determined by the transfer function g(q|q′) and the momentum
distribution μ(p) of the gas,

K(P,J|P′,J′) =
∫

d3q d3q ′
∫

∂V

d� δ(P − P′ + q − q′)

× δ[J − J′ + r × (q − q′)]g(q|q′)

× μ

[
q′ + m

M
P′ − mr × I−1(�)J′

]
, (9)

with

d� = −ng

m
dA · q′�(−n · q′). (10)

The first term of the collision integral (8) describes how the
nanoparticle state ft changes due to the collision-induced
probability flow from (P′,J′) to (P,J), while the reverse process
is given by the second term.

C. Gas-induced force and torque

In the absence of an external potential, the influence of the
gas molecules on the mean momentum 〈P〉 and mean angular
momentum 〈J〉 follows from (1) as

d

dt
〈P〉 =

∫
d3R d3�d3P d3J P∂coll

t ft (P,J) (11a)

and
d

dt
〈J〉 =

∫
d3R d3�d3P d3J J∂coll

t ft (P,J). (11b)

Inserting Eqs. (8) and (9) and carrying out the integration
yields the gas-induced, nonconservative force and torque,

d

dt
〈P〉 =

〈∫
d3q d3q ′

∫
∂V

d�(q′ − q)g(q|q′)

×μ
[
q ′ + m

M
P − mr × I−1(�)J

]〉
(12a)

and

d

dt
〈J〉 =

〈∫
d3q d3q ′

∫
∂V

d� r × (q′ − q)g(q|q′)

×μ
[
q ′ + m

M
P − mr × I−1(�)J

]〉
. (12b)

Equation (12a) describes how the balance between the gas
momentum flow into and out of the particle surface results
in a net force. In a similar fashion, the angular momentum
flow through the surface induces the nonconservative torque
(12b).

The formulas (12a) and (12b) will be used in Sec. IV
to calculate the gas-induced force and torque for the special

cases of specular and diffuse reflection. Before that, we derive
the Fokker-Planck equation by approximating the Boltzmann
equation (8) for small particle velocities and momentum kicks.

III. ROTRANSLATIONAL FOKKER-PLANCK EQUATION

In order to derive a Fokker-Planck equation from the
rotranslational collision integral (8) we exploit that the particle
is much heavier than a gas atom so that we can expand
the δ functions in Eq. (9) for small momentum transfers
�p = q − q′. In doing so we assume that the linear and the
angular momentum of the particle is much greater than those
transferred in a single collision.

The expansion for small �p is carried out conveniently by
using that

δ(P − P′ + �p) = [
1 + �p · ∇P + 1

2 (�p · ∇P)2
]
δ(P − P′)

(13a)

and

δ(J − J′ + r × �p) = [
1 + r × �p · ∇J

+ 1
2 (r × �p · ∇J)2]δ(J − J′), (13b)

where the differential operators act on the δ distributions. Using
these relations in (9) yields, after integrating the δ distributions,

∂coll
t ft (P,J) =

∫
d3q d3q ′

∫
∂V

d� g(q|q′)
[
�p · ∇P + r

× �p · ∇J + 1

2
(�p · ∇P + r × �p · ∇J)2

]
× μ

[
q′ + m

M
P − mr × I−1(�)J

]
ft (P,J).

(14)

Here, the derivative operators act on the product of μ

and ft .
The gas distribution function μ in Eq. (14) is shifted by the

velocity of the surface element multiplied by the atomic mass
m. Typically, this momentum is much smaller than the width
σμ of μ and one can thus expand

μ

(
q′ + m

M
P − mr × I−1(�)J

)
≈ μ(q′) +

(
m

M
P − mr × I−1(�)J

)
· ∇q′μ(q′). (15)

Specifically, this approximation is valid if the nanoparticle is
close to equilibrium with a thermal gas, σμ = √

2mkBT , since
m/M � 1 implies that |mP/M − mr × I−1(�)J|/σμ � 1.

Inserting the expansion (15) into (14) and keeping terms
up to second order yields the rotranslational Fokker-Planck
equation:

∂coll
t ft = −

(∇P
∇J

)
·
[
f(�) − Γ(�)

(
P
J

)]
ft

+
(∇P

∇J

)
· D(�)

(∇P
∇J

)
ft . (16)
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Here we defined the nonconservative force-torque vector

f(�) = −
∫

d3q d3q ′
∫

∂V

d� μ(q′)g(q,q′)
(

q − q′
r × (q − q′)

)
, (17a)

and the rotranslational friction and diffusion tensors

Γ(�) = m

∫
d3q d3q ′

∫
∂V

d� g(q,q′)
(

q − q′
r × (q − q′)

)
⊗

( ∇q′μ(q′)
r × ∇q′μ(q′)

)
T−1(�), (17b)

D(�) = 1

2

∫
d3q d3q ′

∫
∂V

d� μ(q′)g(q,q′)
(

q − q′
r × (q − q′)

)
⊗

(
q − q′

r × (q − q′)

)
, (17c)

with inertia

T(�) =
(

M1 0
0 I(�)

)
. (18)

We use sans-serif characters to denote compound vectors and
tensors made up of linear and angular momentum components.
They allow us to write Eq. (16) in compact form.

The Fokker-Planck equation (16) describes the coupled
rotranslational dynamics of an arbitrarily shaped convex
nanoparticle due to a general interaction with the surrounding
gas. The gas-induced nonconservative force and torque (17a)
result from a nonvanishing mean momentum flow into or out
of the surface of a particle at rest; see Eqs. (12). Moreover,
the friction matrix (17b) is consistent with the expansion of
Eqs. (12) up to first order in P and J, and thus describes how
these momentum flows change due to the particle motion. Fi-
nally, the diffusion tensor Eq. (17c) quantifies the fluctuations
of these momentum flows. Note that all three quantities (17)
depend on the particle orientation �, which enters through the
scattering rate (3), the momentum transfer function (5), and
the surface integral over ∂V .

The Fokker-Planck equation (16) reduces to the version
derived in Ref. [38] for the case of specular and diffuse
reflection of thermal gas atoms if the particle is azimuthal and
inversion symmetric (point group D∞h) and has a constant
surface temperature.

A. Friction, diffusion, and equilibration

In the absence of external potentials, the mean change of
linear and angular momentum of the particle follows from the
Fokker-Planck equation (16) as

d

dt

〈(
P
J

)〉
= 〈f(�)〉 −

〈
Γ(�)

(
P
J

)〉
. (19)

Hence the force and torque described by the vector f(�)
depends only on the orientation, while those given by the tensor
Γ(�) are linear in the velocities, as characteristic for Stokes
friction. Note that Γ(�) will lead to a gas-induced coupling
between the center of mass and the rotational motion if it is
not block diagonal.

The diffusion tensor D(�) comes into play when consider-
ing the expectation value of the kinetic energy,

Ekin = 1

2

(
P
J

)
· T−1(�)

(
P
J

)
. (20)

Using (16) one readily finds

d

dt
Ekin =

〈
T−1(�)f(�) ·

(
P
J

)〉
−

〈(
P
J

)
· T−1(�)Γ(�)

(
P
J

)〉
+ 〈Tr[T−1(�)D(�)]〉, (21)

where Tr[·] denotes the matrix trace. The term involving Γ(�)
decreases the energy (or leaves it constant), and thus describes
friction if Γ(�)T(�) is positive semidefinite. It will be shown
below that this is indeed the case for specular and diffuse
reflection of thermally distributed gas atoms. The third term,
on the other hand, accounts for the energy increase associated
with diffusive motion. It is non-negative since D(�) is positive
semidefinite; see Eq. (17c).

To make explicit that D(�) describes diffusion, consider
Eq. (16) for f(�) = 0, Γ(�) = 0. The second moments of
momentum then increase linearly with time, as given by the
expectation value of D(�),

d

dt

〈(
P
J

)
⊗

(
P
J

)〉
= 2〈D(�)〉. (22)

Finally, we determine the stationary state fst of the rotrans-
lational Fokker-Planck operator (16). The condition ∂coll

t fst =
0 implies that the probability current

j =
[
f(�) − Γ(�)

(
P
J

)]
fst − D(�)

(∇P
∇J

)
fst (23)

must be the curl of a vector field or vanish everywhere [47]. It
can be demonstrated [47,48] that a solution with j = 0 exists
only if D−1(�)Γ(�) is symmetric, yielding

fst ∝ exp

{
−1

2

[
Γ−1f −

(
P
J

)]
· D−1Γ

[
Γ−1f −

(
P
J

)]}
,

(24)

where we dropped the orientation dependence for brevity.
This solution is then unique and every initial state approaches
it asymptotically [47]. The dependence of fst on R and �

then follows from ∂cons
t fst = 0, as discussed in Sec. IV and

Appendix B for specular and diffuse reflection.

B. Langevin equations

The dynamics described by the Fokker-Planck equation can
be equivalently represented by a stochastic Langevin equation
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[47]. Including the conservative force and torque fc(R,�), the
Langevin equation for linear and angular momentum reads(

dP
dJ

)
=

[
fc(R,�) + f(�) − Γ(�)

(
P
J

)]
dt +

√
2D(�)dWt ,

(25)

where dWt is a vector of independent Wiener increments.
Since this equation depends on the position and orientation
of the nanoparticle, it has to be supplemented by the kinematic
equations for position and rotation matrix,

dR = P
M

dt, dR(�) = I−1(�)J × R(�)dt. (26)

Numerically, it is often much more convenient to solve the
coupled stochastic differential equations (25) and (26) instead
of a partial differential equation for the probability density.
They will be used in Sec. IV to illustrate the phase space
dynamics of the linear rigid rotor.

IV. SPECULAR AND DIFFUSE REFLECTION

In this section we will specify the friction and diffusion ten-
sors for the special cases of specular and diffuse reflection. The
latter are phenomenological descriptions of surface scattering,
frequently employed to avoid dealing with the complexity of
atomistically exact interactions [2].

In the simple case of specular reflection the atoms are
elastically reflected from the particle surface, just as light
from a perfect mirror. Such a description can even be used to
approximately describe atom-molecule scattering in so-called
rigid shell models [49–52]. The model of diffuse reflection, on
the other hand, accounts for the fact that atoms get adsorbed
and reemitted by the surface. Their final momentum is then
determined by the surface temperature Ts. Introducing the
accommodation coefficient αc ∈ [0,1] allows one to contin-
uously interpolate between these two scenarios, with αc = 0
referring to specular reflection. For both reflection types the
momentum transfer (5) can be given explicitly.

A. Transfer function

1. Specular reflection

The momentum p of a gas atom elastically reflected from
the surface element dA at separation r from the center of
mass of a moving and rotating nonspherical nanoparticle is
determined by the conservation of energy, momentum, and
angular momentum. Given the initial momenta p′, P′, and J′
and using that the momentum is conserved in the surface plane
yields

p = p′ − 2m̃(�)n
[

p′

m
− P′

M
+ r × I−1(�)J′

]
· n. (27)

Here, n is the surface normal vector and we defined the
orientation-dependent effective mass for each surface element

m̃(�) = mM

m + M + mM(r × n) · I−1(�)(r × n)
. (28)

For small mass ratios, m/M � 1, we can approximate
m̃ ≈ m and obtain the momentum transfer function of specular

reflection as

gsp(q|q′) = δ[q − q′ + 2n(n · q′)]. (29)

The transferred momentum always points into the direction
of the surface normal vector. This implies that the angular
momentum transfer in certain directions vanishes for special
shapes, such as along the symmetry axis of a cylinder or in all
directions for a sphere. This is discussed in Appendix B and
reflected in Tables I and II.

2. Diffuse reflection

The model of diffuse reflection assumes that the incident gas
atom thermalizes with the nanoparticle surface at temperature
Ts before being thermally reemitted [2]; see Fig. 1. The
momentum distribution of the ejected gas atoms therefore reads
as

gdi(q|q′) = n · q

2π (mkBTs)2 exp

(
− q2

2mkBTs

)
�(n · q), (30)

independent of the incident momentum q′. We will see that for
constant Ts this transfer function leads to thermalization inde-
pendent of the nanoparticle shape. If the surface temperature is
a function of the point of impact r diffuse reflection describes
photophoresis [53,54].

To model experimental data, a combination of specular
and diffuse reflection is often specified via the fraction of
diffusely reflected molecules αc, referred to as accommodation
coefficient,

g(q,q′) = (1 − αc)gsp(q,q′) + αcgdi(q,q′). (31)

B. Gas-induced forces and torques

The nonconservative force and torque (12) predicted by the
rotranslational Boltzmann equation are of the form

d

dt
〈P〉 =

〈∫
∂V

dA
dF
dA

〉
, (32a)

d

dt
〈J〉 =

〈∫
∂V

dA r × dF
dA

〉
, (32b)

where the force increment dF follows from (31) as

dF
dA

= 2(1 − αc)n(n · jm) + αc

(
jm − ja

2

√
2πmkBTsn

)
.

(33)

Here we introduced the incident atom flux

ja = ng

m

∫
n·p�0

d3p |n · p| μ
(

p + m

M
P − mr × I−1(�)J

)
,

(34)

and the corresponding momentum flux

jm = ng

m

∫
n·p�0

d3p p|n · p| μ
(

p + m

M
P − mr × I−1(�)J

)
.

(35)
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For the remainder of this section we take the gas to be thermally
distributed,

μ(p) = 1

(
√

2πmkBT )3
exp

(
− p2

2mkBT

)
. (36)

As in Sec. III we assume the velocity of the surface element
vdA = P/M − r × I−1(�)J to be much smaller than the most
probable gas velocity

√
2kBT/m. We can thus expand the

Boltzmann distribution in (34) and (35) up to second order,
yielding

dF
dA

= − 1

2
ngαckBT γsn − ng

√
mkBT

2π
αcvdA

− ng

√
mkBT

2π

(
4 − 3αc + παcγs

2

)
(vdA · n)n

− 1

2
ngαcm(vdA · n)vdA

− 1

4
ngm[4(1 − αc) + αcγs](vdA · n)2n, (37)

where γs = √
Ts/T can be a function of r.

The first term on the right-hand side is a velocity-
independent nonconservative force and torque. It can also
be obtained from the Fokker-Planck equation by evaluating
(17a) for the momentum transfer function (31). Note that it
vanishes whenever the surface temperature Ts is uniform, while
an inhomogeneous surface temperature, γs ≡ γs(r), results in
photophoresis [53,54] with the force and torque

f(�) = −1

2
αcngkBT

∫
∂V

dA γs(r)

(
n

r × n

)
. (38)

The fourth term on the right-hand side of Eq. (37) describes
the inverse Magnus effect [55]. The resulting force and torque
can be calculated for particles of homogeneous mass density
� and arbitrary shape as(

FiM

NiM

)
= 1

2

αcngm

�

(
P × I−1(�)J
J × I−1(�)J

)
. (39)

Compared to the conventional Magnus effect, the force on
the spinning particle points into the opposite direction. For
symmetric tops, the corresponding torque leads to a precession
of the angular momentum vector with a constant frequency.
The inverse Magnus effect vanishes for pure specular reflection
(αc = 0).

The second and third terms in Eq. (37), which are linear
in vdA, yield a rotranslational friction force and torque. They
are the same as those implied by the Fokker-Planck equation
(16), as obtained by evaluating the friction tensor (17b)
with (31),

Γ(�) = ng

√
mkBT

2π

∫
∂V

dA

{[
4 − 3αc + παcγs

2

]( n
r × n

)
⊗

(
n

r × n

)
+ αc

(
1 −r
r −r2

)}
T−1(�). (40)

Here, the matrix r is defined such that ra = r × a for any vector
a. The associated diffusion tensor follows from (17c) as

D(�) = kBT ng

√
mkBT

2π

∫
∂V

dA

{[
4 − 7 − γ 2

s

2
αc + παcγs

2

]
×

(
n

r × n

)
⊗

(
n

r × n

)
+ 1 + γ 2

s

2
αc

(
1 −r
r −r2

)}
.

(41)

For γs = 1, the friction tensor (40) and the diffusion tensor
(41) obey the relation

D(�) = kBT Γ(�)T(�), (42)

which is reminiscent of the fluctuation-dissipation relation.
It implies that the Fokker-Planck operator (16) admits the
stationary solution (24) with f(�) = 0. The additional re-
quirement that the stationary solution is also invariant under
the conservative time evolution yields the unique thermal
equilibrium state

feq =
√

g(�)

Z
exp

[
− 1

kBT

(
P2

2M
+ 1

2
J · I−1(�)J

)]
× exp

[
−V (R,�)

kBT

]
, (43)

where Z is the partition function. Here, g(�) is the metric
determinant of the orientational configuration space, and thus
also the squared Jacobian determinant when transforming to
the phase space (see Appendix A). It is demonstrated in
Appendix B that every initial state converges towards this
distribution if αc �= 0.

C. Thermalization of the linear rigid rotor

We apply the relations derived above to study the rotational
thermalization dynamics of a linear rigid rotor of length

 � R and moment of inertia I = M
2/12. The form of its
rotational friction and diffusion tensors is given in Tables I
and II for arbitrary accommodation coefficients αc and surface
temperatures Ts. Here, we make use of this result for Ts = T

in order to express the Fokker-Planck equation in terms of the
phase space distribution ht (α,β,pα,pβ) of the orientation state
(see Appendix A),

∂tht + {ht ,H } = Γ [∂pα
(pαht ) + ∂pβ

(pβht )]

+D
(

sin2 β∂2
pα

ht + ∂2
pβ

ht

)
. (44)

Here we use the Poisson bracket {·,H } with the Hamilton
function

H = 1

2I

(
p2

α

sin2 β
+ p2

β

)
− V0 cos2 α sin2 β. (45)

Note that (42) reduces to D = kBT Γ I .
The angles α ∈ [0,2π ] and β ∈ [0,π ] specify the orienta-

tion of the symmetry axis m, see Table I, while pα and pβ are
the corresponding conjugate angular momenta. The potential
energy in (45) describes for instance the interaction between
a polarizable rod-shaped particle and the field of a laser beam
polarized in x direction [56].
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According to Eq. (25), the dynamics described by (44) can
also be expressed in terms of the set of stochastic differential
equations,

dα = ∂pα
H dt, (46a)

dβ = ∂pβ
H dt, (46b)

dpα = −∂αH dt − Γpαdt +
√

2D sin β dW
(α)
t , (46c)

dpβ = −∂βH dt − Γpβdt +
√

2D dW
(β)
t . (46d)

In Fig. 2 we show the thermalization dynamics of a linear
rotor with IΓ 2/kBT = 0.26 and V0/kBT = 2.42, as inspired
from recent experiments with levitated silicon nanorods [11].
Based on several thousand trajectories, time evolved according
to (46), the figure illustrates how an initially well localized
phase space distribution disperses due to diffusion and relaxes
towards the thermal state heq = exp(−H/kBT )/Z on the time
scale 1/Γ .

V. SYMMETRIC PARTICLES

In this section we provide the translational and rotational
friction and diffusion tensors of spheres, cylinders, and cuboids
for specular and diffuse reflection with a constant surface
temperature, Ts = const. The friction and diffusion tensors
(17b) and (17c) are block diagonal for the considered particle
shapes, so that the translational and the rotational thermaliza-
tion dynamics decouple.

The corresponding center-of-mass and rotational tensors are
presented in Tables I and II. All center-of-mass tensors given
in the tables satisfy the relation

Dcm(�) = kBT M�cm(�), (47a)

while all rotational tensors fulfill

Drot(�) = kBT �rot(�)I(�). (47b)

The corresponding tensors of inertia for spheres, cylinders,
and cuboids are given by

Isph(�) = 2MR2

5
1, (48a)

Icyl(�) =
(

M
2

12
+ MR2

4

)
[1 − m(�) ⊗ m(�)]

+ MR2

2
m(�) ⊗ m(�), (48b)

Icub(�) = M

12

∑
k=a,b,c

(a2 + b2 + c2 − k2)nk(�) ⊗ nk(�).

(48c)

For special situations the friction tensors reported in Table I
reduce to expressions known in the literature: the translational
and rotational friction tensor of a sphere is consistent with
Refs. [1,55,57], and the center-of-mass friction force on cylin-
ders for γs = 1 was calculated in [58], while its frictional
torque was determined for γs = 1 and for rotations orthogonal
to m in [59]. The friction tensor of cuboids reduces to the
one given in Refs. [60,61] if one takes γs = 1, assumes only

diffuse reflection (αc = 1), and takes the edge lengths to be
equal (a = b = c).

Rotational friction and diffusion of spheres occurs only if
a finite fraction of the gas atoms is diffusely reflected, since
the momentum transfer of specular reflection (29) points in
the same direction as the surface normal vector. In general,
for azimuthally symmetric particles, the angular momentum
transfer on rotations around the symmetry axis vanishes unless
αc �= 0. This is also evident from the rotational friction tensor
for cylinders in Table I, which only describes damping of
rotations around m if αc �= 0; see Appendix B.

VI. CONCLUSION

This article provides a comprehensive, unified description
of the coupled rotranslational dynamics of rigid objects in thin
gases by deriving a complete classical theory of rotranslational
friction, diffusion, and thermalization. While the rotransla-
tional friction matrix is block diagonal for special shapes such
as spheres, cylinders, and cuboids, this is not the case for
arbitrary geometries. Strong rotranslational coupling might
give rise to phenomena such as alignment of the particle
with its center-of-mass propagation direction or relaxation into
nonthermal stationary states. Also the inverse Magnus effect
and its rotational analog are manifestations of rotranslational
coupling. The field of levitated optomechanics offers a promis-
ing platform to observe such effects experimentally.

The strength of the presented formalism lies in its generality
and its coordinate-independent formulation in terms of the
angular momentum vector. In its general form, the Boltzmann
equation makes no assumption on the momentum transferred
by a single collision beyond the conservation of linear and an-
gular momentum and the conservation of particles. By slightly
modifying the presented theory it will be possible to describe
phenomena such as accumulation or outgassing of atoms from
the particle surface, an effect that significantly influences the
rotation dynamics of comets [62–64]. Alternative models of
gas-atom surface interaction, potentially motivated by ab initio
calculations, can be easily included by adapting the momentum
transfer function.

Beyond its applications in classical physics, the here derived
translational and rotational friction and diffusion tensors can be
used in phenomenological models of friction and diffusion of
quantum rotors [65–67] and thereby contribute to decoherence
experiments and noninterferometric tests of objective collapse
models [32–34,37].

APPENDIX A: PHASE SPACE FORMULATION

The canonically conjugate momenta to the Euler angles
� = (α,β,γ ) in the z-y ′-z′′ convention are denoted by p� =
(pα,pβ,pγ ). They are related to the angular momentum vector
J via

pα = J · ez = �α(�,J), (A1a)

pβ = J · eξ (�) = �β(�,J), (A1b)

pγ = J · m(�) = �γ (�,J), (A1c)
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FIG. 2. Thermalization dynamics of the linear rigid rotor. The panels (a)–(f) show different marginals of the four-dimensional phase space
distribution function at three different instances of time, in red, gray, and blue. The initial state, indicated in red, is given by (α,β,pα,pβ ) =
(π,π/3,IΓ,2IΓ ), while the time-evolved state at t = 0.5/Γ and t = 13/Γ is shaded in gray and blue, respectively. Panels (a), (c), (d), and
(f) show histograms for the individual phase space coordinates, while (b) and (e) are density plots for the reduced azimuthal and polar degrees
of freedom. Note that the final distribution is well approximated by the thermal state (green lines). The plots are obtained by calculating several
thousand trajectories from the stochastic differential equations (46) for IΓ 2/kBT = 0.26 and V0/kBT = 2.42.

where eξ (�) = − sin α ex + cos α ey and m(�) =
cos α sin β ex + sin α sin β ey + cos β ez, and we denoted
the transformation functions by ��(�,J).

The phase space density ht (�,p�) is related to the prob-
ability density ft (�,J) used in the main text by the (norm-
preserving) transformation

ht (�,p�) =
∫

d3J ft (�,J) δ[p� − ��(�,J)]. (A2)

Similarly, the inverse relation is

ft (�,J) =
∫

d3p� ht (�,p�) δ[J − �J (�,p�)], (A3)

where �J (�,p�) is the inversion of Eqs. (A1) so that
��[�,�J (�,p�)] = p�. The integrals can be carried out,
yielding

ft (�,J) = sin β ht [�,��(�,J)], (A4)

where
√

g(�) = sin β is the Jacobian determinant of the
transformation. Consequently, the normalization of ft and ht

reads ∫
d3�

∫
d3p�ht (�,p�) = 1, (A5a)∫

d3�

∫
d3Jft (�,J) = 1, (A5b)

with d3� = dα dβ dγ .

In the absence of gas collisions the phase space distribution
satisfies the Liouville equation

∂tht + {ht ,H } = 0, (A6)

with the rigid rotor Hamilton function in terms of phase space
variables

H = P2

2M
+ [(pα − pγ cos β) cos γ − pβ sin β sin γ ]2

2I1 sin2 β

+ [(pα − pγ cos β) sin γ + pβ sin β cos γ ]2

2I2 sin2 β

+ p2
γ

2I3
+ V (R,�). (A7)

The free time evolution for ft (�,J) is rather complicated in
general and can be obtained by transformation of the Poisson
bracket.

APPENDIX B: THERMALIZATION FOR SPECULAR
AND DIFFUSE REFLECTION

The Fokker-Planck equation (16) for specular and diffuse
reflection with Ts = T predicts that an arbitrary initial state ap-
proaches the stationary solution (43). This can be demonstrated
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TABLE I. Center-of-mass (cm) and rotational (rot) friction tensors of homogeneous spheres, cylinders, and cuboids for specular and diffuse
reflection with accommodation coefficient αc and surface temperature Ts = γ 2

s T . The gas temperature is denoted by T , ng is the gas density,
m is the mass of a gas atom, and M is the total mass of the particle. The radius of the sphere and cylinder is R, the cylinder length is 
 with
symmetry axis m(�), and the edge lengths of the cuboid are a, b, and c with principal axes na(�), nb(�), and nc(�); see sketches. All friction
tensors satisfy the relations (47) with the corresponding diffusion tensors in Table II.

Sphere

�cm = 8ngR
2
√

2πmkBT

3M

(
1 + π

8
αcγs

)
1

�rot = 10αcngR
2
√

2πmkBT

3M
1

Cylinder

�cm = Γ ⊥
cm(1 − m ⊗ m) + Γ ‖

cmm ⊗ m

�rot = Γ ⊥
rot(1 − m ⊗ m) + Γ

‖
rotm ⊗ m

Γ ⊥
cm = ngR


√
2πmkBT

M

[
2 + αc

(
−1

2
+ πγs

4
+ R




)]
Γ ‖

cm = ngR

√

2πmkBT

M

[
4
R



+ αc

(
1 − 2

R



+ πγs

2

R




)]
Γ ⊥

rot = ngR

√

2πmkBT

M


2

3R2 + 
2

{
2 + 12

R3


3
+ αc

[
−1

2
+ πγs

4
+ 3

R



+ 6

R2


2
+

(
3πγs

2
− 6

)
R3


3

]}
Γ

‖
rot = ngR


√
2πmkBT

M
αc

(
2 + R




)

Cuboid

�cm = Γ abc
cm na ⊗ na + Γ bac

cm nb ⊗ nb + Γ cba
rot nc ⊗ nc

�rot = Γ abc
rot na ⊗ na + Γ bac

rot nb ⊗ nb + Γ cba
rot nc ⊗ nc

Γ abc
cm = ngbc

√
2πmkBT

πM

[
4 + αc

(
−2 + ab + ac

bc
+ πγs

2

)]
Γ abc

rot = ngbc
√

2πmkBT

πM

{
4a(c3 + b3)

bc
(
b2 + c2

) + αc

[
1 −

(
2 − πγs

2

) a(c3 + b3)

bc
(
b2 + c2

) + 3a(b + c)

b2 + c2

]}

[47,48] by considering the relative entropy

S(t) = −
∫

d3R d3�d3P d3p�ht ln

(
ht

heq

)
(B1)

in terms of the phase space distribution discussed in Ap-
pendix A. This entropy is always negative [48] and it is
conserved under the free dynamics since

∫
d3R d3�d3P d3p� {ht ,H } ln

(
ht

heq

)
= 0. (B2)

In order to calculate the effect of gas collisions on the
entropy, we note that S(t) can be written as

S(t) = −
∫

d3R d3�d3P d3J ft ln

(
ft

feq

)
, (B3)

see Appendix A, leading to

d

dt
S(t) = −

∫
d3R d3�d3P d3J

(
∂coll
t ft

)
ln

(
ft

feq

)
. (B4)

This can be further evaluated by inserting the Fokker-Planck
equation (16) with Ts = T and integrating by parts. Using that
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TABLE II. Center-of-mass (cm) and rotational (rot) diffusion tensors of homogeneous spheres, cylinders, and cuboids for specular and
diffuse reflection with accommodation coefficient αc and surface temperature Ts = γ 2

s T . The gas temperature is denoted by T , ng is the gas
density, m the mass of a gas atom, and M the total mass of the particle. The radius of the sphere and cylinder is R, the cylinder length is 
 with
symmetry axis m(�), and the edge lengths of the cuboid are a, b, and c with principal axes na(�), nb(�), and nc(�); see sketches. All diffusion
tensors satisfy the relations (47) with the corresponding friction tensors in Table I.

Sphere

Dcm = 8

3
ngR

2
√

2πm(kBT )3

(
1 + π

8
αcγs

)
1

Drot = 4

3
αcngR

4
√

2πm(kBT )31

Cylinder

Dcm = D⊥
cm(1 − m ⊗ m) + D‖

cmm ⊗ m

Drot = D⊥
rot(1 − m ⊗ m) + D

‖
rotm ⊗ m

D⊥
cm = ngR


√
2πm(kBT )3

[
2 + αc

(
−1

2
+ πγs

4
+ R




)]
D‖

cm = ngR


√
2πm(kBT )3

[
4
R



+ αc

(
1 − 2

R



+ πγs

2

R




)]
D⊥

rot = 1

12
ngR
3

√
2πm(kBT )3

{
2 + 12

R3


3
+ αc

[
−1

2
+ πγs

4
+ 3

R



+ 6

R2


2
+

(
3πγs

2
− 6

)
R3


3

]}
D

‖
rot = 1

2
ngR

3


√
2πm(kBT )3αc

(
2 + R




)

Cuboid

Dcm = Dabc
cm na ⊗ na + Dbac

cm nb ⊗ nb + Dcba
rot nc ⊗ nc

Drot = Dabc
rot na ⊗ na + Dbac

rot nb ⊗ nb + Dcba
rot nc ⊗ nc

Dabc
cm = 1

π
ngbc

√
2πm(kBT )3

[
4 + αc

(
−2 + ab + ac

bc
+ πγs

2

)]
Dabc

rot = ngbc(b2 + c2)
√

2πm(kBT )3

12π

{
4a(c3 + b3)

bc(b2 + c2)
+ αc

[
1 −

(
2 − π

2
γs

) a(c3 + b3)

bc(b2 + c2)
+ 3a(b + c)

b2 + c2

]}

∂coll
t feq = 0, one finds

d

dt
S(t) =

∫
d3R d3�d3P d3J ft

[(∇P
∇J

)
ln

(
ft

feq

)]
· D(�)

[(∇P
∇J

)
ln

(
ft

feq

)]
. (B5)

This is never negative since the diffusion matrix D(�) is
positive semidefinite according to its definition (17c).

Below we will demonstrate that D(�) is positive definite
for αc �= 0, implying that the entropy increases monotonically

until (∇P
∇J

)
ln

(
ft

feq

)
= 0 (B6)

for all but isolated points. Thus the entropy is only stationary
if ft ≡ feq. However, stationarity of S(t) is necessary but not
sufficient for the stationarity of ft . In the above argument we
exploited that ∂coll

t feq = 0, which is true for all distributions of
the form (24). The additional requirement that feq is invariant
under the free dynamics (A6) determines its prefactor and
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finally leads to the unique thermal state (43). This is illustrated
for the linear rigid rotor in Fig. 2.

We now demonstrate that the diffusion matrix (41) is indeed
positive definite for αc �= 0. Equation (41) contains two terms,
both integrated over the particle surface and multiplied by
positive prefactors. The first is proportional to(

1 −r
r −r2

)
=

(
1 0
r 0

)(
1 −r
0 0

)
= GGT, (B7)

where its Choleksy decomposition in terms of G implies that
it is positive semidefinite. By solving the quadratic equation

v · GTGv = 0, (B8)

for r one finds that for a given vector v the solutions lie along
a straight line, but never on a closed surface. The quadratic
form in (B8) is thus positive for every vector r off this line
and, hence, integration over a closed surface always yields a
positive definite matrix,∫

∂V

dA

(
1 −r
r −r2

)
> 0. (B9)

The second term in Eq. (41) is positive semidefinite since

v ·
(

n
r × n

)
⊗

(
n

r × n

)
v � 0 (B10)

and remains so even after integrating over a closed surface.
Equations (B9) and (41) thus show that the diffusion matrix
is positive definite if αc �= 0, i.e., if a fraction of the gas
atoms is reflected diffusely. Any initial state therefore evolves
towards (43).

However, in the case of pure specular reflection thermaliza-
tion does not necessarily take place. This can be illustrated by
investigating the diffusion matrix of spheres (αc = 0)

Dsph(�) ∝
(
1 0
0 0

)
, (B11)

whose inverse does not exist [rendering Eq. (24) invalid].
Spheres therefore thermalize only in their center of mass and
not in their rotational degrees of freedom if αc = 0. The same
holds for azimuthally symmetric particles and their rotations
around the symmetry axis, as also reflected in the friction and
diffusion tensors for cylinders in Tables I and II.
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