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SI. DERIVATION OF THE FEEDBACK
MASTER EQUATION

This section derives the feedback quantum master
equation for a dielectric sub-wavelength particle with vol-
ume V and susceptibility tensor χ(Ω), depending on the
particle orientation Ω. The particle is illuminated by a
monomchromatic optical field of wavenumber k, which
can always be expressed in the spectral representation
[1]

E(r) =
1

(2π)
3
2

∫
d2nE(n)eikn·r, (S1)

with n ·E(n) = 0 due to transversality. For positions far
away from the origin, one can expand (S1) in powers of
1/r as

E(rn) =
1

(2π)1/2ikr

[
E(n)eikr −E(−n)e−ikr

]
, (S2)

neglecting orders of O(1/r2). Therefore we can identify
an outgoing part of the incident wave, proportional to
the spectral representation at a given travelling direction
n, and an ingoing part, proportional to the spectral rep-
resentation at −n.

The particle dynamics are determined by the optical
potential V (r,Ω) = −ε0VE∗(r) · χ(Ω)E(r)/4, with r the
particle center of mass, as well as by the scattering Lind-
blad operators [2]

Lsc
np =

√
ε0k3

2ℏ
V

4π
t∗np · χ(Ω)E(r)e−ikn·r. (S3)

Here, n describes the direction of the scattered photon
and tnp, p = 1, 2, the two orthogonal polarisation di-
rections. The resulting quantum master equation reads
[2]

∂tρ = L0ρ−
i

ℏ
[Vopt, ρ]

+

∫
d2n

∑
p=1,2

(
Lsc
npρ(L

sc
np)

† − 1

2
{(Lsc

np)
†Lsc

np, ρ}
)
. (S4)

The laser-free particle dynamics, described by L0, in-
cludes gas diffusion.

We now follow the reasoning from [3] to derive a mas-
ter equation conditioned on the outcome of a homodyne

measurement on the scattered light. For this we first re-
formulate equation (S4) to account for the fact that the
total field measured at a detector is given not only by
the scattered field but also by the outgoing part of E(r).
Defining the operators

Lnp =

√
ε0

4πℏk3
1

i
t∗np ·E(n) + Lsc

np, (S5)

allows rewriting (S4) as

∂tρ = L0ρ+

∫
d2n

∑
p=1,2

(
LnpρL

†
np −

1

2
{L†

npLnp, ρ}
)
.

(S6)

The laser-induced dynamics are now fully encoded in the
new Lindblad operators, which account for the superpo-
sition of the scattered field and the outgoing part of the
incident field. Note that∫

d2n
∑
p=1,2

L†
npLnp =

P

ℏck
, (S7)

with P the total incident field power.
We next show that the Lindblad operators can be un-

derstood as the measurement operators of a detector
counting all outgoing photons. In order to model a homo-
dyne measurement at the shot noise limit, all observable
photon scattering directions are individually superposed
with classical local oscillator fields βnp and then summed
over all accessible scattering directions [3]. The latter are
determined by the solid angle Ω0 of the light collecting
objective. The detector quantum efficiency is denoted
as η0 and we include dark counts with rate r, so that
the measurement signal is a Poisson process dN(t) with
mean

E[dN(t)] = rdt

+η0

∫
Ω0

d2n
∑
p=1,2

E[⟨(β∗
np + L†

np)(βnp + Lnp)⟩]dt. (S8)

From this, we can infer the measurement operators to be
βnp + Lnp [3].
Unravelling the master equation (S6) with respect to

the signal (S8) requires a few steps. We first rewrite (S6)
as
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∂tρ = L0ρ+

∫
d2n

∑
p=1,2

[
LnpρL

†
np −

1

2
{L†

npLnp, ρ}
]
− η0

∫
Ω0

d2n
∑
p=1,2

[
LnpρL

†
np −

1

2
{L†

npLnp, ρ}
]

+ η0

∫
Ω0

d2n
∑
p=1,2

[
(βnp + Lnp)ρ(β

∗
np + L†

np)−
1

2
{(β∗

np + L†
np)(βnp + Lnp), ρ}

]
− η0

2

∫
Ω0

d2n
∑
p=1,2

[
β∗
npLnp − βnpL

†
np, ρ

]
,

(S9)

by using that the last term in the first line cancels the second line. Next, the first term in the second line is
stochastically unravelled by using (S8),

dρ = L0ρdt+

∫
d2n

∑
p=1,2

[
LnpρL

†
np −

1

2
{L†

npLnp, ρ}
]
dt− η0

∫
Ω0

d2n
∑
p=1,2

[
LnpρL

†
np −

1

2
{L†

npLnp, ρ}
]
dt

+ η0

∫
Ω0

d2n
∑
p=1,2

[
⟨(β∗

np + L†
np)(βnp + Lnp)⟩ρ−

1

2
{(βnp + Lnp)

†(βnp + Lnp), ρ}
]
dt

+

[
rρ+ η0

∫
Ω0

d2n
∑

p=1,2(βnp + Lnp)ρ(β
∗
np + L†

np)

r + η0
∫
Ω0

d2n
∑

p=1,2⟨(β∗
np + L†

np)(βnp + Lnp)⟩
− ρ

]
dN(t)− η0

2

∫
Ω0

d2n
∑
p=1,2

[
β∗
npLnp − βnpL

†
np, ρ

]
dt. (S10)

This equation describes the collapse of the quantum state due to the detection or not-detection of a photon. A
detection event (dN = 1) transforms the state into a mixture of the pre-detection state (if the photon was a dark
count) and a superposition state consisting of the pre-detection state (if the photon was from the local oscillator) and
the state for a photon leaving the system, averaged over all detection directions Ω0.

For homodyne detection, the field of the local oscillator is much greater than the field to be detected. In the formal
limit βnp → ∞ the number of photons arriving at the detector in a finite time interval tends to infinity, while the
state transformation of a single detection event vanishes. The usual approach to describe this situation slices the
time axis into intervals of finite duration ∆t, which must fulfill two conditions [3]: First, the slices have to be long
enough so that the number of photons arriving at the detector during this period clearly exceeds unity. Second, the
slices have to be sufficiently short so that the quantum state changes only weakly during ∆t. The number of photons
∆N(t) detected during ∆t is then approximately given by a Gaussian distribution, whose variance equals its mean
(S8). One can thus write [3]

∆N(t) ≈

[
r + η0

∫
Ω0

d2n
∑
p=1,2

⟨(β∗
np + L†

np)(βnp + Lnp)⟩

]
∆t+

√
r + η0

∫
Ω0

d2n
∑
p=1,2

⟨(β∗
np + L†

np)(βnp + Lnp)⟩∆W (t)

(S11)

where ∆W (t) is a Gaussian distributed random number with zero mean and variance ∆t.
Since ∆t is much smaller than the evolution time of the master equation, we can replace dN in equation (S10) by

∆N . Keeping only terms to leading order in β−1
np , performing the limit ∆t → dt, and splitting the Lindblad operators

according to equation (S5) yields

dρ = L0ρdt−
i

ℏ
[Vopt(r), ρ]dt+

∫
d2n

∑
p=1,2

[
Lsc
npρ(L

sc
np)

† − 1

2
{(Lsc

np)
†Lsc

np, ρ}
]
dt

+
η0√

r + η0
∫
Ω0

d2n
∑

p=1,2 |βnp|2

[∫
Ω0

d2n
∑
p=1,2

β∗
npL

sc
npρ+ βnpρ(L

sc
np)

† − ⟨β∗
npL

sc
np + βnp(L

sc
np)

†⟩ρ

]
dW (t), (S12)

with Wiener increment dW (t). This quantum master equation describes the motion of an arbitrarily shaped nanopar-
ticle subject to continuous homodyning. The homodyne photon flux Ihom is obtained by substracting the constant
contributions due to the local oscillator, the dark counts, and the incident field E from the photon count,

Ihom(t)dt = η0

∫
Ω0

d2n
∑
p=1,2

⟨β∗
npL

sc
np + βnp(L

sc
np)

†⟩dt+
√
r + η0

∫
Ω0

d2n
∑
p=1,2

|βnp|2 dW (t). (S13)

The signal is therefore proportional to the scattering field of the particle and is fluctuating due to the photon shot
noise of the local oscillator and the dark counts.
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As a final step, we now use that the particle is spherical, χ(Ω) = χe1 = 3(εr − 1)1/(εr + 2), and that the incident
field is a tweezer trap of the form

E(r) =
E0

1 + ix/xR
exp

[
− y2 + z2

w2 (1 + ix/xR)

]
ei(kx+φt)ez, (S14)

with waist w, Rayleigh range xR = kw2/2, polarisation ez, amplitude E0, and tweezer phase φt. Linearizing Eq. (S12)
around the tweezer focus and tracing out orientational degrees of freedom shows that the deterministic part of the
linearised master equation consists of a harmonic trap for all center-of-mass degrees of freedom and Rayleigh scattering
diffusion for all components of r [2]. The stochastic term in (S12) can be treated by expanding Lsc

np to the first order
in the particle coordinates

Lsc
np ≈

√
ε0k3

2ℏ
V χeE0

4π
t∗np · ez

{
1 + i

[(
k − 1

xR

)
x− kn · r

]}
eiφt . (S15)

The constant term cancels and thus does not appear in equation (S12).
Finally, we assume that the detector solid angle Ω0 and the local oscillator βnp are chosen such that the measured

signal is approximately independent of y and z. Tracing out y and z from the master equation and choosing L0 as
the unitary evolution due to the kinetic energy plus a contribution due to gas scattering with diffusion constant Dg

finally leads to the feedback master equation for the coordinate x along the optical axis,

dρ = − i

ℏ
[H, ρ]dt−

(
Dg

ℏ2
+

1

8L2

)
[x, [x, ρ]]dt+

√
η

2L

(
eiφxρ+ e−iφρx− 2 cosφ⟨x⟩ρ

)
dW. (S16)

Here, we defined the detection phase

φ = φt + arg

[∫
Ω0

d2n
∑
p=1,2

i(t∗np · ez)β∗
np

(
k − 1

xR
− kn · ex

)]
(S17)

and the Hamiltonian

H =
p2

2m
+

mω2
0

2
x2 − F (t)x, (S18)

with external force F (t) and trapping frequency ω0 =
√
χekP/πcϱx3

R. We define the detection efficiency as

η =
η20

∣∣∣∫Ω0
d2n

∑
p=1,2(t

∗
np · ez)β∗

np

(
k − 1

xR
− knx

)∣∣∣2[∫
d2n

∑
p=1,2 |tnp · ez|2

(
k − 1

xR
− knx

)2] [
r + η0

∫
Ω0

d2n
∑

p=1,2 |βnp|2
] , (S19)

which, following Ref. [4], can be understood as a product of several efficiencies, η = η0ηinelηovηdc. Specifically, ηinel
denotes the fraction of inelastically scattered photons arriving at the detector

ηinel =

∫
Ω0

d2n
∑

p=1,2 |tnp · ez|2
(
k − 1

xR
− knx

)2
∫
d2n

∑
p=1,2 |tnp · ez|2

(
k − 1

xR
− knx

)2 , (S20)

while ηov describes the mode overlap of the detectable inelastically scattered photons with the local oscillator

ηov =

∣∣∣∫Ω0
d2n

∑
p=1,2(t

∗
np · ez)β∗

np

(
k − 1

xR
− knx

)∣∣∣2[∫
Ω0

d2n
∑

p=1,2 |tnp · ez|2
(
k − 1

xR
− knx

)2] [∫
Ω0

d2n
∑

p=1,2 |βnp|2
] . (S21)

Likewise, ηdc is the mean probability for a detected photon to originate from the local oscillator and not from the
dark counts

ηdc =
η0
∫
Ω0

d2n
∑

p=1,2 |βnp|2

r + η0
∫
Ω0

d2n
∑

p=1,2 |βnp|2
. (S22)
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We note that most of the weight of ηinel, and therefore most of the particle information, is encoded in the backscattered
light, for which nx is negative.
The homodyne photon flux can be written as Ihom(t)dt = I1dt + I2dy(t) with the increment dy = ⟨x⟩dt cosφ +

LdW/
√
η and

I1 = η0

∫
Ω0

d2n
∑
p=1,2

√
ε0k3

2ℏ
V χeE0

4π
β∗
npt

∗
np · ezeiφt + c.c. (S23a)

I2 =

√
η

L

√
r + η0

∫
Ω0

d2n
∑
p=1,2

|βnp|2. (S23b)

Substracting the constant photon flux and renormalizing the homodyne signal with I2 thus measures the particle
position through dy(t).
Extending this derivation to the case of two particles and two far-detuned tweezers with two individual detectors

and transforming to mechanical normal modes, leads us to the feedback master equation (4) for φ = 0. The master
equation (S16) can also be obtained by performing an infinite series of infinitely weak Gaussian measurements on the
position operator [5]; it is a well-known description applicable to several contemporary experiments [4, 6].

SII. EQUILIBRIUM POSITIONS IN THE PRESENCE OF COULOMB ATTRACTION

The electrostatic interaction not only couples the motion of the two particles along all coordinates, but also displaces
their equilibrium positions along their connecting axis (y). As the motion along the beam polarisation (z) does not
influence the particle motion along the optical axis (x), we ignore the former in the following considerations.
The potential energy of the y- and x-coordinates of both particles is given by the sum of the optical potentials

of both particles in their respective beams (contributions of the other tweezer can be neglected for all parameters
considered in our work) plus the electrostatic interaction. Additionally, a constant and homogeneous electrostatic
field Ec can be applied along the y-axis. The coordinates rj = (xj , yj , zj) of particle j = 1, 2 refer to the respective
beam focus. Then, the potential reads

V (x1, x2, y1, y2) = −ε0χeV

4
|E(r1)|2 −

ε0χeV

4
|E(r2)|2 +

Q1Q2

4πε0|dey + r2 − r1|
−Q1Ecy1 −Q2Ecy2. (S24)

For repulsive interaction, Q1Q2 > 0, we choose Ec = 0. As the motion along the optical axis is only stable for
relatively low coupling rates, g/ω0 > −1/4, the potential can safely be expanded around the two tweezer foci. For
attractive interaction and larger coupling rates, however, the constant displacement of the equilibrium positions along
y may change the effective trapping frequencies and recoil rates, and may even destabilise the traps. This may be
compensated by choosing Ec as

Ec =
Q1Q2

(Q1 −Q2)2πε0d2
. (S25)

The resulting potential energy of both particles exhibits extrema at x0,1 = x0,2 = 0 and y0,1 = y0,2, provided a
solution y0,1 of the following transcendental equation exists,

y0,1
w

exp

(
−2

y20,1
w2

)
= −wd

x2
R

(
g

ω0

)
y=0

Q1 +Q2

Q1 −Q2
, (S26)

where (g/ω0)y=0 is the ratio of the bare coupling rate and trapping frequency as introduced in the main text. A

solution exists if the right-hand side is smaller than the maximum of the left-hand side, 1/2e1/2, which implies
y0,1 < w/2. The effective trapping frequencies along the optical axis are then given by

ω2
0 =

χekP

πcϱx3
R

(
1− 2

y20,1
w2

)
exp

(
−2

y20,1
w2

)
, (S27)

and are thus always reduced in comparison to the bare trapping frequency., Likewise, the recoil heating rate is reduced
by a factor of exp

(
−2y20,1/w

2
)
. The coupling rate remains unchanged, apart from its dependence on ω0. We note

that for an equal number of absolute charges on the particles, |Q1| = |Q2|, the displacement along y can be fully
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canceled. Equal charges would however prevent feedback cooling of the sum mode via electric fields and thus require
optical cold damping cooling [7, 8].

The trapping frequency of the center of mass of the particles along y is given by

ω2
y,+ =

4χeP

πcϱw4

(
1− 4

y201
w2

)
exp

(
−2

y201
w2

)
, (S28)

and the frequency of the difference mode by ω2
y,− = ω2

y,+ − 4gω0. Note that the trapping of the difference mode

along y can become unstable for sufficiently strong attractive interaction (ω2
y,+ < 4gω0), even if y0,1 exists. This can

however be circumvented with feedback, by superimposing Ec with an additional field proportional to y2 − y1 to add
an additional restoring force.

SIII. MOMENT EQUATIONS OF MOTION AND STATIONARY CONDITIONAL COVARIANCE

From Eq. (4) we can derive the equations of motion for the moments of x± and p±. Denoting the conditional
covariance of operators A and B as CAB = 1

2 ⟨AB + BA⟩ − ⟨A⟩⟨B⟩ and the variance of A as VA = CAA, the first
moments can be shown to evolve as

d⟨x±⟩ =
⟨p±⟩
m

dt+

√
η

L
Vx±dW± +

√
η

L
Cx+x−dW∓ (S29a)

d⟨p±⟩ = −mω2
±⟨x±⟩dt+ F±(t) +K±(t) +

√
η

L
Cx±p±dW± +

√
η

L
Cx∓p±dW∓. (S29b)

Here, η = ηin + ηout and dW± = (
√
ηindWin,± +

√
ηoutdWout,±)/

√
η.

Likewise, the dynamics of the (co-)variances are given by the following set of equations of motion.

dVx± =
2Cx±p±

m
dt− η

L2
V 2
x±

dt− η

L2
C2

x+x−
dt+

√
η

L
(⟨x3

±⟩ − 3Vx±⟨x±⟩ − ⟨x±⟩3)dW±

+

√
η

L
(⟨x2

±x∓⟩ − Vx±⟨x∓⟩ − 2Cx+x−⟨x±⟩ − ⟨x±⟩2)dW∓ (S30a)

dCx+x− =
Cx+p− + Cx−p+

m
dt− η

L2
(Vx+

+ Vx−)Cx+x−dt

+

√
η

L
(⟨x2

+x−⟩ − 2Cx+x−⟨x+⟩ − Vx+⟨x−⟩ − ⟨x+⟩2⟨x−⟩)dW+

+

√
η

L
(⟨x2

−x+⟩ − 2Cx+x−⟨x−⟩ − Vx−⟨x+⟩ − ⟨x−⟩2⟨x+⟩)dW− (S30b)

dCx±p± =
Vp±

m
dt−mω2

±Vx±dt−
η

L2
Vx±Cx±p±dt−

η

L2
Cx+x−Cx∓p±dt

+

√
η

L
(⟨x±p±x±⟩ − 2Cx±p±⟨x±⟩ − Vx±⟨p±⟩ − ⟨x±⟩2⟨p±⟩)dW±

+

√
η

L

(
1

2
⟨x±p±x∓ + x∓p±x±⟩ − Cx±p±⟨x∓⟩ − Cx+x−⟨p±⟩ − Cx∓p±⟨x±⟩ − ⟨x+⟩⟨x−⟩⟨p±⟩

)
dW∓ (S30c)

dCx±p∓ =
Cp+p−

m
dt−mω2

∓Cx+x−dt−
η

L2
Vx±Cx±p∓dt−

η

L2
Cx+x−Cx∓p±dt

+

√
η

L
(⟨x2

±p∓⟩ − 2Cx±p∓⟨x±⟩ − V 2
x±

⟨p∓⟩ − ⟨x±⟩2⟨p∓⟩)dW±

+

√
η

L

(
1

2
⟨x∓p∓x± + x±p∓x∓⟩ − Cx±p∓⟨x∓⟩ − Cx∓p∓⟨x±⟩ − Cx+x−⟨p∓⟩ − ⟨x+⟩⟨x−⟩⟨p∓⟩

)
dW∓ (S30d)

dVp± =− 2mω2
±Cx±p±dt+

(
ℏ2

4L2
+ 2Dg

)
dt− η

L2
C2

x±p±
dt− η

L2
C2

x∓p±
dt

+

√
η

L
(⟨p±x±p±⟩ − Vp±⟨x±⟩ − 2Cx±p±⟨p±⟩ − ⟨p±⟩2⟨x±⟩)dW±

+

√
η

L
(⟨p2±x∓⟩ − Vp±⟨x∓⟩ − 2Cx∓p±⟨p±⟩ − ⟨p±⟩2⟨x∓⟩)dW∓ (S30e)

dCp+p− =−m(ω2
+Cx+p− + ω2

−Cx−p+
)dt− η

L2
Cx+p+

Cx+p−dt−
η

L2
Cx−p−Cx−p+

dt
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+

√
η

L

(
1

2
⟨p−x+p+ + p+x+p−⟩ − Cp+p−⟨x+⟩ − Cx+p+⟨p−⟩ − Cx+p−⟨p+⟩ − ⟨p+⟩⟨p−⟩⟨x+⟩

)
dW+

+

√
η

L

(
1

2
⟨p+x−p− + p−x−p+⟩ − Cp+p−⟨x−⟩ − Cx−p−⟨p+⟩ − Cx−p+

⟨p−⟩ − ⟨p+⟩⟨p−⟩⟨x−⟩
)
dW−. (S30f)

In general, neither the first and second moments nor the subsystems s = ± decouple from each other since all equations
of motion are non-linearly coupled. Moreover, the equations of motion are not closed because third moments appear
in the stochastic part of the (co-)variances. While all moments are driven by all measurement noises dWr±, the
(co-)variance equations of motion do not depend on the feedback and external forces F± and K±, which has also been
noticed for a single particle [4, 6, 9].

The equations (S29) and (S30) cannot be solved in general. However, the problem simplifies greatly for Gaussian
states, because they remain Gaussian for all times under equation (S16). To see this, consider an infinitesimal time
step, which can be written as ρ(t+ dt) ∝

∫∞
−∞ du exp[−u2/2]W(u)ρ(t)W†(u), where

W(u) = exp

[
− i

ℏ
Hudt− η

(x cosφ− dy(t)/dt)2

4L2
dt

]
, (S31)

with

Hu = H +
ℏη
4L2

cosφ sinφx2 − ℏ

(√
η

2L
sinφ

dW (t)

dt
+ u

√
2Dg

ℏ2
+

1− η

4L2
dt−1/2 +

η

2L2
cosφ sinφ ⟨x⟩

)
x. (S32)

As long as H is at most quadratic in all position and momentum operators, the master equation thus conserves the
initial state’s gaussianity.

Gaussian states fulfill the following relations for their third moments

⟨: uvw :⟩ = Cuv⟨w⟩+ Cuw⟨v⟩+ Cvw⟨u⟩+ ⟨u⟩⟨v⟩⟨w⟩, (S33)

with u, v and w position or momentum operators and : uvw : denoting their Weyl ordering. This can be shown with
the help of the Wigner representation of a Gaussian state by using that the Weyl symbol of a Weyl-ordered operator
product is the product of the individual Weyl symbols. The above relation then follows from a classical calculation,
using that the Wigner function is a Gaussian.

Using Eq. (S33) we see that all stochastic terms in the dynamics of the second moments (S30) vanish, giving rise
to a set of coupled and nonlinear, but closed and deterministic differential equations. After a transient time, the
(co-)variances settle at the stationary solutions

Vxs
=

√
2L2ωs

η
ζs (S34a)

Cxsps =
mL2ω2

s

η
ζ2s (S34b)

Vps
=m2ω2

sVxs
(1 + ζ2s ), (S34c)

and Cx+x− = Cp+p− = Cx±p∓ = 0, where s ∈ {+,−} and

ζ2s =

√
1 +

η(ℏ2 + 8DgL2)

4m2L4ω4
s

− 1. (S35)

This implies that the conditional sum and difference modes become uncorrelated. The steady state of the conditional
covariance matrix is only a property of the measurement setting and not of the external forces or of the applied
feedback.

SIV. MEASUREMENT SIGNALS

Inserting the stationary covariance into Eq. (S29) demonstrates that the sum and difference motion is only driven
by the sum and difference noises dWr±, respectively.
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Inserting the cold-damping feedback force (5), the equations of motion for the first moments (S29) can be solved
in the frequency domain. Denoting all frequency-dependent quantities with square brackets, we define the Fourier
transform by A[ω] =

∫∞
−∞ dt eiωtA(t)/

√
2π. The stationary first moments are then given by

⟨xs⟩[ω] = χs[ω]

[(
Cxsps

m
− iωVxs

) √
η

L
ξs[ω]−

γsL√
ηin

√
2πHs[ω]ξin,s[ω] +

Ks[ω]

m

]
, (S36a)

⟨ps⟩[ω] = −mχs[ω]

[(
iω

Cxsps

m
+ ω2

sVxs
+ γs

√
2πHs[ω]Vxs

) √
η

L
ξs[ω]− iω

γsL√
ηin

√
2πHs[ω]ξin,s + iω

Ks[ω]

m

]
, (S36b)

with the mechanical susceptibilities χs[ω] = (ω2
s − ω2 +

√
2πγsHs[ω])

−1 and the white noises ξ[ω], as labeled by
different subscripts. The latter are the Fourier transforms of the respective dW/dt, so that E[ξ[ω]] = 0 and
E[ξ[ω′]∗ξ[ω]] = δ(ω − ω′). From these relations one can directly calculate all power spectral densities SAB [ω] =∫∞
−∞ dω′E[⟨A⟩[ω]∗⟨B⟩[ω′]]/2π.

At this point we note that the feedback filter function is causal, Hs(t < 0) = 0, and real-valued, implying that
the Fourier transform Hs[ω] has non-vanishing real and imaginary parts. Specifically, the reality of Hs(t) implies

Hs[ω] = H∗
s [−ω], so that we can write Hs[ω] = (gs[ω] − iωfs[ω])/

√
2π with real and symmetric functions gs[ω] and

fs[ω]. For the filter function to generate cold damping with rate γs, we require gs[ωs] = 0 and fs[ωs] = 1, with both
functions approximately constant for a spectral width of at least γs around ωs. We note that in realistic situations,
the filter Hs(t) is always compact, so that Hs[ω] decays as 1/ω for large ω, implying that fs[ω] decays as 1/ω

2.
First, we calculate the PSDs of the in-loop measurement signals, dyin,s(t)/dt. They are given by

Sin,s[ω] =
L2

2πηin
+

|χs[ω]|2

2π

[
ℏ2

4m2L2
+

2Dg

m2
− 2π

L2

ηin
γ2
s |Hs[ω]|2 − 2(ω2

s − ω2)
L2

ηin
γsgs[ω]

]
+ |χs[ω]|2

SKsKs
[ω]

m2
, (S37)

showing noise squashing [10] for sufficienctly large damping constants. Neglecting gs[ω] yields Eq. (6) and (7) in the
main text. Likewise, the PSDs of the out-of-loop signals dyout,s(t)/dt are also given by Eq. (6) and (7).

SV. ENTANGLING TWO PARTICLES BY
COULOMB INTERACTION

For Gaussian quantum states the amount of entangle-
ment is encoded in the covariance matrix of the two par-
ticles. We set Ks = 0 and ηout = 0 in the following, so
that η = ηin. To get the unconditional covariance ma-
trix, one may calculate the PSDs Sxsxs

, Sxsps
and Spsps

from Eqs. (S36) and integrate them over all frequencies
yielding E[⟨xs⟩2], E[⟨xs⟩⟨ps⟩] and E[⟨ps⟩2].
In order to evaluate these integrals, we will restrict

ourselves to cases where fs[ω] and gs[ω] change weakly
around ωs in an interval larger than γs. This applies
if the filter Hs[ω] is much broader than the mechani-
cal PSD. Then, we can set Hs[ω] ≈ Hs[ωs] for integrat-
ing over Sxsxs and Sxsps . Note that the ensemble aver-
age correlations between sum and difference modes are
zero. When integrating over Spsps , however, the finite
cutoff of Hs[ω] plays a role due to high-frequency fluctu-
ations emerging from feeding back the filtered measure-
ment noise into the oscillators. This manifests itself in a
term of the form fs[ω]

2ω4|χs[ω]|2 in the integrand, where
fs[ω] determines the convergence of the integral, rather
than |χs[ω]|2. Keeping the exact form of gs and fs only
where they are needed to achieve convergence yields

E[⟨xs⟩2] =
L2

2η
γs +

(
ℏ2

8L2
+Dg

)
1

m2ω2
sγs

− Vxs

(S38a)

E[⟨ps⟩2] =m2ω2
s

[
E[⟨xs⟩2] + Vxs

+
L2

η

(
ζ2sγs +

Ωs

2ω2
s

γ2
s

)]
− Vps (S38b)

E[⟨xs⟩⟨ps⟩] =
mL2ωs√

2η
ζsγs − Cxsps

, (S38c)

with the filter bandwidths Ωs. The latter satisfy Ωs ≫
γs by construction (and would diverge if Hs acted as
an exact derivative). The integral is well-defined in all
realistic cases due to the 1/ω2-decay of the integrand.
Finally adding the conditional covariance matrix to these
results leads us to the unconditional covariance matrix

E[⟨x2
s⟩] =

L2

2η
γs +

(
ℏ2

8L2
+Dg

)
1

m2ω2
sγs

(S39a)

E[⟨p2s⟩] = m2ω2
s

[
E[⟨x2

s⟩] +
L2

η

(
ζ2sγs +

Ωs

2ω2
s

γ2
s

)]
(S39b)

E

[
1

2
⟨xsps + psxs⟩

]
=

mL2ωs√
2η

ζsγs. (S39c)

All other second moments vanish.
Note that the equipartition theorem does not hold in

general because the stationary state is not thermal. This
is due to the fact that the positions, but not the mo-
menta, of the particles are be measured, leading to an
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additional momentum uncertainty manifesting in the ζs-
term in the momentum variances. This term vanishes
for sufficiently large measurement uncertainties L [6]. In
addition, the high-frequency fluctuations in the position
measurement signal lead to a contribution of the feed-
back bandwidth to the momentum variances, which also
violates the equipartition theorem.

To quantify the amount of entanglement present in the
two-particle stationary state, we calculate its logarith-
mic negativity. Recalling that the main text introduces
dimensionless position and momentum quadratures via
xs =

√
ℏ/mω0Xs, ps =

√
ℏmω0Ps as well as the net

heating rate Γ = Γsc + γgkBTg/ℏω0 and the effective de-
tection efficiency ηeff = ηinΓsc/Γ, the elements of the di-
mensionless conditional covariance matrix can be written
as

VXs =

√√
ω4
s + 16ηeffω2

0Γ
2 − ω2

s

4
√
2ηeffΓ

(S40a)

VPs =
ω2
s

ω2
0

VXs +
32η2effΓ

2

ω2
0

V 3
Xs

(S40b)

CXsPs =
4ηeffΓ

ω0
V 2
Xs

. (S40c)

Thus, the purity of the conditional state is ηeff , as esti-
mated from Eq. (7) in [11]. The ensemble-averaged sec-
ond moments (unconditional covariances) are

E[⟨X2
s ⟩] =

γs
16ηeffΓ

+
ω2
0Γ

ω2
sγs

(S41a)

E[⟨P 2
s ⟩] =

2
√
ω4
s + 16ηeffω2

0Γ
2 − ω2

s

16ηeffω2
0Γ

γs

+
Γ

γs
+

Ωsγ
2
s

16ηeffω2
0Γ

(S41b)

E

[
1

2
⟨XsPs + PsXs⟩

]
=

√√
ω4
s + 16ηeffω2

0Γ
2 − ω2

s

8
√
2ηeffω0Γ

γs.

(S41c)

For bipartite Gaussian states the logarithmic negativ-
ity can be written as EN = max[0,− log2 (2min[c1, c2])],
where c1,2 are the symplectic eigenvalues of the partially
transposed covariance matrix [12]. In our system, where
all correlations between sum and difference mode vanish,
the symplectic eigenvalues are

c21,2 =
1

2

(
VX+

VP− + VX−VP+
− 2CX+P+

CX−P−

)
±
√

1

4

(
VX+VP− − VX−VP+

)2
+
(
VX−CX+P+ − VX+CX−P−

) (
VP−CX+P+ − VP+CX−P−

)
. (S42)

First, we calculate the negativity of the conditional state,
which acts as a fundamental limit of optimised cooling
schemes [4, 6]. We restrict our discussion to weak mea-
surements, where Γ ≪ ω0, for simplicity. Then, in the
first non-vanishing order of Γ/ω0, the position variance
can be written as

VXs ≈ ω0

2
√
ηeffωs

−
√
ηeffω

3
0Γ

2

ω5
s

. (S43)

Inserting it into VPs
and CXsPs

and calculating the sym-
plectic eigenvalues to the first non-vanishing order in
Γ/ω0 yields the conditional minimum symplectic eigen-
value

min(c1, c2) ≈
√

ω<

4ηeffω>

[
1 +

ηeffΓ
2

ω2
0

h

(
ω0

ω−

)]
, (S44)

which must fulfill min(c1, c2) < 1/2 for the particles to
be entangled. Here, we defined h(s) = |1− s|(s4 + 2s3 +
2s+1)/(1+ s). The logarithmic negativity is then given
by

EN ≈ max

[
0,

1

2
log2

ω>ηeff
ω<

− ηeffΓ
2

ln 2ω2
0

h

(
ω0

ω−

)]
. (S45)

In the limit Γ/ω0 → 0 the correlator CXsPs vanishes
and the symplectic eigenvalues take the simple form√
VX±VP∓ [13]. Then, the conditional state of the parti-

cles is entangled if the condition ηeff > ω</ω> is fulfilled.
In Fig. S1 (b)-(e) we show the logarithmic negativity as a
function of coupling constant, heating rate, and effective
detection efficiency if using the approximation

√
VX±VP∓

as symplectic eigenvalues. Comparing it to Fig. 3, we see
that the simplified expression predicts weaker entangle-
ment than the exact negativity, but is still a stronger
criterion than the Duan inequality.

Second, we will turn to the entanglement of the uncon-
ditional state, as achievable with cold-damping feedback.
This requires replacing the (co-)variances in Eq. (S42)
with the unconditional second moments (S41). Again,
we restrict the discussion to Γ ≪ ω0 for simplicity. Since
the damping constants γs can be freely chosen we always
take them to maximise the entanglement between the two
particles. The dependence of the logarithmic negativity
on the two damping constants γs, depicted in Fig. 3 (a),
shows a strong maximum for specific choices of the γs.

We will see that the optimal choice leads to γs ∝ Γ.
Therefore, considering only the first non-vanishing order
in Γ/ω0 leads to Eq. (9), where the term due to the filter
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Figure S1. (a) Logarithmic negativity, using the approxima-
tion c21,2 ≈ E[⟨X2

±⟩]E[⟨P 2
∓⟩] for the symplectic eigenvalues, of

two interacting, feedback-cooled nanoparticles as a function
of the damping constants γs for an effective detection effi-
ciency of ηeff = 0.45, a net heating rate of Γ = ω0/10 and a
coupling constant of g = 4ω0. (b), (d) Approximated loga-
rithmic negativity of the unconditional state as a function of
the coupling constant and of the effective detection efficiency
or the net heating rate, respectively. The plots are calculated
for Ωs = ω0 and at the optimal choice of the damping rates
γs. (c), (e) Approximated logarithmic negativity of the con-
ditional state. The dashed black lines indicate the violation
of the Duan-criterion. (b), (c) are calculated for Γ = ω0/10,
while (d), (e) assume ηeff = 0.45.

width Ωs is always greater than corrections on the order
of Γ2/ω2

0 because Ωs ≫ Γ.

We note that the correlators E
[
1
2 ⟨XsPs + PsXs⟩

]
are

on the order of Γ/ω0 and appear quadratically in the log-

arithmic negativity. They can thus be neglected, so that
agin the simplified formula c21,2 ≈ E[⟨X2

±⟩]E[⟨P 2
∓⟩] for

the symplectic eigenvalues can be used, see also Fig. S1.
Hence, when maximising the negativity we can minimise
E[⟨X2

±⟩] and E[⟨P 2
∓⟩] individually. To minimise the posi-

tion variance we choose γ± = 4Γ
√
ηeffω0/ω±, while the

momentum fluctuations can be minimised to leading or-
der in Γ/ω0 with

γ∓ ≈ 4Γ
√
ηeff

ω0

ω∓
− 16ηeffω

2
0Ω∓Γ

2

ω4
∓

. (S46)

These choices lead to

E[⟨X2
±⟩] =

ω0

2
√
ηtotω±

(S47a)

E[⟨P 2
∓⟩] ≈

ω∓

2
√
ηeffω0

+
Ω∓Γ

ω2
∓

. (S47b)

The minimum symplectic eigenvalue then reads

min(c1, c2) ≈
√

ω<

4ηeffω>

(
1 +

√
ηeff

ω>Ω<Γ

ω−ω2
<

)
, (S48)

allowing us to estimate the logarithmic negativity to lead-
ing order in Γ/ω0,

EN ≈ max

[
0,

1

2
log2

(
ηeff

ω>

ω<

)
−

√
ηeff

ln 2

ω>

ω<

Ω<

ω<

Γ

ω−

]
,

(S49)

where ω< = min(ω+, ω−) and ω> = max(ω+, ω−), with
Ω< the associated filter bandwidth. In the limit of
weak coupling, |g| ≪ ω0, and Ω+ ≈ Ω−, the entangle-
ment criterion can be simplified to |g| > 2n+ω0, where
n+ = E[⟨X2

+ + P 2
+ − 1⟩]/2 is the stationary occupation

of the sum mode. The resulting logarithmic negativity is
given by EN ≈ max[0, |g|/ω0−2n+]/ ln 2, resembling the
expression for particles coupled to a cold bath [13].
In the limit of Γ/ω0 → 0, the logarithmic negativ-

ities of the conditional and of the unconditional state
become identical. The logarithmic negativity when
approximating the symplectic eigenvalues with c21,2 ≈
E[⟨X2

±⟩]E[⟨P 2
∓⟩] is depicted in Fig. S1 (a), (b) and (d),

where we numerically maximised the approximated neg-
ativity (or the violation of the Duan criterion) in (b)
and (d) with respect to γs. It demonstrates, together
with Fig. 3, that one needs larger coupling constants
and greater efficiencies to violate the Duan criterion than
needed to generate entanglement.
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