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The equation for the quantum motion of a Brownian particle in a gaseous environment is derived by
means of S-matrix theory. This quantum version of the linear Boltzmann equation accounts nonperturba-
tively for the quantum effects of the scattering dynamics and describes decoherence and dissipation in a
unified framework. As a completely positive master equation it incorporates both the known equation for
an infinitely massive Brownian particle and the classical linear Boltzmann equation as limiting cases.
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How is the motion of a quantum particle affected by
collisions with ambient gas molecules? The well-
established field of quantum Brownian motion [1,2] pro-
vides an answer provided the interaction can be linearized
and the particle state is close to classical. One is faced with
a rather different situation if the Brownian particle is in a
highly nonclassical motional state, say, due to the passage
through an interferometer or the entanglement with another
controlled degree of freedom. Such correlations are be-
coming experimentally accessible in the emerging field of
molecular quantum optics, where the quantum nature of
molecular motion is tested and exploited [3].

In order to assess the (partial) loss of coherence in the
case of strong, nonclassical correlations in the motional
state, it is necessary to provide a detailed, nonperturbative
account of the microscopic scattering process. At the same
time, for the effects of decoherence to be relevant at all, the
gas density must be sufficiently low, so that the environ-
mental gas can be safely taken as not self-interacting and
Markovian [4]. In analogy to the classical case [5] the
associated description of a single distinguished tracer par-
ticle within an ideal gas may be called a linear Boltzmann
equation. It should not be confused with the linearized
Boltzmann equations for the reduced single particle-gas
state, obtained perturbatively from its multiparticle
description.

The investigation of the loss of coherence due to gas
collisions was initiated by Joos and Zeh [6], who consid-
ered the limiting case of an infinitely massive tracer parti-
cle. This theory, which was later refined [7,8] and tested
experimentally [9], describes the pure spatial ‘‘localiza-
tion’’ of an extended coherent matter wave into a mixture
with reduced spatial coherence, but it cannot account for
dissipation. The situation is much more involved if the
tracer mass M is finite and comparable to the gas mass m
so that the ratio m=M must not be neglected. In this case
localization occurs both in position and in momentum [10],
and the appropriate kinetic equation must describe the full
interplay of decohering and thermalizing dynamics.

So far, the most important advancement in this direction
is the proposal by Diósi [11] of an equation based on a

combination of scattering theory and heuristic arguments.
A more recent development is the theory by Vacchini [12]
in terms of the dynamic structure factor of the medium, an
approach limited to the (weak coupling) Born approxima-
tion, like those in [13,14].

This Letter presents the full quantum version of the
linear Boltzmann equation, describing the whole range of
collisional effects from decoherence to dissipation. It pro-
vides a transparent and stringent derivation, and a discus-
sion of its implications and limits. The only essential
premise is the Markov assumption, which implies—in
the spirit of Boltzmann’s classic derivation—that both
the rate and the effect of individual two-particle scattering
events are separately physically meaningful, while subse-
quent collisions with the ‘‘same’’ gas molecule are negli-
gibly unlikely. Accordingly, the gas may be taken to be
ideal (not self-interacting), stationary (diagonal in momen-
tum), and uniform in position space, thus covering, e.g.,
thermal states of bosons and fermions, but no liquids.

In operator form the master equation reads @t� �
�i@��1�H; �� �L�, with H � P2=�2M� the free
Hamiltonian and

 L� �
Z

dQ
Z
Q?

dK

Q

�
LQ;K�L

y
Q;K �

1

2
�LyQ;KLQ;K

�
1

2
LyQ;KLQ;K�

�
: (1)

Here the integration is over all momentum transfersQ, and
for fixed Q also over the perpendicular plane Q? � fK 2
R3: K �Q � 0g. The Lindblad (jump) operators have the
form

 L Q;K � eiR�Q=@F�K;P;Q� (2)

where R and P are the position and the momentum opera-
tor of the Brownian tracer particle. The function F, which
is operator valued in (2), contains all the details of the
collisional interaction with the gas. It involves the elastic
scattering amplitude f�pout;pin�, the momentum distribu-
tion function ��p� of the gas [15], and its number density
ngas. It is convenient to denote relative momenta by
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with m	 � mM=�M�m� the reduced mass. Moreover, for given Q � 0 let us denote the parallel and the per-
pendicular contribution of a vector (operator) P by PkQ � �P �Q�Q=Q2 and by P?Q � P � PkQ, respectively. With
these definitions
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: (3)

This implies that both the scattering amplitude and the
distribution function attain an operator character in (2),
and that the particle momentum contributes with the part
perpendicular to the momentum exchange to the former
and with the parallel one to the latter. For physically
reasonable interactions, the function F decreases suffi-
ciently fast as Q! 0 so that (1) is well defined.

Note that the form of L� fits the general structure of a
translation-invariant and completely positive master equa-
tion, as characterized by Holevo [16] (see [17] for a dis-
cussion), although the summation in Ref. [16] is here
replaced by the integrations in (1). We will see below
that the master equation assumes a more intuitive form in
the momentum representation.

My first aim is to provide a derivation of (1)–(3). To that
end, let us first define the positive operator � which yields
the total collision rate. As in classical mechanics, the rate is
determined by the gas density, the modulus of the relative
velocity v � jrel�p;P�j=m	, and the total scattering cross
section ��pin�. Denoting the improper momentum eigen-
vectors of tracer and gas by jPi and jpi we have

 � �
Z

dPdpngasv�p;P���rel�p;P��jPihPj 
 jpihpj:

Indeed, for separable particle-gas states the expectation
value of � yields the average total collision rate experi-
enced by the Brownian particle.

Let us now see how a single collision changes the mo-
tional state of the tracer particle according to scattering
theory. If tracer and gas are uncorrelated before the colli-
sion, the outgoing tracer state is �0 � Trgas�S�� 

�gas�Sy�, where S � I� iT is the two-particle scattering
operator and a partial trace over the gas has to be per-
formed. Employing unitarity, SyS � I, one can express the
change of the state �� � �0 � � as
 

�� �
i
2

Trgas��T� Ty; � 
 �gas�� � Trgas�T�� 
 �gas�Ty�

�
1

2
Trgas�TyT�� 
 �gas� � �� 
 �gas�TyT� (4)

The first term generates a constant coherent modification
of the unitary evolution and can be absorbed in the
Hamiltonian H. This energy shift due to ‘‘forward scatter-
ing’’ is usually accounted for by a modified index of
refraction [18] and can be disregarded since the gas density
is uniform.

The momentum representation of the remaining inco-
herent part of (4) can be expressed entirely in terms of the
kernel

 hPjTrgas�T�jP0ihP
0
0j 
 �gas�Ty�jP0i: (5)

If the momentum-diagonal representation of the gas state

 �gas �
�2�@�3

�

Z
dp0��p0�jp0ihp0j; (6)

is inserted, the kernel (5) assumes the simple form ��P �
P0 � P

0 � P00�J�P;P
0;P � P0�, where the function

 

J�P;P0;Q� �
�2�@�3

�

Z
dp0��p0�hrel�p0 �Q;P�j

� T0jrel�p0;P �Q�ihrel�p0;P
0 �Q�j

� Ty0 jrel�p0 �Q;P
0�i (7)

is given in terms of the single particle operator T0 for
the relative coordinates. Its momentum matrix elements
are related to the scattering amplitude by hpfjT0jpii �

��@��1��p2
f � p

2
i �f�pf;pi� [19]. However, inserting this

into (7) one arrives at an ill-defined expression, which
involves the arbitrary normalization volume � and, for
P � P0, the square of a �-function. As is well understood,
the reason for this is our use of a momentum representation
of �gas in (5). Plane waves are not in the domain of the
operator S0 � I0 � iT0, which maps incoming asymptotes
to outgoing ones (and, by extension, leaves the outgoing
ones invariant).

A possible resort would be therefore to choose a repre-
sentation of �gas which permits a decomposition into in-
states and out-states. Indeed, a decomposition into
Gaussian wave packets admits a conventional but tedious
calculation of the state change in the limiting case of an
infinitely massive Brownian particle, m=M � 0, as dem-
onstrated in [8]. In the same article it is shown that the
identical result can be obtained directly by keeping the
diagonal representation. In this case the extension of T0,
beyond the physically acceptable domain of incoming
states, must be complemented by a consistent, physically
motivated replacement rule:

 

�2�@�3

�
jhpfjT0jpiij

2 ! �
�p2

f � p
2
i

2

�
jf�pf;pi�j2

��pi�jpij
: (8)

In the present case of a finite mass ratio this yields a well-
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defined kernel (7) for P � P0, and thus implies
R

dQ~J�P �
Q;P �Q;Q� � 1, which ensures the conservation of the
norm of �0. For P � P0 an extension of the rule (8) to
different pairs of incoming and outgoing relative momenta
is required. It can be constructed at no additional cost if the
momentum change of the two pairs is the same, as is the
case in

 X �
�2�@�3

�
hpf � qjT0jpi � qihpi � qjT

y
0 jpf � qig�q�

with arbitrary positive function g. Inserting the formal
square root of the replacement rule (8) yields the square
root of a product of two energy conserving �-functions

with arguments
p2
f�p

2
i

2 � �pf � pi� � q. They imply that the
parallel component qk  qk�pf�pi� of the momentum sepa-
ration must be zero, which restricts q integrations to the
plane perpendicular to the momentum change pf � pi.
This restriction is equally effected by replacing the vectors
q with their projection q?  q� qk onto that plane. This
way the form of the arguments in each individual scattering
amplitude already ensures the conservation of energy and

one is left with a single proper Dirac function ��
p2
f�p

2
i

2 �.
Hence, as a natural generalization of (8), we have

 X ! �
�p2

f � p
2
i

2

� f�pf � q?;pi � q?���������������������������������������������
��pi � q?�jpi � q?j

p
�

f	�pf � q?;pi � q?���������������������������������������������
��pi � q?�jpi � q?j

p g�q?�: (9)

It turns into the known replacement rule as q! 0. The
only freedom in this construction is a possible phase factor
from taking the roots, but symmetry considerations lead to
the above choice of no additional phase.

Being able to evaluate traces with a momentum-
diagonal representation of the gas, we can now combine
the operator T for the effect of a single collision with the
rate operator � to obtain the temporal evolution (in inter-
action picture putting aside the contribution of H). The
temporal change @t� is obtained from �� in (4) by replac-
ing T with T�1=2,
 

@t� ~� Trgas�T�1=2�� 
 �gas��
1=2Ty�

� 1
2 Trgas��

1=2TyT�1=2�� 
 �gas��

� 1
2 Trgas��� 
 �gas��

1=2TyT�1=2�: (10)

This is suggested by a quantum trajectory unravelling of
@t� [20], where each trajectory is first weighted by the
probability of a collision event to take place in an infini-
tesimal time interval before being scattered. To obtain the
momentum representation of (10) we have to evaluate

 hPjTrgas�T�1=2�jP0ihP
0
0j 
 �gas��

1=2Ty�jP0i: (11)

Using again the momentum-diagonal gas state (6) re-

duces the kernel (11) to the form ��P � P0 � P
0 �

P00�Min�P;P
0;P � P0�. It follows that the momentum rep-

resentation of (10) is
 

@t��P;P
0� �

Z
dQMin�P;P

0;Q���P �Q;P0 �Q�

�
1

2
�Mcl

out�P� �M
cl
out�P

0����P;P0� (12)

with
 

Min�P;P
0;Q��

Z
dp0
�2�@�3

�
��p0�

ngas

m	

�
�����������������������������������
jpi�qj��pi�q�

q

�
�����������������������������������
jpi�qj��pi�q�

q
hpf�qjT0jpi�qi

�hpi�qjT
y
0 jpf�qi

and Mcl
out�P� :�

R
dQMin�P �Q;P �Q;Q�. Here I intro-

duced pi :� rel�p0;
P�P0

2 �Q� and pf :� pi �Q as func-
tions of p0, and defined q :� rel�0; P�P

0

2 �.
In order to evaluate Min, the integration is now trans-

formed to dpi. Incidentally, this suggests a natural factori-
zation of the � distribution into a product of square roots,�������������������������
��p0���p0�

p
, since p0 can be equally expressed as a

function of P or of P0. Applying the replacement rule (9)
projects q to q?  q?�pf�pi� not only in the scattering
amplitudes, but also in the argument of �. One obtains
the well-defined expression
 

Min�P;P0;Q� �
ngas

m	

�
m
m	

�
3 Z

dpi�
�p2

f � p
2
i

2

�

� f�pf � q?;pi � q?�

� f	�pf � q?;pi � q?�

��1=2

�
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m
M
�pf � P� �

m
m	
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��1=2

�
pi �

m
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m
m	
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�
:

As the last step, the transformation pi ! K � m
m	
pi �

m
M �

P?Q�P
0
?Q

2 � m
m	

Q
2 factorizes the integrand into P and P0

contributions,

 Min�P;P
0;Q� �

Z
dK��K �Q�F�K;P �Q;Q�

� F	�K;P0 �Q;Q�; (13)

with F given in (3). By returning to the Schrödinger picture
and noting

R
dK��K �Q� � Q�1

R
Q? dK one finds that

(12) with (13) is the momentum representation of (1),
which closes its derivation. Note that the form of L is a
consequence only of the premises and the replacement (8).
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The physics described by (1) is easy to discuss in the
momentum basis (12). We will see that Mcl

out�P� is the rate
of a classical particle with momentum P to be scattered by
the gas into a different direction or velocity. Hence, the
second line in (12) effects a reduction of the coherences
��P;P0 � P� determined by the arithmetic mean of the
corresponding momenta on the diagonal. The first line in
(12), on the other hand, may reduce or produce coherences.
While the complex quantity Min cannot be decomposed
into classical rates, it is reassuring that it involves an
integration over all possible, in general nonparallel, pairs
of two-particle scattering trajectories which end at the
Brownian momenta (P, P0), each part conserving the total
energy and the momentum with an exchange of Q, and
weighted by the thus restricted distribution of available gas
momenta. (Diósi’s equation [11], in comparison, involves
the differential cross section d�=d� � jfj2 and therefore
at most pairs of identical trajectories.)

After a time long, compared to the time scale of deco-
herence, the motional state is expected to be practically
indistinguishable from a classical state. As such, it should
be characterized by the momentum distribution w�P� �
��P;P� alone, and one expects that the motion of the
diagonal elements predicted by (1) is equal to the classical
linear Boltzmann equation. Indeed, one obtains from (12)

 @tw�P� �
Z

dQMcl
in�P;Q�w�P �Q� �M

cl
out�P�w�P�;

(14)

where Mcl
out�P� �

R
dQMcl

in�P �Q;Q� and

 Mcl
in�P;Q� �

ngas

m	

Z
dK��K��

�
p2

cf � p
2
ci

2

�
d�
d�
�pcf ;pci�

(15)

is the rate density of a classical Brownian particle to be
scattered into momentum P upon a momentum exchange
of Q. Here pci  rel�K;P �Q�, pcf  pci �Q, and
d�=d� � jfj2. Note that the classic form [5] of (14) is
obtained by transforming the Q integrals over the Dirac �
into angular integrations over the relative momentum di-
rection. It follows that the stationary solution of (1) is
given, for thermal gas states �, by the corresponding
(momentum-diagonal) thermal Brownian state of the clas-
sical equation, and that the H theorem applies.

Another border case of (1) is the limit of an infinitely
massive tracer. A short calculation confirms that letting
m=M approach zero reduces L� to the (corrected version
[8] of the) master equation by Gallis and Fleming [7],
which attributes the loss of coherence to the amount of
position information gained by the colliding gas. Finally,
(1) assumes the form of Vacchini’s equation [12] if one
replaces the true scattering amplitude f in (3) by its Born

approximation fB (which depends only on the momentum
transfer).

In conclusion, I presented the quantum version of the
linear Boltzmann equation. It unifies, in the form of a
completely positive master equation, the decohering and
dissipative dynamics in the motion of a Brownian particle,
and it comprises various known dynamic behaviors as
limiting forms.
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