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SUPPLEMENTARY INFORMATION FOR
“MACROSCOPIC QUANTUM TEST WITH BULK ACOUSTIC WAVE RESONATORS”

Supplementary Section A: Geometric factor

The considered macrorealistic modifications lead to momentum di↵usion in the oscillator state. The momentum di↵usion
rate D = ~2

U/⌧e is inversely proportional to the coherence time parameter ⌧e and depends on the oscillator mode function u(r)
through the geometric factor [17]
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q g(q,�q)|ũ(q) · q|2 , with ũ(q) =
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Here, me denotes the reference electron mass, and g(q,�q) = exp(�|q|2/2�2
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where w0 is the beam waist (1/e amplitude radius), L is the height, and ` the mode index. Based on this mode function, we can
define an e↵ective mode volume and mass, Ve↵ =

R
d3

r |u(r)|2 and me↵ =
R

d3
r %(r)|u(r)|2. They both depend on the square of

the amplitude prefactorN , but the relevant physical displacement amplitudes of the individual atoms, x0u(rn) =
p
~/me↵!u(rn),

as well as the dimensionless macrorealistic di↵usion rate, �⌧e = D(x0/~)2 = Ux
2
0, do not depend onN . Hence we may setN = 1,

without loss of generality, as done in the main text.
Given that we consider a displacement field with only a longitudinal component in x-direction, u(r) = ux(r)ex, and that the

mass density distribution is assumed to be uniform (i.e. %(r) = %̄), Eq. (A1) can be simplified further:
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This allows us to first integrate out the momenta q, change to cylindrical coordinates and express the end result as
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with �L = L�q/~ and �w = w0�q/~. Once we identify me↵ = %̄⇡w2
0L/4, we arrive at the expression for the di↵usion rate

� = Ux
2
0/⌧e given in the main text. A non-tight upper bound follows by pulling the absolute value into the �-integral in (A4).
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scaling of this bound with the mode mass and geometry is deceivingly similar to previous results for center-of-mass oscillations.
However, we will see in the following that the bound is rather loose and the actual di↵usion rate for bulk acoustic modes exhibits
a completely di↵erent scaling.

In the limiting case �L,�w ⌧ 1, the Gaussian function is sharply peaked around ⇣ = 0, and we can expand the
remainder of the integrand to lowest non-vanishing order; for even `, this yields U ⇡ 15%̄2
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Greater care must be taken in the opposite limit, �L,�w � 1. Although the non-Gaussian part of the integrand in (A4) is
clearly peaked around ⇣ = ±⇡`, it is asymptotically of order ⇣0 and thus non-integrable without the regularizing presence of
the Gaussian. Hence a dominant contribution to the ⇣-integral in (A4) does not come from the vicinity of the peaks, but from
|⇣ | � ⇡`. For even greater values �L � ⇡`, we can approximate to lowest order
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The corresponding di↵usion rate reads as � ⇡ 16(m2
e↵/m

2
e
⌧e)(x0/�Lw0)2, which does not depend on `, is proportional to me↵ ,

and is again monotonic in �q. In order to access the most relevant intermediate �q-regime of maximum di↵usion, consider the
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correction U = U
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(1), which can be expressed as
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The non-Gaussian part of this integrand (square-bracketed) is not only sharply peaked at ⇣ = ±⇡`, but also asymptotically
converges to zero like ⇣�2. The integral of this expression evaluates to ⇡/2. Assuming ⇡` � 1, we can now replace ⇣2 in the
Gaussian by ⇡2`2, so that
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Presuming �w � 1, the local maximum of U coincides approximately with that of U
(1), at �L ⇡ ⇡`/

p
3. It marks the �q-value

at which the experiment is most sensitive to macrorealistic di↵usion. The maximum rate reads as
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For numerical evaluation, an exact expression of the di↵usion rate can be given in terms of
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The function f` can be evaluated to
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where

h(a, b, `) = �i

p
⇡

2
[6a

2 � 2`⇡(`⇡ � ib
2)]erf

"
i(`⇡/a � ib)p

2

#
exp

"
� (`⇡/a � ib)2

2

#
. (A11)

In Fig. S3, we plot the resulting di↵usion rate � = D/~me↵! = ~U/me↵!⌧e as a function of the modification parameter �q.
We compare the mode addressed in our experiment to one with a much lower frequency and mode index. Based on the above
reasoning, the maxima are expected to be at ~/�q ⇡ 0.5 µm (` = 486) and 17 µm (` = 8), which roughly agrees with the exact
positions on the logarithmic scale. The dotted line represents U

(1) from (A7), a good approximation in the relevant regime
around maximum di↵usion. The dashed lines show the asymptotic approximations for �L � ⇡` (left) and for �L ⌧ 1 (right).
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FIG. S3. Dimensionless di↵usion rate �⌧e as function of the modification parameter �q for the device studied in the main text (blue curve).
We compare it to the correction U

(1) from (A7) (dotted line), as well as to the asymptote U
(0) for �L � ⇡` (left dashed) and to the asymptote

for �L ⌧ 1 (right dashed). Much stronger di↵usion would arise (red curve) if instead of the mode at ` = 486, we could excite, say, the mode
with index ` = 8 at the frequency ! = 2⇡ · 98 MHz.

Supplementary Section B: Initial states and time evolution

In our setup, macrorealistic collapse models are put to the test by monitoring the decay of Fock and superposition states over
a finite amount of time. To assess the influence of those models, it is convenient to solve the time evolution in the Wigner phase
space representation of the oscillator state. The one-dimensional Wigner function is defined as

W(x, p) =
1

2⇡~

Z
ds e

ips/~hx � s/2|⇢|x + s/2i , (B1)

where x and p are the position and momentum coordinates of the harmonic oscillator. For better readability we now change to
dimensionless units X =

p
me↵!/~x and P =

p
1/~me↵!p. Then the Wigner functions (B1) of the ground state |0i, first exited
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The time evolution of the state described by the master equation (6) in the main text describes the impact of the macrorealistic
di↵usion at the rate �, averaged over the free oscillation, and it includes also an environmental decay channel at the rate �#. The
two separate Lindblad generators for decay and amplification, @dec

t
⇢ = �D[a]⇢ and @amp

t
⇢ = �D[a†]⇢ with a = (X + iP)/

p
2,

translate into phase space as
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Both are classical Fokker-Planck equations, and the first one describes thermalization at the (dimensionless) energy 1/2, i.e. the
ground state energy of the quantum oscillator. The master equation then yields
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The solution to this Fokker-Planck equation is obtained with help of a Fourier transform into the characteristic function repre-
sentation,

�(x, p) =
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0�px

0)/~ , (B6)
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which evolves according to
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We can now separate the simple relaxation dynamics (an exponential contraction toward the origin) from the di↵usion. Let
X = X̃e
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�#t/2, and �(X̃, P̃; t) = �(X̃e

�#t/2, P̃e
�#t/2; t), which then obeys

@t�(X̃, P̃; t) = ��# + 2�
4

e
�#t(X̃2 + P̃

2)�(X̃, P̃; t) , (B8)
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so that
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From this expression it is evident that the time evolution of an initial �(X, P; 0) is simply given by a multiplication with a
Gaussian exponential combined with an isotropic rescaling of the arguments. Noting that �(0, 0; t) = 1 at any time, one can
check that the asymptotic steady state is a Gaussian, �(X, P;1) = exp[�(1 + 2�/�#)(X2 + P

2)/4], which for � = 0 is the ground
state of the harmonic oscillator.

Back in the Wigner representation, the solution turns into a rescaling combined with a Gaussian convolution. Introducing the
dimensionless quantitiy T̃ = 1/2 + �/�#, we get
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The two last lines are alternative ways to write the convolution. Given the simple Gaussian form of the initial Wigner functions
(B2), the integrals can be calculated analytically and result in
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with R(t) = 1 + 2(e�#t � 1)T̃ . These expressions can be directly compared to the experimentally reconstructed Wigner function,
which allows us to perform Bayesian parameter estimation of the macrorealistic �-values that are compatible with the measured
data.

In Fig. S4, we use Eqs. (B13), (B14) to illustrate the evolution of states |1i and (|0i + |1i)/
p

2 according to either pure
relaxation, pure di↵usion, or a combination of both. Notice the significant di↵erences in the dynamics between the di↵erent
cases.
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FIG. S4. Comparison between relaxation, di↵usion, and a combination of both. Rows 1 and 4: State |1i and (|0i + |1i)/
p

2 evolved according
to a relaxation process with 1/�# = 40 µs. Rows 2 and 5: same initial states, but evolved according to a purely dissipative process with
� = 104 Hz. Rows 3 and 6: evolution of the initial states according to a combination of both relaxation and di↵usion with same rates. Note
that in the actual experiment we have �# � �, thus di↵usion contributes very little compared to relaxation.



12

Supplementary Section C: Bayesian parameter estimation

By measuring the Wigner function at several instances of time and comparing it to the theoretical predictions in Sect. B, one
can infer the most likely values for the macrorealistic di↵usion rate � and, subsequently, for the values of the time parameter
⌧e = ~U/�me↵! by virtue of Bayes’ rule. The posterior distribution of ⌧e-values given the measured data d, a fixed value of the
parameter �q, and an independently inferred decay time 1/�# ⇡ T1, updates as [17]

p(⌧e|d;�q,T1) / p(d|⌧e;�q,T1)p(⌧e|�q,T1), (C1)

Here, d = [di j(t)] subsumes all recorded pixel values di j(t) 2 R of the two-dimensional Wigner function reconstructions at the
times t = 10, 20, 40 µs, as plotted in the main text. The likelihood p(d|⌧e;�q,T1) for d follows from the theoretical model for the
Wigner function evaluated at the recorded pixel coordinates and times, W(Xi, Pj; t), and the assumption of additional Gaussian
noise in each data point. That is, we model the likelihood for each pixel value by a Gaussian distribution of standard deviation
s, so that

p(d|⌧e;�q,T1) =
Y

i, j,t

1p
2⇡s2

exp

8>>><
>>>:
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2s2

9>>>=
>>>;
. (C2)

We extract the overall noise level s by taking a sample of all pixel values for the Fock-|1imeasurements at t = 0, 10, 20, 40 µs and
subtracting the respective model Wigner functions W1(X, P; t) with decay time T1 and without macrorealistic di↵usion (� = 0).
A histogram of the resulting pixel deviations �i j(t) = di j(t) � W1(Xi, Pj; t) is shown in Fig. S5(a), together with a Gaussian fit
that yields the noise level s = 0.034.

The prior p(⌧e|�q,T1) is chosen as Je↵reys’ prior [27], which is maximally objective and fair in a comparison with other
completely di↵erent experiments [17]. It is defined as

p(⌧e|�q,T1) /
q
I(⌧e|�q,T1) =

s* 
@

@⌧e

log p(d|⌧e;�q,T1)
!2+

d

, (C3)

where I(⌧e|�q, I) is the Fisher information of the likelihood with respect to ⌧e and h · id denotes the expectation value over all
possible measurement results, di j(t) 2 R.

We perform the Bayesian update (C1) with the data obtained for the three time snapshots at 10, 20, 40 µs. Figures S5(b)
and (c) show the resulting posterior distributions over �-values for the Fock-|1i and the superposition state, respectively. The
upper five-percent quantiles for �, marked by vertical lines, correspond to lower five-percent quantiles of ⌧e = ~U/�me↵! at
a given value for �q. Smaller time parameters are thus ruled out with 95% confidence. We find the threshold values of � =
1.6 · 102 s�1 and 6.4 · 102 s�1 in (b) and (c), respectively. More conservatively, the respective bounds would be � = 3.1 · 102 s�1

and 8.3 · 102 s�1 at the confidence level 1 � 10�3 (roughly corresponding to 3� for normally distributed estimates), or � =
5.5 · 102 s�1 and 1.1 · 103 s�1 at the confidence level 1 � 10�7 (roughly 5�). We attribute the greater threshold value in the
superposition measurement to the omitted influence of environmental dephasing, which occurs at a comparable rate of 1/T� =
1.0 · 103 s�1, as discussed in the main text. The remaining discrepancy between this rate and the inferred � can be explained by
the di↵erent impact of di↵usion and pure dephasing on the oscillator state.

In order to obtain the macroscopicity values, we take the maximum of the ruled out ⌧e-range over �q, which coincides with
the local maximum of the dimensionless di↵usion rate at ~/�q = 0.5 µm, as depicted in Fig. S3. Employing the same 95%
confidence level as in previous assessments, this leads to the macroscopicity values µ = 11.3 and 10.7 for the two measured
states.



13

-���� -���� ���� ���� ����
�

���

���

���

���

����

����

�

�(
�)

�)

��-� �·��-� ��-� �·��-�
�

����

����

����

� [�-�]

�(
�|
��
� �
��)

�)

��-� �·��-� ��-� �·��-�
�

����

����

	���

� [�-�]

�(
�|
��
� �
��)

�)

FIG. S5. Bayesian inference of the di↵usion rate. (a): Histogram of pixel deviations �i j(t) between recorded data and model Wigner function,
sampled from four time snapshots of the Fock state measurement. The histogram is closely matched by a Gaussian fit (solid line) with standard
deviation s = 0.034. (b): Posterior distribution for the di↵usion rate � for the single Fock state data up at t = 10, 20, 40 µs. For comparison, the
dashed curve depicts Je↵reys’ prior, which has been updated by the posterior toward significantly lower �-values. The use of Je↵reys’ prior
leads to a more conservative estimate of excluded �-values than, say, the often used flat prior. The vertical line and the yellow part mark the
upper five percent quantile of the posterior. (c) Posterior distribution for the superposition state data.

Supplementary Section D: Macroscopicity estimates for other mechanical resonators

We report here the parameters used to estimate the macroscopicities reachable in the two other reported experiments with
mechanical resonators, where Wigner function negativities have been measured in the initial state [12, 13]. These experiments
involve resonators with acoustic modes of complicated geometry [28, 29], so that it is not easy to derive simple analytical expres-
sions as for the Laguerre-Gaussian modes we considered. For this reason, we proceed with making a conservative analysis, based
on approximating such devices to cuboids hosting a sinusoidal displacement field, u(r) = cos (⇡/h) ex with h the longitudinal
extension of the mode. This yields an analytic expression for the geometric factor (A1) determining macrorealistic di↵usion,
which would otherwise require numerical integration of the displacement field resulting from a finite-element simulation of the
actual device. Our approximation is conservative in the sense that it likely overestimates the e↵ective oscillator mass, but we do
not expect it to result in macroscopicities that deviate much from the actual one (given that µ is in logarithmic scale).

The experiments in Refs. [12, 13] show measurements of Wigner function negativities with the sake of demonstrating nonclas-
sical state preparation, but they do not monitor the disappearance of such quantum features with time. We can therefore merely
estimate the potential of these setups to perform a test of macrorealist models from the limitations imposed by the reported
T1-times. To this end, we simply assume that our data were obtained with their resonators at the same relative times t/T1, which
amounts to rescaling our inferred �-values by the ratio between our T1 time and theirs.

Phononic crystal resonator Ref. [13]: We consider a phonon mode with frequency ! = 2⇡ · 2 GHz, wavelength � = 1 µm,
and decay time T1 = 1 µs. The resonator itself is approximated by a lithium niobate (density 4.65 g cm�3) cuboid of size
1 ⇥ 1 ⇥ 0.25 µm and total mass m = 1.16 · 10�15 kg, with an e↵ective mass of me↵ = 5.8 · 10�16 kg. We assume a hypothetical
experiment that excludes di↵usion rates � > 13.7 kHz, which results in µ = 9.0 after maximizing with respect to �q.

Surface acoustic waves Ref. [12]: We consider a phonon mode with frequency ! = 2⇡ · 4 GHz, wavelength � = 1 µm,
and decay time T1 = 150 ns. The resonator is approximated by a lithium niobate (density 4.65 g cm�3) cuboid of size [30]
75 ⇥ 50 ⇥ 1 µm, with total mass m = 1.744 · 10�11 kg and e↵ective mass me↵ = 8.7 · 10�12 kg. The hypothetical experiment
would exclude � > 91.5 kHz, resulting in µ = 8.6.

Supplementary Section E: Experimental sequences

1. Phonon mode characterization

To characterize the phonon mode under investigation, we perform two standard measurements [31]. The first is a population
decay (“ring-down”) measurement, which gives the relaxation rate 1/T1. This is done by preparing the phonon mode in Fock
state |1i, and then monitoring its population decay over time, see Fig. (S6). Fitting the measured data with a decaying exponential
e
�t/T1 plus a constant background gives us the time parameter T1 = 85.8±1.5 µs, where the error is one standard deviation given

by the fitting function. In the assumed model (6), the measured relaxation rate corresponds to 1/T1 = 2� + �#.
The second measurement consists of a Ramsey sequence, which monitors dephasing e↵ects. This is done by preparing the

phonon mode in state (|0i + |1i)/2, and then monitoring its phase evolution over time, see Fig. (S6). Fitting the measured
data to an exponentially decaying oscillation gives us the time constant T2 = 147.3±2.6 µs, where the error is one standard
deviation given by the fitting function. As this contrast reduction is partially due to the relaxation e↵ect previously investigated,
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FIG. S6. Characterization of phonon coherence. Left: population decay measurement used to estimate the relaxation time T1. Right: phonon
Ramsey measurement used to estimate the dephasing time T2.

it is convenient to identify the pure dephasing time as T� = (1/T2 � 1/(2T1))�1 = 1.0±0.2 ms. This pure dephasing could be
described by a Lindblad generator of the form 2D[a†a]/T�.

We can also estimate the ground state population and the e↵ective temperature of the phonon mode, which can be used for a
classical noise test of macrorealistic collapse models. To this end, we tune the qubit frequency to be 0.8 MHz below the one of
the phonon mode, operating our system in the strongly dispersive regime [14]. In this regime, the qubit frequency depends on the
phonon mode occupation number, and therefore on its e↵ective temperature. In Fig. S7 we present a spectroscopic measurement
of the qubit frequency with the phonon mode in the stationary state, showing a prominent peak at the bare qubit frequency. From
the data it is possible to note a slight asymmetry between the left and right tails of the peak, which is highlighted by comparing
to a Voigt profile fit (blue line). This is expected at finite temperature, as any population in higher Fock states will result in
additional peaks on the left-hand side of the main one. As the position of the peak for |1i is known, we fit again the data with a
sum of two Voigt profiles of fixed frequencies (red dashed line). From the relative amplitude between the two peaks we estimate
the thermal population of the 1-phonon excited state to be 1.6 ± 0.2 %. In our model (6) in the main text, this small population
corresponds to �/(2� + �#) to a good approximation. Hence � ⌧ �#, and we can safely identify the measured relaxation rate
with the model rate, �# ⇡ 1/T1, within the uncertainty of the fit.

2. State preparation and read-out

To acquire the data presented in Fig. 2 of the main text, we adopt the sequence illustrated in Fig. S8. First, the phonon mode
is prepared in state |1i or (|0i+ |1i)/

p
2 by swapping the corresponding qubit states |"i or (|#i+ |"i)/

p
2 with the phonon ground

state through the resonant Jaynes–Cummings interaction. Then, the system evolves freely for a variable time interval t, after
which a Wigner function measurement is performed. The latter consists of a displaced parity measurement, where a displacement
of the phonon mode D(�) is followed by a parity measurement implemented through a strong dispersive interaction between the
qubit and the phonon [14].

The above sequence results in a single measurement of the parity at point �� in phase space. The value of the Wigner function
is then obtained by averaging ⇠ 4 · 103 of such parity measurements. Finally, to record a two-dimensional Wigner function like
the ones in Fig. 2, we repeat the described procedure for many di↵erent values of �.
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FIG. S7. Phonon mode thermometry. Spectroscopy of the qubit resonance frequency, while coupled to the phonon mode in the strong dispersive
regime. In this regime, the qubit frequency depends on the phonon occupation number. Observing an asymmetry in the measured curve thus
indicates a non-zero phonon number, that we associate to an e↵ective temperature (see text for details).
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FIG. S8. Wigner function measurement of the time-evolved state. The experimental sequence used to record the data in Fig. 2 consists of the
following steps: 1) phonon state preparation, 2) wait time t, and 3) displaced parity measurement. Further details about the parity measurement
sequence are given in Ref. [14].

Supplementary Section F: Non-interferometric thermalization test

A straightforward and widely used approach to study collapse models are so-called non-interferometric tests, which focus on
monitoring the noise or the energy changes in the studied system [21]. This puts bounds on modifications to quantum mechanics
without the need of preparing a quantum state. In our experiment, we can do a similar analysis by monitoring the resonator
occupation number. The Wigner function evolution under relaxation at the rate �# and macrorealistic di↵usion predicts a steady-
state energy Etherm = ~!(1 + 2�/�#)/2. Hence, by measuring the steady state phonon population, we impose bounds on the
hypothetical di↵usion rate �.

To improve the bounds resulting from this analysis, one could also take into account additional known decoherence processes
and a finite temperature characterized from independent measurements. Instead, we follow the most conservative estimation: we
attribute all di↵usion e↵ects to the macrorealistic modification, thus overestimating its e↵ect and underestimating the resulting
bounds. Then the equilibrium temperature Ttherm = ~!�/�#kB is a result of the competing relaxation rate �# and macrorealistic
di↵usion rate �. The decay rate �# can be reliably measured far from equilibrium by preparing a thermal state at T (t = 0) �
T (t = 1) = Ttherm and verifying a constant decay rate. This leaves only one free parameter � to estimate, which then gives
non-interferometric exclusion bounds on collapse models based on the observed amount of classical heating.
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FIG. S9. Comparison between di↵usion rates. Our results (red), compared to the results of Ref. [23] (black). Solid curve is for a mode index
of ` = 1, while the dashed curve is for ` = 40. We chose to plot 2� = 2⌘x2

0 for a direct comparison.

With the maximum dimensionless di↵usion rate �max = 3.5 · 1013/⌧e and a thermal population of 1.6%, this analysis leads to
� = 0.016�#. The measured �# ⇡ 1/T1 then results in an exclusion of ⌧e < 1.9 · 1011 s at the length scale ~/�q = 5 · 10�7 m. This
is weaker than other non-interferometric collapse tests performed with ad hoc experiments [21], or with large-scale endeavors
like the LISA pathfinder experiment [32, 33], but it could be further improved by carefully optimizing the HBAR device geometry
and the experimental sequences. Note however that no genuine quantum feature is actually verified in a collapse test based on
classical noise bounds, meaning that it does not qualify for a benchmark based on the macroscopicity of a superposition.

Finally, as a side remark, let us mention that a new approach for performing non-interferometric tests of collapse models using
bulk resonators has been recently proposed in Ref. [23]. Our analytical results can readily be applied to this proposal, leading to
an exact expression of the di↵usion rate. Given the mode function u(r) = cos(⇡`x/L)ex hosted by a homogeneous cylinder of
radius R and length L, we obtain the di↵usion rate

� =�C
x

2
0%̄

2⇡2
r

5
CR

2

2m2
e
L3

2
66664
exp(R2/2r

2
C) � I0(R2/2rC) � I1(R2/2rC)

exp(R2/2r
2
C)

3
77775

⇥
h
�`⇡h(L/

p
2rC, 0, n) +

p
2
⇣
(�1)n

e
�L

2/4r
2
C � 1

⌘
�L

⇣
`2⇡2 � L

2/r2
C

⌘
+ (�1)n`⇡2Re

n
h(L/

p
2rC, L/

p
2rC, `)

oi
. (F1)

For convenience, we have adopted the parameter notation of the CSL collapse model here, �C = m
2
0/m

2
e
⌧e and rC = ~/

p
2�q.

Our formula must be multiplied by two for direct comparison with the approximate momentum di↵usion rate term given by the
authors,
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A comparison between both expressions is shown in Fig. S9 for the parameters chosen in Ref. [23], %̄ = 3210 kg m�3, R = 35 µm,
! = 2⇡ ⇥ 6.33 Hz, and for the two settings at ` = 1, L = 1.5 µm and at ` = 40, L = 60 µm, showing good agreement.
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