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We present the Markovian quantum master equation describing rotational decoherence, friction,

diffusion, and thermalization of planar, linear, and asymmetric rotors in contact with a thermal
environment. It describes how an arbitrary initial rotation state decoheres and evolves toward a Gibbs-
like thermal ensemble, as we illustrate numerically for the linear and the planar top, and it yields the
expected rotational Fokker-Planck equation of Brownian motion in the semiclassical limit.
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Introduction.—A quantum point particle moving in a
thermal bath is subject to random interactions with the
environmental degrees of freedom. They affect the particle
in two ways: (i) initial superpositions of different positions
quickly decohere and (ii) the particle gradually thermalizes
with its surroundings. In many situations, the associated
dynamics is well modeled by the Markovian master
equation of quantum Brownian motion [1,2]. But what if
the particle is not pointlike and hence able to rotate? How
can the resulting rotational decoherence, friction, and
diffusion be described quantum mechanically?

Beyond its conceptual significance, this question becomes
increasingly relevant for state-of-the-art experiments.
Numerous experimental studies demonstrate rotational
manipulation and control of molecules [3-8] and recently
also of nanoparticles [9—16]. Cooling the rotation state into
the quantum regime was successfully implemented for small
molecules [17-26], and is in reach for nano- to micrometer-
sized objects [12,27,28]. Conceivable applications include
orientation-dependent metrology [29-31], ultracold chem-
istry [32-34], highly sensitive torque sensors [12,15],
realizations of a quantum heat engine [35], levitated nano-
magnets [36], dissipative dynamics of angulons [37], tests of
objective collapse models [38], and orientational quantum
revivals [39,40]. The interpretation of such experiments will
rely heavily on a theoretical assessment of the rotor
dynamics in presence of an environment.

Here, we present the general Markovian quantum master
equation describing rotational friction, diffusion, and ther-
malization of rigid rotors. It is the natural generalization of
the master equation of Brownian center-of-mass motion
[1,2,41], valid if the bath is sufficiently dilute or its
temperature is high enough to warrant a Markovian
description. Unlike the center-of-mass momentum, how-
ever, the angular momentum components do not commute,
implying that the orientational degrees of freedom cannot
be decoupled, and the friction and diffusion tensors depend
necessarily on the particle orientation expressed in terms of
rotation matrices. These characteristics of orientation and
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rotation render their quantum dynamics substantially differ-
ent from the center-of-mass motion, so that the presented
master equation is not a straightforward extension thereof.
As in the classical theory [42], it will turn out to be
pertinent to use a coordinate-independent formulation in
terms of rotation matrices and angular momentum vectors
rather than the canonical phase space variables. The
presented master equation reduces to pure orientational
decoherence [43—-45] in the high-temperature limit and to
the expected Fokker-Planck equation [42] in the semi-
classical limit.

Classical thermalization—It is useful to briefly review
the classical description of rotational thermalization of a
rigid body of orientation Q (parametrized e.g., by the Euler
angles) and angular momentum J. In absence of an external
torque, environment-induced friction and diffusion can
be described by the stochastic differential equation dJ =
—I'(Q)Jdt + dN,. The first term accounts for rotational
friction with the orientation-dependent friction tensor
[(Q)=R(Q)HRT(Q). Here, the orthogonal matrix R(Q)
serves to rotate the particle from a reference orientation

FIG. 1. A rigid rotor immersed in a thermal environment
receives random angular momentum kicks analogous to the
momentum kicks experienced by a Brownian particle. These
interactions decohere an initial superposition of two different
orientations and gradually thermalize the rotation state.
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Q = 0 to the current one, see Fig. 1, and I is the friction
tensor at = 0. The strength and direction of the random
angular momentum kicks dN, = 1/2D(Q)dW, is deter-
mined by the diffusion tensor D(Q) [45], while dW, is a
vector Wiener process. The angular momentum dynamics are
complemented by the equation of motion for particle ori-
entation, dR(Q) = I7'(Q)J x R(Q)dt. Here, we introduced
the tensor of inertia /() whose eigenvalues I; are the
moments of inertia. These two stochastic equations determine
the Brownian rotation dynamics of an arbitrary particle.
The stochastic motion can be equivalently described by
the deterministic evolution of the probability density
h,(Q,J) [46-48]. It contains both the free rotational
dynamics and a nonconservative part accounting for the
interaction with the environment, 9,h, = O"°h, + O"h,.
While the first part is determined by the Hamilton function
H=J-1I"'(Q)J/2, the second part takes the form of a
Fokker-Planck equation,
9°h,(Q.J) =

V- [C(Q)Jh,(2.J)]+ Vy-D(Q)Vyh,(Q.]).

(1)

The dynamics of the first two moments of J follow directly
as

9,(J) = =([(Q)J), (2a)
0,(F) = =2(J - T(Q)J) + 2(Tr[D(Q)]). (2b)
0, (J®J) =—([(Q)J@J+IRI(Q))+2(D(Q)). (2¢)

As expected for Brownian motion, friction reduces the
mean (angular) momentum (2a), while diffusion increases
its variance and covariance with a constant rate determined
by (2b) and (2c). [Tr(-) refers to the matrix trace, as
opposed to the operator trace tr(-) used below.]

Using the fluctuation-dissipation relation D(Q) =
kgTT'(€2)1(Q) in Eq. (1), one finds that the rotor thermalizes
toward the Gibbs state exp(—H/kgT)/Z with mean energy

(H) = !

L @) =5 ksT, (3)
where f = rank[/(Q)] is the number of rotational degrees of
freedom. For a given particle shape, the rotational friction
tensor can be calculated microscopically from kinetic gas
theory [42,49,50]. The Fokker-Planck description (1) allows
general statements about thermalization [48], and is best
suited for comparison with the quantized rotation dynamics.

Quantum-classical consistency demands that the quan-
tum master equation of rotational friction and diffusion
describes the same dynamics as Eq. (1) in the semiclassical
limit. This means that the equations for the first and second
moments of the angular momentum operator J (operators
are denoted by sans-serif characters unless specified

[\) |

otherwise) must coincide with their classical equivalents
(2) up to corrections of order 7. Further, the steady state of
the quantum master equation must approach the Gibbs state
for large temperatures,

Peq = %e‘H/kBT +O(h), with Z=tr(e” k), (4)
implying the equipartition of energies (3) to lowest order
in A.

General master equation.—We now establish the quan-
tum master equation 0,0 = —i[H,p]/h + Dp describing
rotational friction and diffusion through the dissipator D.
The latter can be heuristically derived from the Caldeira-
Leggett equation [1,2] for N rigidly connected point
particles. Denoting the position operators of the individual
point particles by r, and the momentum operators by p,,
the master equation reads

6;/7———[H+ Zyn P, + 'Pn)*),p]

Zk P
B Zmn}/n< n er‘l _E{Lr‘l : Ln’ﬂ})y (5)

with L, =r, +ihp,/4m,kgT and individual damping
rates y,, > 0.

In order to account for the fact that all point particles
are rigidly connected, we introduce a quantum version of
the rigid body approximation [51]. Denoting the orienta-
tion operator as £2, it takes the center of mass to be at

rest, r, = R(Q)rﬁ, ), and replaces the momenta p, by
operator-valued classical expressions for the velocity of

the nth particle multiplied by its mass, —mnR(.Q)rf,O)x

R(Q)I;'RT(2)J, with r)” the nth particle position and
I, the tensor of inertia at orientation € = 0. While the
new momenta are non-Hermitian, they ensure both that
J=>,r, xp, still holds after the replacements and that
the energy renormalization in (5) vanishes. Notwith-
standing the heuristic nature of this quantum rigid body
approximation, we will see that the resulting master
equation has all desired properties.

Using the quantum rigid body approximation in (5)
yields

| 2T
Op=—— H pl + B me{ Q)K, - pKIRT(Q)

ki Kn,p}], )

where K, = i) + inl;'RT(2)J x r) /4ky T. Subsuming
the sum into the positive tensor

N 3
Dy = kBTZmnynrglo) ® rE,O) = Zbkd,@ ® d,((()), (7)
=1 k=1
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one obtains the master equation

2D .
P = Y ol A Al

It involves scalar products of the vectorial Lindblad
operators

in
A =d(Q) ———d,(2) x I"'(Q 8b
k () Ay T k(L) x I7H(2)d, (8b)
with d;(Q) = R(Q)d,(co), where d,((0> are the three normal-

ized orthogonal eigenvectors of D,. Equation (9) below
shows that the d; () are the eigenvectors of the diffusion
tensor whose eigenvalues D, fix the D.

Equations (8) specify the quantum Brownian rotation
dynamics expected for asymmetric rigid tops. They give
rise to the moment dynamics (2) to leading order in 7, and
they ensure that p approaches the steady state (4) with
energy expectation value (3) for small #?/kgTI,;,, With
I .;, the minimal moment of inertia. All this can be checked
by straightforward but lengthy calculations taking into
account that the A, and their components do not commute,
as explained in [52].

While the first term of the Lindblad operators (8b)
represents the particle orientation through d,(Q), the
second is proportional to the quantized (but not hermitized)
rate of change, d,(Q) = I-'(Q)J x di(Q). Equation (8b)
is thus the rotational analog of the Lindblad operator
L = x+ ihp/4mkgT of one-dimensional center-of-mass
thermalization in quantum Brownian motion [1,2,41,53].
In contrast to the latter, the three Lindblad operators (8b) do
not commute, accounting for the facts that the three
principal axes of a rigid rotor cannot be rotated independ-
ently and that the components of the angular momentum
vector do not commute.

The vectors d;(Q) are the eigenvectors of the diffusion
tensor D(Q), as can be demonstrated by calculating the
second moments (2) using Eq. (8). Comparison with (2)
shows that

3
Q) =" D[l - di(Q) ® di(Q)]. 9)
k=1

with  eigenvalues D, = D, —I—D so that D, =
(D;+D; —Dy)/2, where (i,j k) are permutations of
(1,2,3). This relation implies that the master equation (8)
is completely positive (D, > 0) only if D; +D; > Dy
(even though the localization rate is always positive).
The same inequality is implied by the corresponding
classical derivation of Brownian motion [52], where a
more general diffusion tensor can be obtained if the
diffusion of the individual point particles is not isotropic.

It remains an open question how to extend this to the
quantum regime.

The semiclassical limit of (8) gives the rotational Fokker-
Planck equation (1) with diffusion tensor (9) and friction
tensor I'(Q) = D(Q)I~!(Q)/kgT. This can be shown by
adopting the treatment in Ref. [45], i.e., first expressing (8)
in the quantum phase space of the orientation state [54,55],
approximating the discrete angular momentum quantum
numbers by continuous variables, and then evaluating the
limit 2 — 0.

Another limiting case is that the rotor is tightly aligned
by an external potential, so that its dynamics are librational
rather than rotational. If the angle coordinates can then be
approximated harmonically, a linearization of the rotation
matrix in the angle operators yields Lindblad operators
reminiscent of center-of-mass Brownian motion with
positions and momenta replaced by angles and their
canonically conjugate momenta.

In what follows we will specialize the master equa-
tion (8), which is valid for general rotors, to the cases of the
linear and planar rigid tops and illustrate their thermal-
ization dynamics.

Linear rotors.—The orientation of a linear rigid rotor is
specified by the direction of its symmetry axis m(£2), so that
[(Q) =1[T-m(Q) ® m(Q)]. Accordingly, friction and
diffusion orthogonal to the symmetry axis, for instance
due to specular gas scattering [42], are described by
the tensors I'(Q) =1 - m(Q) ® m(Q)] and D(Q) =
D[1-m(Q) ® m(Q)] with D = kgTT'I. This implies that
one eigenvalue of the diffusion tensor is zero, while the two
eigenvalues associated with the two directions perpendicular
tod;(Q) = m(Q) are D.

Calculating D, according to (9) yields the dissipator

2D

Dp = = A pAT - —{AT A}, (10a)
with the vectorial Lindblad operators
A-m(@ - " m@)xd (10b)
N 4kpTI '

Inserting (10b) into (10a) yields

Dp ==L m(@) x - pm(2) +m(@) - pd x m(2)]
2
m(@ @) - +0( ). an

Here, the first term is independent of temperature, linear in
J, and describes rotational friction. The second term is
linear in T (since D = kgTI'l) and describes angular
momentum diffusion as well as an exponential decay of
the orientational coherences (Q|p|Q’) with the rate
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2D
FQQ) =27

[1-m(Q) m(Q)]. (12)
The remaining terms in (11) are proportional to 1/7,
quadratic in J and ensure complete positivity; like in the
center-of-mass case, they can be neglected for sufficiently
large temperatures. The special case that a symmetry in the
environmental interaction prevents the complete localiza-
tion (12) can also be accounted for, as discussed in the
Supplemental Material [52].

In order to study the thermalization dynamics described
by (10), we solve the master equation numerically with the
free Hamiltonian H = J? /21 and calculate analytically the
corresponding steady state pq. The latter can be determined
by noting that the equation —i[H,p|/ + Dpeqg =0
implies that p., is diagonal in the angular momentum
basis, peq = Y smPe|€m)(¢m|. Then, the unitary part
vanishes and Dp.q = 0 yields a set of coupled equations
for the coefficients pfg”. It can be solved explicitly [52],

1 [2EN\2/26+C6+1\2
P Al M

in terms of & = 2IkgT/h>. The steady state approaches
the Gibbs state (4) for large temperatures, pﬁé" ~
exp[—¢(¢ +1)/&]/Z as £ - o0, as can be checked using
Stirling’s formula. From the existence of the steady state
(13) it follows that the relative entropy S(p|peq) =
—tr[p(logp —log peq)] <0 increases monotonically with
time and vanishes only for p = p.q [2]. Thus, an arbitrary
initial state converges toward peq.

We now simulate numerically the dynamics for the pure

initial rotor state (Qlyp) x exp [—|e, x m(Q)|*/20?],
03
(a) o5 0q
0y 0q % 03
0.4/ D% S 03 02b e
N R oy 03 /-
X, FARNR ) .
2
0.1
09

ty

representing a superposition of pointing upwards and
downwards along the z axis with width . Its time evolution
is shown in Fig. 2. The initial superposition first decoheres
into a mixture of the upwards and downwards orientation of
the rotor, as is evident from the purity. On the longer
timescale 1/, the rotor approaches thermal equilibrium, as
indicated by the energy expectation value and the von
Neumann entropy. The final state, given by Eq. (13), is
already well approximated by the Gibbs state, even
though the thermal occupation number Z, defined via
£(6+1)=¢ is as low as £ ~2.7.

Planar rotors.—If the rotor is confined to the xy plane, a
single angle « suffices to describe the orientation,
e, (a) =e,cosa+e,sina. The corresponding angular
momentum operator points into the z direction, J = e_p,,
and has discrete eigenvalues Aim, m € Z. The Lindblad
operator takes on the form

in

A-— M
Ay 1"

e, (@) + (@)Pq- (14)

where e, (a) = e, x e,(a).
The action of the dissipator (10a) can be conveniently
expressed in terms of the Wigner function w,, (a) [56,57],

artlcwm(a) = [(m + 1)Wm+1 (a) - (m - 1)Wm—l(a)]

Wi (a) - zwm ((1) + Win—1 ((1)
n? )

r
2

+D

(15)

As in Eq. (11) we dropped the term proportional to 1/T
(which vanishes in the semiclassical limit). Expression (15)
is the discretized version of the Fokker-Planck equation,

5 : 5
energy
— 4} 14 =
= )
P PR e A R 3E
= entropy g
>
2 -
52 2z
g,/ =
1’|\:' {1 o,
Mol purity
S S T R
time [I/A]

FIG. 2. Time evolution of the linear rigid rotor with free Hamiltonian H = J? /27 and dissipator (10) for an initial superposition of
pointing upwards and downwards. (a) The histograms show the probability p, = >.% __(¢m|p|¢m) of observing the total angular
momentum ¢ for t; = 0, t, = 0.5I/#, and t; = 5I/h. The dashed line represents the Gibbs state, and the insets display polar density
plots of the orientational distribution (Q|p|€2) (Mollweide projection). (b) Time dependence of the energy expectation value (H) (solid
line), the von Neumann entropy —tr(plogp) (dotted line), and the purity tr(p?) (dashed line). We use é =5, I' = #/I, and 6 = 0.4.
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FIG. 3.

Time evolution of the planar rotor. The left subpanels show the Wigner function w,, (a), and the right subpanels the momentum

marginals (m|p|m) for t; =0, t, = 4xI/10h, and t; = 4zl/h. The initial state is a superposition of two Gaussian states yq(a)
exp(imga + cos a/46?) with my = 425 and ¢ = 0.2. Its coherence is indicated by the fringe structure (with negative values in blue); see
inset. The plots are obtained by computing the Wigner function [56,57] of the time evolved density operator. The parameters are chosen

as E=20and I' = n/xl.

which is thus recovered in the semiclassical limit at
fixed p, = Am.

The stationary solution of the quantum planar rotor
follows as peq = > ,,czP%|m) (m| with [52]

w28\ (26+|m\? 1 2%
”e‘*‘2<|m|>( m| ) ‘225<5+m>' (16)

The first expression is the stationary solution of (10a) with
the Lindblad operator (14); the second results if the term
O(1/T) is dropped. Note that they approach the Gibbs state
piy ~exp(—m?/&E)/Z as & - .

In Fig. 3 we show the phase space dynamics of an initial
superposition of two Gaussian states centered at ¢ = 0 and
m = £25. It first decoheres into a mixture which then
thermalizes with the environment. The final state is given
by Eq. (16), which is well approximated by the Gibbs state.

Conclusion.—In summary, the master equation (8) estab-
lished in this Letter applies to any rotating quantum object
subject to linear friction and diffusion. The associated
diffusion and friction tensors, which can be determined
either by a dedicated measurement or by a microscopic
calculation, serve to fully characterize the effect of the
thermal environment. We found it instrumental to use a
coordinate independent, tensorial formulation, rather than a
specific parametrization of the rotation group and its
generators. It reflects that the periodic and compact space
of orientations cannot be linearized, precluding the use of
standard quantum Brownian motion. Potential applications
of rotational quantum Brownian motion range from ultra-
cold chemistry with aligned molecules via torsional
dynamics in molecular biophysics and optomechanics of
levitated particles to quantum rotor heat engines.
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