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Spectral Cross Correlations of Magnetic Edge States
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We observe strong, nontrivial cross correlations between the edge states found in the interior and the
exterior of magnetic quantum billiards. Our analysis is based on a novel definition of the edge state
spectral density which is rigorous, practical, and semiclassically accessible.
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One of the main goals in the field of “quantum chaos” is
to link the autocorrelations found in a quantum spectrum
to the periodic orbits of the classical problem [1]. Here, we
extend this study and investigate whether cross correlations
exist between quantum systems which are different but
related by their classical dynamics. We develop this idea
for magnetic quantum billiards [2–4] which often serve to
model semiconductor quantum dots [5].

Magnetic billiards consist of a charged particle moving
ballistically in a compact domain in the plane subject to a
homogeneous magnetic field. The quantum wave function
is required to vanish at the billiard boundary while the
impinging classical particle is reflected specularly [6–8].
The boundary defines also a complementary problem— an
antidot —where the particle is confined to the exterior and
is scattered at the billiard boundary. Although the exterior
domain is unbounded, its spectrum is discrete [9]. Is it
possible to relate the energy levels of the dot to those
of the antidot? We show that there exists an intimate,
nontrivial connection between the spectra of the interior
and the exterior problem. It is the quantum manifestation
of a duality in the classical dynamics.

The classical interior-exterior duality is illustrated in
Fig. 1(a): Since a (periodic) orbit consists of arcs of con-
stant curvature, one can construct a dual orbit in the com-
plementary domain by completing the arcs to circles. Any
skipping trajectory meets with a dual one under rather
general conditions —if every circle of cyclotron radius r

intersects the boundary at most twice. Pairs of dual peri-
odic orbits have the same stability and their actions add up
to an integer multiple of the action of a cyclotron orbit. On
semiclassical grounds one may therefore expect the corre-
lation between the interior and the exterior motion to carry
over to the quantum spectrum. This is also corroborated
by the existence of pairs of interior and exterior quantum
eigenstates which match up well, cf. Fig. 1(b), although
their energies differ.

The semiclassical analysis is complicated by the fact
that in the exterior each Landau level is an accumula-
tion point for an infinite series of energies. The respec-
tive states —the bulk states—correspond to unperturbed
cyclotron motion. Also in the interior one may find (a fi-
nite number of) bulk states if r permits complete cyclotron
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orbits to fit into the domain. The eigenfunctions which cor-
respond to the skipping trajectories, on the other hand, are
called edge states. Clearly, a possible correlation is to be
expected only between these nontrivial exterior and inte-
rior states.

Although the notion of edge states is intuitively clear
and often used (e.g., in the context of the quantum Hall
effect [10]), we are not aware of a general quantitative
definition in the literature (however, see [11]). Therefore,

FIG. 1. (a) A pair of dual periodic trajectories and (b) a pair of
correlated eigenfunctions found in the interior and the exterior
ellipse billiard (superimposed). The billiard boundary is indi-
cated by a dashed line.
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the purpose of this Letter is twofold. First, we propose
a definition for the spectral density of edge states which
provides a meaningful characterization and applies in the
quantum and in the semiclassical regime. Only with this
can we then establish the existence of a pairwise relation
between the edge states of the interior and the exterior.

A definition for edge states should take into account that
a clear separation into edge and bulk occurs only in the
semiclassical limit b ! 0. Here, we express the quantum
scale in terms of the magnetic length b �

p
2h̄�mvc (with

m the mass and vc the cyclotron frequency). At finite
values of b the states may be of an intermediate type. We
propose to quantify the transition by attributing a weight
wi . 0 to each eigenstate ci (of energy ni) which gives a
measure of the degree to which ci has the character of an
edge state. The spectral density of edge states in either the
interior or the exterior is then defined as

dedge�n� �
X̀
i�1

wid�n 2 ni� . (1)

Here, we scale the energy E by the spacing between
Landau levels, n � E��h̄vc� � r2�b2. Any reasonable
definition of the weights wi must suppress the bulk states
by exponentially small values, such that the mean edge
density dedge is well defined in the exterior and equal to
the interior one, to leading order. In the semiclassical
limit it should match our notion of edge states admitting
a trace formula which involves only the skipping trajec-
tories. Moreover, we demand dedge to coincide with the
unweighted interior mean density if the cyclotron radius is
large enough to prevent bulk states.

To motivate our definition of the weights wi, consider
the scaled magnetization M of the interior billiard, a sum
over the scaled magnetic moments

M�n; b� �
X

ni#n

�ci jr 3 vjci�
vcb2

�
Z n

0
m�n 0; b� dn 0.

(2)

The scaled magnetization density m�n� can be expressed
by the derivatives of the spectral counting function
N �n; b� �

P
i Q�n 2 ni�b�� with respect to b2 and n,

m�n� � 2b2 ≠N

≠b2 2 n
≠N

≠n

�
X

i

µ
b2 dni

db2 2 ni

∂
d�n 2 ni� . (3)

This is verified by replacing the energies ni in (3) by the
expectation values of the Hamiltonian. The scaled mag-
netization density may be obtained from the conventional
one by multiplication with the field strength B. It exhibits a
natural partitioning into a bulk part and an edge part since
it complies with the scaling properties of the system: The
scaled magnetic moment of a Landau state is 2n. Hence,
the second part of (3),
024101-2
mbulk�n� � 2n
≠N
≠n

�
X

i

�2ni�d�n 2 ni� , (4)

attributes the full diamagnetic response of a Landau state
to each state ci . We call it the bulk magnetization density.
It follows that the remaining part, the edge magnetization
density

medge�n� � 2b2 ≠N

≠b2 �
X̀
i�1

b2 dni

db2 d�n 2 ni� (5)

assigns the positive excess magnetic moments induced by
the presence of a billiard boundary. Its mean value

medge�n� �
A

b2p
n 2

1
2

L

2pb
n1�2 � 2mbulk�n� (6)

follows from the mean number of states in a magnetic
billiard with area A and circumference L [12],

N�n; b� �
A

b2p
n 2

L

2pb
n1�2 1

1
6

. (7)

Note that medge cancels the mean bulk magnetization den-
sity exactly: There is no orbital magnetism apart from the
quantum fluctuations. Hence, medge characterizes those
few (edge) states which carry a finite current along the
boundary, balancing the bulk magnetization due to their
large positive magnetic moments.

The edge magnetization is well defined in the exterior
as well. There, it is negative with the mean like (6) except
for a minus sign in front of the area term. This suggests to
define the edge state density as dedge�n� � 6medge�n��n,
with the lower sign for the exterior problem. The corre-
sponding weights

wi � 6
b2

ni

dni

db2
� 6

1
n

µ
�cijr 3 vjci�

vcb2
1 n

∂
. 0

(8)

are easily obtained as the derivative of the eigenenergies
taken at fixed r. This definition satisfies the conditions
formulated above. In particular, the weights are expo-
nentially small for bulk states since the Landau energies
n � N 1

1
2 , N [ �0 are independent of b [13].

The semiclassical edge state density is derived by insert-
ing the trace formula for N�n� [14,15] into (5). One obtains
a sum over all skipping periodic orbits for the fluctuating
part d̃edge � dedge 2 dedge. It differs from the semiclas-
sical expression of the unweighted spectral density only by
a factor

wg �
2Ag 6 rLg

rLg

(9)

attributed individually to each periodic orbit contribution.
This classical weight is determined by the area Ag en-
closed by the trajectory g and by its length Lg . The
weights approach zero as the skipping orbits are further
detached from the boundary. Hence, the classical weights
(9) smoothly suppress the bulk contributions to the semi-
classical spectral density.
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Figure 2 shows (a) the quantum weights wi against their
energies ni [9] and (b) the phase space distribution of the
classical weights [for the interior ellipse billiard with area
A � p and eccentricity 0.8 at b � 0.1; the shade in (b)
gives the probability measure for finding a trajectory with
weight wg]. In Fig. 2(a) one observes how the wi distin-
guish the relevant edge states from the bulk. Characterized
by vanishingly small wi, the bulk states accumulate at the
Landau levels, n � N 1

1
2 , with sequences of transitional

states connecting to the large edge weights. The latter dis-
tribute in structures reproduced by the classical weights
(9) (which are due to bifurcating regular islands in phase
space). In the exterior, the segregation into edge and bulk
is even more distinct (not shown) [16].

In order to unravel the relation between the interior and
the exterior spectra we consider the cross correlator

C�n0� �
Z Z

d̃
�int�
edge�n; b2�d̃�ext�

edge�n; b2�h
µ

b2 2 b2
0

b2
0

∂
db2

b2
0

3 g�n 2 n0� dn , (10)

FIG. 2. (a) Weighted edge state spectrum compared to (b) the
phase space distribution of the classical weights for the interior
ellipse. The quantum weights (8) segregate the edge states from
the bulk and mimic the structures in the distribution of classical
weights (9).
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defined for fixed reference energy n0 and magnetic length
b0. The functions g and h are normalized Gaussians.
g regularizes the integral over the pair distribution
d̃

�int�
edge�n; b2�d̃�ext�

edge�n; b2� and h restricts the b2 integration
to a range where a linear expansion of nn�b2� near b2

0 is
allowed. Then, C�n0� can be written as a double sum over
the interior and the exterior edge spectra obtained at one
fixed value b0 of the magnetic length:

C�n0� �
X̀

i,j�1

wiw
0
j

wi 1 w0
j

g

√ ni2n0

wi
2

n02n
0
j

w 0
j

1
wi

1
1

w 0
j

!
h

√
ni 2 n

0
j

wi 1 w0
j

!

2 Cbackground . (11)

The primes label the exterior energies and weights. Since
the width of g is taken small, sg ø � dedge�21, only those
pairs of interior and exterior energies contribute whose
distances to n0 scaled by the respective quantum weights
are approximately equal. The prefactor in (11) ensures that
only pairs of edge energies contribute.

When evaluating C�n0� semiclassically, the integration
over b2 in (10) selects those pairs in the sum over inte-
rior and exterior orbits g and g0 which satisfy wgLg �
wg 0Lg 0 , a relation fulfilled by the dual pairs. Restricting
the summation to the latter is tantamount to the “diagonal
approximation” [18]. The actions complement each other
to 2pn0ng where 2pn0 is the scaled action of a cyclotron
orbit and ng is the number of reflections. We obtain

C�n0� �
X̀

n�nmin

f�n�ĝ�n� cos�2pn�n0 2
1
2 �� (12)

with ĝ the Fourier transform of g. Here, nmin is the
minimal number of reflections needed for a periodic or-
bit at given r and

f�n� �
2
p

X
g[Gn

a2
gw2

g (13)

a sum over the set Gn of dual orbits with n reflections.
It involves the classical weights wg (9) and the stability
amplitudes ag [14] of the unweighted spectral density.

From its semiclassical form (12) the correlator is ex-
pected to be appreciably different from zero only at ener-
gies where the cosine terms are stationary. Hence, C�n0�
must exhibit peaks at n0 � N 1

1
2 . Its Fourier transform,

on the other hand, should be peaked at the integer values
starting from nmin.

A numerical verification of these predictions is pre-
sented in Fig. 3 for the spectra of the ellipse billiard at
b0 � 0.1 [9]. In Fig. 3(a) one observes that the cross cor-
relation function is strongly fluctuating but displays pro-
nounced spikes at the expected energies. They are a clear
signature of a correlation between the interior and ex-
terior edge states. The peaks in the Fourier transform,
Fig. 3(b), are positioned at integer values of t which start
at nmin � 4, as expected for the (desymmetrized) ellipse.
They expose clearly the classical duality as the origin of
the cross correlations.
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FIG. 3. (a) Cross-correlation function (11) for the elliptic
billiard. The pronounced spikes indicate the existence of
pairwise correlations between interior and exterior edge states.
(b) Fourier transform of (11). The peaks at integers start-
ing from 4 prove the classical origin of the correlations
(sg � 0.001).

As a test we restricted the sum (11) to pairs taken from
the two different symmetry classes of the ellipse. This
erases the peaks in C�n0� as one expects semiclassically.
On the other hand, removing the bulk states by imposing
a threshold on the wi does not change Fig. 3.

The spikes of C�n0� imply the existence of a pairwise
relation between the interior and exterior edge states: For
each correlated pair of interior and exterior edge energies,
ni and n

0
j , there exists a Landau level n0 � N 1

1
2 such

that the distances —scaled individually by the quantum
weights wi and w0

j— are approximately equal,

ni 2 �N 2
1
2 �

wi
�

�N 2
1
2 � 2 n

0
j

w0
j

. (14)

This follows immediately from (11), where we took the
width of g to be small on the quantum scale. The relation
(14) shows that the interior and exterior edge spectra are
intimately connected in the semiclassical limit. Note in
particular the vital role played by the quantum weights (8)
without which the correlations would not be observable.

Equation (14) allows us to spot single pairs of correlated
states in the spectrum, and Fig. 1(b) gives an outstanding
illustration (with the shade proportional to jcj2): The wave
functions are clearly localized along the stable dual peri-
odic orbits drawn in Fig. 1(a). Although the respective
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energies are separated by 20 mean edge state spacings,
ni � 31.425 54, n

0
j � 31.616 96, the difference between

the two sides of (14) with wi � 17.23�ni, w0
j � 26.76�n

0
j ,

and N � 31 is approximately one-tenth of the mean level
spacing scaled by the mean weight. The correlation of
pairs of chaotic wave functions cannot be verified as eas-
ily by visual inspection, but they exhibit a large overlap of
their normal derivatives at the boundary.

Let us finally emphasize that the correlations between
edge states of the interior and the exterior do not permit
us to derive one spectrum from the other —even in the
semiclassical limit —since the respective Landau level N
and the complementary quantum weights are not known
a priori. Nonetheless, they quantify a deep interconnection
of the spectra which is generated by the classical duality, as
initially conjectured from Fig. 1. Similar cross correlations
may be expected between nonmagnetic systems as well,
e.g., in complementary billiards on the sphere.
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