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We present the quantum master equation describing the coherent and incoherent dynamics of a rapidly
rotating molecule in the presence of a thermal background gas. The master equation relates the rate of
rotational alignment decay and decoherence to the microscopic scattering amplitudes, which we calculate
for anisotropic van der Waals scattering. For large rotational energies, we find quantitative agreement of the
resulting alignment decay rate with recent superrotor experiments.
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Introduction.—The precise control of molecular rotation
dynamics is a challenging task holding the prospect of
orientation-resolved metrology, enhancement of chemical
reaction rates, and state-selective collision studies [1–3].
Over the past few decades, various techniques have been
conceived and established to manipulate the orientation and
rotation state of small molecules and nanoparticles [1–5].
Recently, it was demonstrated that optical centrifuge beams
[6] can produce rotational wave packets of unprecedentedly
high angular momentum [7–13]. The high rotation rates of
suchmolecular superrotors [14] were predicted to suppress
the rotational-translational energy transfer [15–18], so that
their center-of-mass motion can be trapped and buffer-
gas cooled without appreciably affecting the rotational
population [15,19].
This stability of superrotor rotations with respect to

collisions was indeed observed experimentally with nitro-
gen and oxygen superrotors at ambient conditions [10,12,
13,20]. Classical simulations of a gas of superrotors show
that, while the high rotation rates are conserved initially,
they rapidly relax towards thermal equilibrium once the
rotational-translational energy exchange becomes relevant
[17,18,21]. With a duration of a few nanoseconds, the
initial stage of approximately constant rotation energy is
relatively short in state-of-the-art experiments [10], but it is
expected to be orders of magnitude longer in high vacuum.
Notwithstanding its fundamental relevance and signifi-
cance for future applications, a microscopic theory that
quantitatively describes the initial quantum dynamics of a
superrotor in its thermal environment and that predicts the
alignment decay and decoherence time is still lacking.
Here we establish the Markovian quantum master equa-

tion of a rapidly rotatingmolecule immersed in a thermal gas.
Based on the monitoring approach [22–24], this Lindblad-
type equation describes, in terms of the exact scattering
amplitudes, how the rotation state of a superrotor loses its
alignment and decoheres. The master equation preserves the
rotational energy, reflecting the fact that the collisions are

approximately elastic due to the high rotation rates of
superrotors [15–18]. This is in contrast to orientational
decoherence of slowly rotating particles [25–27], which
occurs if the molecular orientation barely changes during the
scattering process, and to quantum rotational thermalization
[28], which describes how the gas induces linear friction and
diffusion of the quantized angular momentum vector.
We calculate the rate of initial alignment decay for

nitrogen superrotors and find remarkable agreement with
experimental data [10]. This demonstrates the predictive
power of the theory, which involves no free parameters.
The decay rate exhibits a markedly different scaling for
large rotational energies than the energy-corrected sudden
approximation [10,20,29], a difference that is likely to
become observable in future superrotor collision studies.
The presented master equation is expected to be instru-
mental for these experiments, as well as for future sensing
and metrology applications with superrotors, whose sensi-
tivity will be ultimately limited by the collisional inter-
action between the rotor and its thermal environment.

FIG. 1. A rapidly rotating linear molecule (blue) embedded in a
homogeneous thermal gas (red) of density ng and temperature T
experiences collisions with environmental gas particles. If the
molecule rotates multiple times during the collision, as in the case
of superrotors, the interaction with the gas leads to rotational
decoherence as well as reorientation of the mean angular
momentum hJi. The rotor of orientation m interacts via the
attractive van der Waals interaction [Eq. (4)] with a gas particle at
distance r, which impinges with relative momentum qn0 and
leaves with relative momentum qn.
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Master equation.—The dynamics of rotational alignment
decay and decoherence can be derived from the monitoring
master equation for a massive particle with internal degrees
of freedom (d.o.f.) [24]. The latter provides a nonpertur-
bative Markovian quantum master equation for a tracer
particle moving and revolving in a thermal environment.
The description is based on the microscopic collision rate
operator and the scattering matrix of an individual collision
between the tracer and a gas particle.
In the present case, we consider a linear rigid rotor of

mass M and moment of inertia I revolving in a homo-
geneous monoatomic gas of density ng, temperature T,
and pressure pg ¼ ngkBT, see Fig. 1. For a rapidly rotating
molecule, the rotational energy is approximately con-
served, since it revolves multiple times during the collision
with a gas particle [30], as is also seen in classical
simulations [18]. Thus, the scattering rate operator and
the scattering matrix are close to diagonal in the total
angular momentum quantum number [15,16], an approxi-
mation also confirmed in Fig. 2 by the almost unit fraction of
j-conserving collisions for large j.
Tracing out the gas and the thermalized center-of-mass

motion yields the master equation ∂tρ ¼ −i½Hþ Hg; ρ�=
ℏþDρ for the rotation state ρ; see Ref. [30]. The free
linear-top Hamiltonian is denoted by H. The gas affects the
rotor dynamics coherently through the energy shift

Hg ¼ −2πℏ2
ng
μ

Z
∞

0

dqq2νthðqÞ
Z
S2

d2nRe½fðqn; qnÞ�

ð1aÞ

and incoherently through the Lindblad superoperator

Dρ ¼ ng
μ

Z
∞

0

dqq3νthðqÞ
Z
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d2n
Z
S2

d2n0

×

�
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−
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Both contributions (1a) and (1b) are characterized by
the thermal distribution of relative momenta νthðqÞ ¼
expð−q2=q2thÞ=ð

ffiffiffi
π

p
qthÞ3, with the momentum qth ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

2μkBT
p

determined by the reduced mass μ ¼ mgM=
ðmg þMÞ. The Lindblad operators are given by the
operator-valued microscopic scattering amplitudes

fðqn; qn0Þ ¼
X∞
j¼0

Xj

m;m0¼−j

fjm;jm0 ðqn; qn0Þjjmihjm0j ð2Þ

for incoming and outgoing relative momenta qn0 and qn.
Here jjmi is the linear rotor eigenstate with energy Ej ¼
ℏ2jðjþ 1Þ=2I and azimuthal quantum number m. While

Eq. (2) conserves the total angular momentum quantum
number j of a rapidly rotating molecule, it accounts for
elastic scattering to different m. If the gas particles have
internal d.o.f., the scattering amplitudes depend on the
incoming and outgoing internal gas states. Tracing out the
latter under the assumption that the gas is internally thermal
yields the generalization of Eq. (1) in a straightforward
calculation.
The incoherent term (1b) describes how a superrotor

loses coherence in a thermal monoatomic gas, while the
coherent term (1a) renormalizes the rotor energy [31].
We will show next that (1b) describes how the quantum
state of a rapidly rotating particle dealigns and decoheres
due to collisions with surrounding gas particles.
Rotational decoherence and alignment decay.—An opti-

cal centrifuge consists of two superimposed laser beams of
opposite circular polarization, which propagate in the same
direction along the z axis and whose frequency detuning
increases linearly with time [6]. The resulting total electro-
magnetic field is linearly polarized; the polarization
direction rotates with increasing frequency in the x-y
plane orthogonal to the beam axis. An initially orienta-
tionally trapped linear molecule adiabatically follows the
field polarization until the laser is instantaneously switched
off, releasing the molecules in a superposition of

FIG. 2. In the superrotor regime, characterized by the absence
of inelastic collisions, the theoretically predicted decay of rota-
tional coherences (black solid line) compares very well with the
experimental data (black diamonds) taken from Ref. [10]. The
theoretical rate [Eq. (5)] includes no free parameters but is based
on the microscopic scattering amplitudes of individual super-
rotor–gas particle collisions. For the considered nitrogen mole-
cules, the superrotor regime starts at j ≃ 50, as can be seen from
the fraction of j-conserving collisions (blue squares, right axis)
approaching unity. The elastic fraction is obtained by numerically
calculating the total scattering cross sections (using MOLSCAT

[40]) for atom-linear-rotor scattering with a Lennard-Jones
potential exhibiting the orientation dependence of Eq. (4). The
molecular polarizabilities are taken from Ref. [41], and the C6

constant is from the Lennard-Jones parameters listed in Ref. [42].
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high-angular-momentum eigenstates jjji. The total state
operator ρ of the propelled molecule is thus of the form ρ ¼P∞

j;j0¼0
ρjj0 jjjihj0j0j, where the coefficients ρjj0 depend on

the details of the centrifuge beam [32,33].
On a short timescale, the derived master equation

describes how the matrix elements of the superrotor state
ρ oscillate and decay, i.e., ∂tρjj0 ≃ −ðiΔjj0 þ γjj0 Þρjj0 , with
the decay rate

γjj0 ¼
ng
2μ

Z
∞

0

dqq3νthðqÞ
Z
S2

d2n
Z
S2

d2n0

×

�
jfjj;jjðqn;qn0Þ−fj0j0;j0j0 ðqn;qn0Þj2

þ
Xj−1
m¼−j

jfjm;jjðqn;qn0Þj2þ
Xj0−1

m0¼−j0
jfj0m0;j0j0 ðqn;qn0Þj2

�
:

ð3Þ

The first term describes decoherence between the states jjji
and jj0j0i due to the information acquired by the scatterer
during the collision [22]. While this first term vanishes for
j ¼ j0, the remaining two terms are always nonzero, since
they describe how the plane of rotation of the superrotor
changes due to collision-induced transitions, jj → jm with
m ¼ −j;…; j − 1. This reorientation of the molecular
angular momentum vector is the dominant contribution
to the experimentally observed decay of rotational coher-
ences of nitrogen superrotors [10,20], as will be demon-
strated below.
We remark that a generalization of the optical theorem

implies that isotropic states,
P∞

j¼0ρj
Pj

m¼−j jjmihjmj, are
stationary under the superoperator D irrespective of their
distribution ρj of rotational energies. An arbitrary initial
superrotor state with matrix elements ρjj0 will thus approach
the isotropic, mixed state on the timescale 1=γjj0 , provided
that scattering to all m is allowed. The master equation
therefore predicts the timescale on which ensembles
of superrotors can be used for state-selective collision
studies. After quantum coherence ceases to play a role
and j-changing collisions become relevant, the thermal-
ization of superrotors and their ensuing center-of-
mass rotational correlations can be described classically
[17,18,34].
Van der Waals scattering.—Comparing the decoherence

and alignment decay rate [Eq. (3)] to experiment requires
solving the scattering problem of an individual collision
between the superrotor and a gas particle. As a generic
situation, we consider the scattering of gas atoms off a
diatomic molecule interacting via the attractive anisotropic
van der Waals potential [35]:

Vðrer;mÞ ¼ −
C6

r6

�
1þ 2Δα

3ᾱ
P2ðer ·mÞ

�
: ð4Þ

Here, C6 quantifies the strength of the van der Waals
interaction, and Δα ¼ αk − α⊥ is the polarizability
anisotropy of the linear rotor with αk and α⊥ being its
polarizabilities along the symmetry axis and orthogonal to
it; ᾱ ¼ ð2α⊥ þ αkÞ=3 is the mean polarizability. The
relative distance vector from the molecular center of mass
to the atom is denoted by rer,m is the direction of the rotor
symmetry axis (see Fig. 1), and P2ðxÞ ¼ ð3x2 − 1Þ=2 is the
second-order Legendre polynomial.
Scattering can be described by the purely attractive

interaction potential [Eq. (4)] when thermal collisions
with large orbital angular momentum dominate, ensuring
that the repulsive core can be neglected [36,37]. Indeed,
the resulting total cross section for nitrogen-nitrogen
collisions at ambient conditions (see the Supplemental
Material [30]) agrees well with measurements of the mean
free path [38]. If the gas particles are anisotropic, the
interaction potential depends also on their orientation. As
a first approximation, the strength of this orientation
dependence is proportional to the anisotropy of the gas
particles [35], so that the resulting rotational coupling
between the two collision partners scales with the product
of their anisotropies. For instance, for nitrogen-nitrogen
collisions, the terms in the interaction potential depending
on both orientations are approximately proportional
to Δα2=ᾱ2.
In order to calculate the rotation-state-dependent scatter-

ing amplitudes fjm;jm0 ðqn; qn0Þ, we use Schiff’s approxi-
mation [39] in the limit of a rapidly rotating particle and
assume that small-angle scattering dominates the amplitude.
After a direct but nontrivial calculation (see theSupplemental
Material [30]), one obtains the rates
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�
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�
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whose dependence on the rotation state is described by
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Here, Pm
2 ðxÞ are associated Legendre polynomials.

The decay rate in Eq. (5) can be directly compared
to the decay of rotational coherences observed in Ref. [10]
with nitrogen superrotors. In this experiment, their
alignment decay was monitored by circularly polarized
Raman scattering. The resulting signal is proportional to
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jhjjjρjj − 2j − 2ij2 so that its decay rate Γj ¼ 2γjj−2
follows directly from Eq. (5).
In Fig. 2, we show a comparison between the theoreti-

cally expected signal decay rate and the experimentally
observed rates as reported in Ref. [10]. In the superrotor
regime j≳ 50, where the rotational energy is approxi-
mately conserved during the scattering process, the theory
agrees with the experiment. We emphasize that the theory
involves not a single free parameter but is based on the
microscopic scattering amplitudes, underlining the predic-
tive power of the approach. In the Supplemental Material
[30], we show that the prediction of Eq. (5) is also in
quantitative agreement with the T ¼ 503 K superrotor data
from Ref. [10]. This agreement supports the picture that the
orientational d.o.f. of the gas particle are of minor relevance
because they would enter Eq. (4) with the prefactor
4Δα2=9ᾱ2 ≪ 1. Note that this might not hold for more
complicated superrotor-gas interactions.
For large j, the signal decays as 1=j due to the

asymptotic behavior of the associated Legendre polyno-
mials, Ajj−2 ∼ 6=j for j → ∞. This is in marked contrast to
the prediction Γj ∼ 1=j4 of the energy-corrected sudden
approximation [10,29], valid only for weakly nonadiabatic
collisions. Unambiguous identification of this asymptotic
behavior will require further experiments.
Conclusion.—In summary, we established the quantum

master equation of a molecular superrotor revolving in
a thermal environment. It is based on the scattering
amplitudes of superrotor-gas collisions, following directly
from the intermolecular interaction potential. The ensuing
alignment decay rates agree well with experimental
observations. The theory predicts the timescales for
quantum coherent experiments with superrotors.
Combined with ab initio scattering calculations, it can
be applied to any superrotating system, paving the way
for future state-resolved collision studies and coherence
experiments.
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data of Ref. [10], and we are grateful for the computational
resources provided by the High Performance Computing
Center, School of Computer Science, IPM, for the
MOLSCAT calculations.
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