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I. EHRENFEST EQUATIONS OF MOTION

Denoting by ni(Ω) the i-th principal axis of the rotor so that nk(Ω) · I(Ω)nj(Ω) = Ikδkj , the components of the

angular momentum operator in the body fixed frame are given by J̃k = nk · J = J · nk and in the space fixed frame

by Jk = ek · J. They obey the commutation relation [Jj , Jk] = iεjk`J`, [J̃j , J̃k] = −iεjk`J̃` and [Jj , J̃k] = 0. Their
commutation relations with the rotation matrix R(Ω) can be expressed as

[Jk,R(Ω)] =
~
i
ek × R(Ω) (S1)

[J̃k,R(Ω)] =
~
i
nk(Ω)× R(Ω). (S2)

Using these commutators repeatedly one obtains (2) from the master equations (8) and (10).
For illustration, the dynamics of the first moment of the angular momentum operator due to (11) is

∂t〈Jk〉 =
2D

~2
〈m(Ω) · Jkm(Ω)− Jk〉 −

iΓ

2~
〈m(Ω) · Jkm(Ω)× J + J×m(Ω) · Jkm(Ω)〉+O

(
~2

kBTI

)
. (S3)

Using Eq. (S1) with m(Ω) = R(Ω)ez, the first term vanishes and the second evaluates to −Γ 〈Jk〉, in accordance with
(2). The calculation of the second moments follows the same lines.

II. LINEAR AND PLANAR ROTOR THERMAL STATE

In order to determine the stationary state of the linear rotor we consider (10) in the angular momentum eigenbasis

|`m〉 and evaluate the matrix elements M `′′m′′

`m`′m′ defined via

〈`m |Dρeq | `′m′〉 =

∞∑
`′′=0

`′′∑
m′′=−`′′

ρ`
′′m′′

eq M `′′m′′

`m`′m′ . (S4)

Here we used that ρeq is diagonal in the angular momentum basis. The matrix elements M `′′m′′

`m`′m′ can be computed
by using the properties of spherical harmonics,

J1 |`m〉 =
~
2

(c+ |`m+ 1〉+ c− |`m− 1〉) , (S5a)

J2 |`m〉 =
~
2i

(c+ |`m+ 1〉 − c− |`m− 1〉) , (S5b)

J3 |`m〉 = ~m |`m〉 , (S5c)

with c± =
√
`(`+ 1)−m(m± 1), as well as the representation of matrix elements in terms of Wigner 3-j symbols,

〈`m |Y`′′,m′′(β,α) | `′m′〉 =

√
(2`+ 1)(2`′ + 1)(2`′′ + 1)

4π

(
` `′ `′′

0 0 0

)(
` `′ `′′

−m m′ m′′

)
. (S6)

The latter vanishes unless m −m′ −m′′ = 0 and ` + `′ + `′′ is even, providing selection rules for the computation
of the matrix elements. These selection rules imply that the off-diagonal elements of 〈`m |Dρeq | `′m′〉 vanish so that
one has for all `, m

∞∑
`′′=0

`′′∑
m′′=−`′′

ρ`
′′m′′

eq M `′′m′′

`m`m = 0. (S7)
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Only a finite number of terms ρ`
′′m′′

eq are coupled due to the selection rules. Starting with the equation for ` = 0 and
m = 0 one can construct the solution iteratively, arriving at Eq. (13).

The same procedure can be used to calculate the stationary solution of the planar rotor. However, in this case one
needs only the matrix elements

〈m | cosα |m′〉 =
1

2
(δmm+1 + δmm−1) , (S8)

along with pα |m〉 = ~m |m〉. Again, this yields a set of equations that can be solved by iteration starting from m = 0.

III. THERMALIZATION OF ASYMMETRIC ROTORS

We show that the Gibbs state of the asymmetric rotor is a stationary solution of (8) for large temperatures. Note
that the limit of large temperatures, ~2/kBTImin → 0 with Imin the smallest moment of inertia, is equivalent to the
semiclassical limit.

We first define the transformation

F (Ak) = e−H/kBTAke
H/kBT =

∞∑
n=0

(−kBT )−n

n!
[H,Ak]n , (S9)

where [A,B]n = [A, [A, . . . , [A,B] . . .]] denotes the n-fold commutator. Note that F (Ak · A`) = F (Ak) · F (A`) and

F (A†k) 6= F (Ak)†. With this mapping each summand of the dissipator (8) acting on the Gibbs state can be rewritten
as

Dk
e−H/kBT

Z
=

2D̃k

~2

(
Ak ·

e−H/kBT

Z
A†k −

1

2
A†k · Ak

e−H/kBT

Z
− 1

2

e−H/kBT

Z
A†k · Ak

)
=

2D̃k

~2

[
Ak · F (A†k)− 1

2
A†k · Ak −

1

2
F (A†k · Ak)

]
e−H/kBT

Z
. (S10)

Inserting the expansion (S9) into (S10) and sorting the terms in the square brackets in orders of 1/T shows that
the zeroth and first order term vanish and, taking the temperature-dependence of the prefactor into account, the
remainder decreases at least as 1/T .

IV. FOKKER-PLANCK EQUATION OF RIGIDLY CONNECTED CLASSICAL PARTICLES

We consider N point particles of mass mn, position rn and momentum pn, in an environment of temperature
T . Denoting the friction and diffusion constant of the n-th particle by γn and Dn = kBTmnγn, respectively, the
Fokker-Planck equation for the total phase space distribution function ft(r1, . . . , rN ,p1, . . . ,pN ) reads as

∂nct ft =

N∑
n=1

γn
[
∇pn

· (pnft) + kBTmn∇2
pn
ft
]
. (S11)

This assumes that the diffusion process is isotropic.
We now invoke that the particles are rigidly connected and that their center-of-mass is fixed at the origin, so

that the positions rn are determined by the rotation matrix, rn = R(Ω)r
(0)
n . One thus obtains for the momenta

pn = mnI−1(Ω)J× rn with J =
∑
n rn × pn. Exploiting that

∇pn
= (∇pn

⊗ J)∇J = −rn ×∇J (S12)

yields from (S11) the rotational Fokker-Planck equation (1) with the rigid rotor distribution ht(Ω,J). The corre-
sponding rotational diffusion tensor can thus be identified as

D(Ω) = kBT

N∑
n=1

mnγn
(
r2n1− rn ⊗ rn

)
. (S13)
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It is related to the friction tensor by D(Ω) = kBTΓ(Ω)I(Ω).
Note that the eigenvalues of the rotational diffusion tensor (S13) fulfill the inequality Di + Dj ≥ Dk for (i, j, k)

permutations of (1, 2, 3), as can be seen from tracing over (S13) and deducing that

N∑
n=1

mnγnrn ⊗ rn =
1

2
tr[D(Ω)]1−D(Ω) > 0. (S14)

This constraint for the possible values of the diffusion coefficients can be relaxed by allowing for directed diffusion in
Eq. (S11). Specifically, replacing the second derivatives ∇2

pn
in the last term by (nn ·∇pn

)2, so that the (particle- and
orientation-dependent) unit vectors nn define the direction of diffusion, results in the same Fokker-Planck equation
(1) but with the diffusion tensor

D(Ω) = kBT

N∑
n=1

γnmn (nn × rn)⊗ (nn × rn) (S15)

and the corresponding friction tensor. Its eigenvalues can take arbitrary, positive values, depending on the mn, γn,
nn and rn.

V. INVERSION SYMMETRIC PARTICLES

The master equation (10) presupposes that the particle-bath interaction is isotropic. An inversion-symmetric
particle prepared in a coherent superposition of the opposite orientations m(Ω) and −m(Ω) is predicted to decohere
because the localization rate (12) is not zero, even if these orientations are indistinguishable by the environment.
Since this symmetry enters only on the quantum level it must not affect the semiclassical limit.

The dissipator for inversion-symmetric particles can be obtained by generalizing the microscopic derivation of
inversion symmetric angular momentum diffusion [Papendell et al., New J. Phys. 19, 122001 (2017)]. The Lindblad
operators must then be quadratic in the particle orientation in order to preserve inversion symmetry. This yields

Dρ =
D

~2
Tr

[
BρB† − 1

2

{
B†B, ρ

}]
, (S16a)

where Tr(·) denotes the matrix trace (not to be confused with the operator trace) and the tensor Lindblad operators
are

B = m(Ω)⊗m(Ω)− i~
2kBT

m(Ω)⊗m(Ω)× I−1(Ω)J. (S16b)

While the first term appears already in the article by Papendell et al., the second results from quantizing the time
derivative ∂t[m(Ω)⊗m(Ω)]. The latter can be expressed as m(Ω)⊗m(Ω)× I−1(Ω)J because of the matrix trace in
(S16a) without affecting diffusion and friction.

The dissipator (S16) preserves inversion symmetry and implies the moment equations of motion (2) as well as
the thermalization (3) and (4). In addition, it also leads to the Fokker-Planck equation (1). The T -independent
contribution of (S16b) depends only on the orientation operator and thus leads to orientational decoherence and
angular momentum diffusion. The corresponding decoherence rate

F (Ω,Ω′) =
kBTΓ I

~2
|m(Ω)×m(Ω′)|2, (S17)

vanishes not only for Ω = Ω′ but also for a superpositions between opposite orientations. The quantum phase space
dynamics of the inversion-symmetric planar rotor can be obtained from Eq. (10) by replacing Γ by Γ/2, D by D/4
and m± 1 by m± 2.


