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1 Diffusion predicted by CSL and DP

Here we derive explicitly the momentum diffusion rates DCSL and DDP predicted by the CSL and the DP
model, which result in Equations (1) and (11) in the main text.

The CSL master equation for a system of N masses mn with position operators rn reads in a first-
quantization picture as [1, 2]
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The operator m(s) describes a Gaussian-averaged mass density of the N-particle system. In the case of a
rigid compound system, the position operator of each particle, rn = r + r(0)

n + ∆rn, can be expressed in
terms of the center-of-mass position operator r of the whole object and N − 1 relative coordinates. The latter
describe the confined motion of the rigidly bound constituents around their equilibrium configuration r(0)

n in
the center-of-mass system. This motion can be safely neglected, because it is bound to scales well below the
CSL localization length rCSL = 100 nm (see also [1], Sect. 8.2). We may then write
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introducing the Fourier transform %̃(k) of the object’s mass density %(r) =
∑

n mnδ
(
r − r(0)

n

)
. For the CSL

model, the latter can be replaced by the homogeneous mass density of the object, as explained in the main
text. The CSL master equation (S1) now acts on the center-of-mass state of motion,
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CSLλCSL

π3/2amu2
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)
. (S3)

The exponential operators can be expanded to lowest order in the one-dimensional center-of-mass coordinate
x in the present case, where the center-of-mass motion is restricted to linear oscillations over amplitudes
along the x-axis much smaller than rCSL. This results in the diffusive form LCSLρ ≈ −DCSL

[
x,

[
x, ρ

]]
/~2,

with the diffusion rate DCSL = λCSL(~/rCSL)2α used in the main text, see Equation (1).
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The DP result (11) is obtained analogously after rewriting the DP master equation [3] for an object of
mass density %(r) by means of a Fourier transform,

LDPρ = −
G
2~
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)
. (S4)

Note that the Fourier transform of the Coulomb-like term is taken to be the usual 4π/k2. The diffusion
rate DDP describes the average growth rate in the second moment of the momentum induced by the above
generator LDP. If we are only interested in the one-dimensional motion along the x-axis, then DDP =

tr
(
p2

xLDPρ
)

leads to the expression (11) in the main text.

2 CSL diffusion for cuboids, spheres and discs

Here we present the exact expressions for the geometry factors, Eq. (1) in the main text, of homogeneous
rigid bodies of mass m and mean density % = m/V . For cuboids of volume Vcuboid = bxbybz, discs of volume
Vdisc = πR2d, and spheres of volume Vsphere = 4πR3/3, the difference lies in the mass density function and
its Fourier transform,
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)
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, (S6)

%̃sphere(k) = 3m
sin kR − kR cos kR

(kR)3 . (S7)

Here, J1 denotes a Bessel function. After plugging these expressions into the geometry factor (1) in the
main text, which determines the momentum diffusion rate for the one-dimensional motion along the x-axis,
a tedious but straightforward calculation yields
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with the abbreviations
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The terms I0,1 denote modified Bessel functions. Equations (2) and (3) in the main text are obtained by
expanding the exact geometry factors in R/rCSL, b/rCSL, and d/rCSL asymptotically.

3 DP diffusion for cubic crystal lattices

Here we calculate the DP diffusion rate, Eq. (11) in the main text, for macroscopic solids consisting of a
cubic and monoatomic crystal lattice. For simplicity, we neglect the small electron mass and assume that the
nuclear mass mA at each lattice point is on average distributed evenly according to the Gaussian mass density
distribution %A(r) = mA exp(−r2/2σ2

DP)/(2πσ2
DP)3/2, with %̃A(k) = mA exp(−σ2

DPk2/2) its Fourier transform.
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The spread σDP is assumed to be much smaller than the lattice constant a, so that the average mass densities
of neighboring lattice points do not overlap.

The total mass density of the object and its Fourier transform can now be written as

%(r) = χ (r)
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where χ(r) denotes the characteristic function of the given body shape; it is unity for all points inside the
body volume and zero elsewhere (i.e. χ is proportional to the homogeneous mass density employed in the
CSL case). Its Fourier transform is denoted by χ̃. The function χ(r) varies on essentially macroscopic scales,
whereas the lattice sum is a sharply peaked periodic function oscillating on the microscopic scales σDP, a.
Given the macroscopic volume of the object, V1/3 � a � σDP, the Fourier transform χ̃ of the characteristic
function has a width of the order of V−1/3, much smaller than 2π/a. Hence, we may reduce the double
summation to a single sum when taking the absolute square of %̃(k) and write

|%̃(k)|2 ≈
1
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∑
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with G jn` = 2π ( j, n, `) /a a reciprocal lattice vector. Plugging this into the DP diffusion rate (11) and
exploiting once again the sharply peaked nature of χ̃, we arrive at
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The latter integral can be evaluated using χ2 = χ, that is,
∫

d3k |χ̃(k)|2 = (2π)3
∫

d3r χ2(r) = (2π)3V .
Moreover, the function %̃A(G jn`) extends over many reciprocal lattice vectors, since 1/σDP � 2π/a. This
allows us to approximate the lattice sum by an integral,

DDP ≈
4πG~V

a6

( a
2π

)3 ∫
d3q
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x

q2 |%̃A(q)|2 =
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6π2a3
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d3q e−σ

2
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=
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6
√
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Noting that m = mAV/a3 is the total mass of the object and % = mA/a3 its mean density, we arrive at the
result (12) given in the main text.
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