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Here we provide some calculational details to our Letter ’Rotational Alignment Decay and Deco-
herence of Molecular Superrotors’.

I. MASTER EQUATION

To derive the quantum dynamics of rotational alignment decay and decoherence of molecular superrotors we start
from the master equation for a linear molecule of mass M and moment of inertia I immersed in a homogeneous gas
of density ng, mass mg and temperature T . Adapting the theory presented in [A. Smirne and B. Vacchini, Phys.
Rev. A 82, 042111 (2010)], one obtains for the combined rotational-center-of-mass state ρtot the Markovian master
equation

∂tρtot = − i
~

[Htot + Hn, ρtot] + Lρtot. (S1)

Here the total free Hamiltonian is Htot = P2/2M + J2/2I (operators are denoted by sans-serif characters), the
gas-induced energy shift

Hn = −2π~2
ng
µ

∞∑
j=0

∑̀
m,m′=−`

∫
d3pµg(p)Re [fjm,jm′(rel(p,P), rel(p,P))] |jm〉〈jm′|, (S2)

and the Lindblad superoperator
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E

∫
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d2p
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. (S3)

with the Lindblad operators
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In addition to the notation of the main manuscript, µg(p) denotes the thermal momentum distribution of the gas,
P is the center-of-mass momentum operator of the rotor, X its position operator, Ej = ~2j(j + 1)/2I the rotation
energy and we defined the relative momentum

rel(p,P) =
µ

mg
p− µ

M
P. (S6)

For superrotors generated by an optical centrifuge the center-of-mass and rotation state are approximately un-
correlated [A. A. Milner, A. Korobenko, J. W. Hepburn and V. Milner, Phys. Rev. Lett. 113, 043004 (2014)],
ρtot = ρcm ⊗ ρ. In addition, the rotational energy is approximately conserved during a collision if the rotor revolves
rapidly enough (see Fig. 2 and App. II), fjm,j′m′(q,q′) = δjj′fjm,jm′(q,q′). Tracing out the center-of -mass under
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these two simplifications yields after a straight-forward but lengthy calculation the master equation for the rotation
state ρ,

∂tρ = − i
~

[
H + H̃n, ρ

]
+ L̃ρ, (S7)

with

H̃n = −2π~2
ng
µ

∫
d3pd3P〈P |ρcm |P〉µg(p)Re [f (rel(p,P), rel(p,P))] , (S8)

and
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Finally, using that the center-of-mass momentum P is thermalized with the gas and integrating it out yields the
master equation presented in the main text of the manuscript.

II. SCATTERING AMPLITUDE

In order to calculate the rotation-state dependent scattering amplitude fjm,j′m′(qn, qn′) as required for our purpose
we start with the time-dependent Schrödinger equation in relative coordinates,

i~∂t |Ψ〉 =

[
q2

2µ
+

J2

2I
+ V (r,m)

]
|Ψ〉 , (S10)

where V (r,m) is the attractive van-der-Waals potential (see main text) and q is the relative momentum operator.
(Operators are denoted by sans-serif characters.) Expanding the total state as

|Ψ〉 =

∞∑
j=0

e−iEjt/~
j∑

m=−j
|χjm〉 |jm〉 , (S11)

yields the coupled Schrödinger equations

i~∂t |χjm〉 =
q2

2µ
|χjm〉+

∞∑
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If the molecule rotates multiple times during the collision, Ejt/~ � 1, the exponential function in (S12) averages
to zero for j 6= j′ and the different j values are effectively decoupled. In this limit, one obtains for each j a vectorial

Schrödinger equation for the vector
(∣∣∣χ

j

〉)
m

= |χjm〉
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∣∣∣χ
j

〉
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〉
(S13)

involving the coupling matrix (Vj)mm′(r) = 〈jm |V (r,m) | j′m′〉.
The vectorial scattering problem described by Eq. (S13) can be solved in the eikonal approximation [J. J. Sakurai,

Modern Quantum Mechanics (Addison Wesley, Reading, Massachusetts, 1993)] (Schiff’s approximation [L. I. Schiff,
Phys. Rev. 103, 443 (1956)]) for incoming relative momentum qn′ and outgoing relative momentum qn, yielding the
(matrix-valued) scattering amplitude

fj(qn, qn
′) = −i q

2π~

∫
b⊥n′

d2be−iqb·n/~
[
exp

{
− iµ
~q

∫ ∞
−∞
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}
− 1j

]
. (S14)

Here 1j denotes the (2j + 1)× (2j + 1) dimensional unity matrix. The desired state-dependent scattering amplitudes
are fjm,jm′(qn, qn′) = (fj)mm′(qn, qn′). They can be explicitly calculated by carrying out the integrations in (S14).
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In particular, we first integrate the coupling matrix along the eikonal trajectory z in the exponent. Since the
resulting matrix is hermitian, the spectral theorem can be applied to rewrite the matrix exponential in terms of
trigonometric functions, so that the radial integration over the impact parameter b can be carried out. We now
exploit that forward scattering gives the strongest contribution to the scattering amplitude in order to limit ourselves
to calculating fj(qn

′, qn′). Making use of the integrals∫ ∞
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yields

fj(qn
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, (S16)

where eb = b/b and the only nonzero entries of the tridiagonal matrix Bj are given by

(Bj)mm(n′, eb) = −∆α

3α
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In order to carry out the eb integration in (S16), we note that

[1j + Bj(n
′, eb)]

2/5 ' 1j +
2

5
Bj(n

′, eb), (S18)

and use the integrals

1

2π
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1

2
|n′ × ez|2 (S19a)

1

2π

∮
eb⊥n′

deb [eb · ez(ex ± iey) · eb] = −1

2
n′ · ez(ex ± iey) · n′ (S19b)

1
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∮
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2
[n′ · (ex ± iey)]2. (S19c)

Inserting this into (S16) yields the forward scattering amplitudes. The latter can be inserted into the general form
of the decay rate, yielding after integration over n′ and n (giving a factor of 2π because the amplitude is strongly
peaked in the forward direction) the expression in the main text. The total scattering cross section can be calculated
from the forward scattering amplitude via the optical theorem, yielding the rotation-state dependent analogue of the
scalar van-der-Waals cross section [K. Walter, B. A. Stickler, and K. Hornberger, Phys. Rev. A 93, 063612 (2016)].
The latter can be used to estimate the mean free path in the gas, yielding 66 nm at standard laboratory conditions,
in good agreement with measurements [W. H. Haynes (editor in chief), Handbook of Chemistry and Physics (CRC
Press - Boca Raton, 2012)].

III. ALIGNMENT DECAY AT T = 503 K

In Fig. 1 we show the alignment decay rate (5) as a function of j for the gas temperature T = 503 K compared to
the data of Ref. [A. A. Milner, A. Korobenko, J. W. Hepburn and V. Milner, Phys. Rev. Lett. 113, 043004 (2014)].
We also plot the fraction of rotationally elastic collisions in order to identify the superrotor regime. In contrast to
Fig. 2 of the main text, the superrotor regime starts at higher j-values due to the higher relative kinetic energy. The
agreement in the superrotor regime is good, but further data will help to unambiguously verify Eq. (5).
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Figure 1. The alignment decay rate (5) (black solid line) at the gas temperature T = 503 K compareed to the experiment
(black diamonds) from Ref. [A. A. Milner, A. Korobenko, J. W. Hepburn and V. Milner, Phys. Rev. Lett. 113, 043004 (2014)].
The superrotor regime is identified by full-fledged Molscat calculations of the fraction of rotationally elastic collisions (blue
squares). All other parameters are as in Fig. 2 in the main text.


