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We discuss an experimentally amenable class of two-particle states of motion giving rise to nonlocal

spatial interference under position measurements. Using the concept of modular variables, we derive a

separability criterion which is violated by these non-Gaussian states. While we focus on the free motion of

material particles, the presented results are valid for any pair of canonically conjugate continuous variable

observables and should apply to a variety of bipartite interference phenomena.
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Is it possible to deduce entanglement from an interfer-
ence pattern, to perform an ‘‘entangled Young experi-
ment,’’ following the famous single-particle interference
experiments? While the wave-particle duality of single
material particles has been a central theme since the early
days of quantum mechanics and is impressively confirmed
in interference experiments [1,2], a similarly convincing
demonstration of quantum nonlocality as implied by en-
tanglement has proven to be much harder to implement
with matter waves.

Although recent experimental progress, in particular in
controlling ultracold atoms, has rendered experiments
conceivable that probe entanglement in the free motion
of material particles, a direct implementation of most
schemes that have proven successful with other continuous
variable degrees of freedom (e.g., field modes) fails due to
the restricted possibilities to manipulate and detect mate-
rial particles. In particular only position measurements are
easily doable. Existing proposals therefore rely either on
reduced fluctuations in the center of mass and relative
motion [3], in the spirit of Einstein, Podolsky, and Rosen
(EPR) [4], or on the violation of a Bell inequality [5,6].
Both approaches have drawbacks. The former is based on
correlations that appear invitingly easy to explain in terms
of a classical (nonquantum) model, and the latter requires
interferometers to complete the measurements [6]. If one
restricts oneself to elementary position measurements, the
states violating a Bell inequality maximally seem to be
hard if not impossible to implement experimentally [7].

In view of the great success and the compelling power
of single-particle interference experiments, it is natural to
ask whether, instead of violating a Bell inequality, it is
experimentally easier to establish entanglement in the
motion of material particles by means of similarly impres-
sive nonlocal matter wave interference. We discuss an
experimentally amenable class of states which provides
such nonlocal interference. But conceptually, it is not
obvious a priori that a nonlocal interference pattern—as
intuitively convincing as it may be—can indicate entangle-
ment, thus strictly excluding the possibility to describe the
correlations in terms of a separable state. While an

extensive state tomography could also supply such a rig-
orous proof, it would be advantageous to possess an en-
tanglement criterion in terms of observables that can be
directly read off the interference pattern, merely comple-
mented by measurements of some likewise accessible
‘‘conjugate’’ observables.
In this Letter we provide such a criterion. To be more

specific, suppose we hold a two-particle state �ðx1; x2Þ
which gives rise to a nonlocal interference pattern when
subjected to joint position measurements,

j�ðx1; x2Þj2 ¼ wðx1 � x0Þwðx2 þ x0Þcos2
�
2�

x1 � x2
�

�
;

(1)

where the envelope wðx1 � x0Þ localizes particle 1 with an
uncertainty �x � � in the vicinity of x0, and similarly
particle 2 around �x0. Obviously, the interference pattern
describes correlations in the relative coordinate xrel ¼
x1 � x2 of the two particles. But are these correlations
necessarily a signature of entanglement? In the case of
EPR states (e.g., squeezed Gaussian states), entanglement
can be deduced from the reduced fluctuations in both the
relative coordinate xrel and the total momentum ptot ¼
p1 þ p2, since the canonically conjugate operator pairs
xj, pj (½xj; pj� ¼ i@), j ¼ 1, 2, set lower limits to these

fluctuations for separable states [8,9]. In the situation
described by (1), in contrast, it is not the relative coordinate
that is ‘‘squeezed,’’ but its value modulo �.
We show how this observation can be employed to

derive an entanglement criterion. The key is to identify
modular variables [10] as the appropriate pair of conjugate
observables. The criterion is rooted in a state-independent
additive uncertainty relation (UR) for these variables,
which remedies the problems arising from the operator-
valued commutator appearing in the Robertson UR. We
construct a class of non-Gaussian states, denoted modular
entangled states, which offer natural and robust generation
protocols and violate this criterion. The interference pat-
tern in (1) is shown to represent only the weakest form of
nonlocal correlations exhibited by this class.
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Multislit interference.—To discuss the prerequisites of
particle interference and its relation to the modular varia-
bles it is instructive to recapitulate the single-particle case
first. Ideally, the (transverse) state immediately after pass-
ing an aperture of N slits is described by a superposition of
N spatially distinct state components determined by the
shape of the slits,

hxjcMSi ¼ 1ffiffiffiffi
N

p XN�1

n¼0

hxþ nLjc i; (2)

where L denotes the slit separation. The particular shape of
the single-slit wave function jc i is irrelevant for our dis-
cussion provided its spatial width �x satisfies �x � L.
This guarantees that the envelope of the resulting fringe
pattern varies slowly on the scale of a single fringe period
and thus encloses a large number of interference fringes.
Note that the state (2) can equally be read as a longitudinal
superposition of comoving wave packets.

The subsequent dispersive spreading of the N wave
packets during the free propagation to the screen results
in their overlap and interference, yielding in the far-field
limit the characteristic interference pattern on the screen.
In terms of the initial state (2), this position measurement
at asymptotic times corresponds to a formal momentum
measurement of p ¼ mðx� hcMSjxjcMSiÞ=t. The proba-
bility distribution

jhpjcMSij2 ¼ jhpjc ij2FN

�
pL

h

�
(3)

exhibits the fringe pattern FNðxÞ ¼ 1þ ð2=NÞPN�1
j¼1

ðN � jÞ cosð2�jxÞ. In case of N ¼ 2 Eq. (3) reduces to
the sinusoidal fringe pattern of the double slit, whereas for
N > 2 one obtains the sharpened main maxima and sup-
pressed side maxima characteristic for multislit interfer-
ence. This reflects a tradeoff between the number of
superposed wave packets N and the uncertainty of the
phase of the interference pattern, in analogy to the tradeoff
between the variances of a conjugate variable pair. A
similar tradeoff exists between the number of fringesM �
�pL=h � L=�x covered by the envelope of the interfer-

ence pattern and the width-to-spacing ratio �x=L � 1=M.
Modular variables.—These mutual relationships be-

tween the multislit state (2) and the resulting interference
pattern (3) are captured best by splitting the position
(momentum) operator into an integer component Nx (Np)

and a modular component �x ( �p) [10],

x ¼ Nx‘þ �x; p ¼ Np

h

‘
þ �p; (4)

where �x¼ðxþ‘=2Þmod‘�‘=2 and �p¼ðpþ
h=2‘Þmodðh=‘Þ�h=2‘. (For convenience, we define the
modular variables symmetrically with respect to the ori-
gin.) Recent applications of the modular variables are
discussed in [11–13].

For the multislit state (2) the adequate choice of the
partition scale is given by ‘ ¼ L. The probability

distribution (3) can then be written as jhp ¼ Nph=Lþ
�pjcMSij2 � jhp ¼ Nph=Ljc ij2FNð �pL=hÞ, which indi-

cates that the modular variables isolate different character-
istic aspects of interference: the periodic fringe pattern is
described by the modular momentum �p, its envelope by the
integer momentum Np. Similarly, Nx describes the distri-

bution of wave packets in (2) and �x their (common) shape.
The modular variables �x, �p have the remarkable property

that they commute, ½�x; �p� ¼ 0, despite originating from
conjugate observables [10,14]. The common eigenstates

j �x; �pi of �x and �p with eigenvalues �x and �p read j �x; �pi¼ffiffiffiffiffiffiffiffi
‘=h

p P
n2Zexpði �pn‘=@Þjn‘þ �xix, or, equivalently, j �x; �pi¼ffiffiffiffiffiffiffiffi

1=‘
p

expð�ip �x=@ÞPm2Zjmh=‘þ �pip. The tradeoff be-

tween the number of superposed wave packets N and the
phase of the interference pattern is now reflected by a
conjugate relationship between the integer position Nx

and the modular momentum �p,

½Nx; �p� ¼ i@

‘

�
1� h

‘

Z ‘=2

�‘=2
d �xj �x; �p ¼ h=2‘ih �x; �p ¼ h=2‘j

�
:

(5)

Similarly, the tradeoff between the width-to-spacing ratio
�x=L and the number of covered fringes is described by the
commutator of the modular position �x and the integer
momentum Np,

½�x;Np� ¼ i‘

2�

�
1� ‘

Z h=2‘

�h=2‘
d �pj �x ¼ ‘=2; �pih �x ¼ ‘=2; �pj

�
:

(6)

The projection operators on the right-hand side of (5) and
(6) result from the boundedness of the modular variables
and are indispensible to ensure the validity of the
Robertson UR. This is similar to the relationship between
an angular position operator and its conjugate angular
momentum [15].
Squeezed modular position states.—The multislit states

(2) display their interference in momentum. In view of the
symmetry between the two pairs (Nx, �p) and (�x, Np), one

can construct another class of states where the modular
variables exchange their roles. This is achieved by super-
posing wave packets that are distinct in momentum
(instead of position),

jc SMPi ¼ 1ffiffiffiffi
N

p XN�1

n¼0

jc x0;ðN0þnÞh=�i; (7)

where hxjc x0;p0
i ¼ �ðx� x0Þ exp½ip0ðx� �x0Þ=@� denotes

a (well-behaved) wave packet that is localized in phase
space around (x0, p0). N0 represents an arbitrary base
integer momentum. Distinctness of the wave packets re-
quires that their momentum width �p is smaller than their

separation in momentum space, �p � h=�, or, equiva-

lently, �x � �. A hypothetical ‘‘momentum grid’’ with
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slit width h=d, d � �, could, e.g., prepare a state with

�ðxÞ ¼ sinc½�x=d�= ffiffiffi
d

p
.

A position measurement of the states (7) reveals an
interference pattern with periodicity �, jhxjc SMPij2 ¼
j�ðx� x0Þj2FNððx� �x0Þ=�Þ. Note that �x0 determines the
phase of the fringe pattern. Increasing N results in the
formation of sharp main maxima, which is reflected by
the decreasing variance of the modular position variable
(now with ‘ ¼ �),

hð��xÞ2iSMP ¼ �2

12
½1� S1ðNÞ�: (8)

In this sense one may denote the states (7) as squeezed
modular position states. The monotonically increasing
squeezing function S1ðNÞ ¼ �ð12=�2ÞPN�1

j¼1 ð�1Þj �
ðN � jÞ=Nj2 < 1 (for �x0 ¼ 0) is evaluated in Table I for
representative N. Notably, in the limit N ! 1 the variance
(8) vanishes, indicating perfect squeezing.

Correspondingly, the variance of the integer momentum
Np increases with N, hð�NpÞ2iSMP ¼ ðN2 � 1Þ=12. For

N ¼ 1, however, hð�NpÞ2iSMP vanishes (since the

jc x0;p0
i are localized on the scale of the integer momen-

tum), while hð��xÞ2iSMP remains finite according to (8).
Validity of the Robertson UR, hð�NpÞ2iSMPhð��xÞ2iSMP �
jh½�x;Np�iSMPj2=4, thus requires that the projector on the

right-hand side of (6) renders the Robertson UR trivial for
N ¼ 1. Indeed, we find jh½�x;Np�iSMPj ¼ ‘=ð2�Þ½1� ð1þ
ð�1ÞNþ1Þ=2N�, which vanishes for N ¼ 1. This irrele-
vance of the Robertson UR in the case N ¼ 1 impedes
its employment in the separability criterion presented be-
low. Note that jh½�x;Np�iSMPj converges towards the canoni-
cal constant value, while the projector term in (6) is still
relevant for N ¼ 3. Its alternating structure can be traced
back to either minima or (side) maxima of the fringe
pattern coinciding with �x ¼ �=2.

As an advantage of the modular position squeezed states
(7) compared to the modular momentum squeezed states
(2), they exhibit interference by immediate position mea-
surements, while to determine the integer momentum one
must only distinguish the macroscopically distinct compo-
nents jc x0;p0

i, which is easy once they are sufficiently

separated by free propagation. At the same time, as
superpositions of different velocities, they are genuine
matter wave states without photonic analogue.

Modular entangled states.—We are now prepared to
move on to entangled states of two material particles.

Ultimately, we are interested in states that reveal their
entanglement by a nonlocal interference pattern similar
to (1). To this end, we introduce two-particle modular
position entangled (MPE) states, which are defined by
superposing correlated pairs of (counterpropagating)
wave packets of different velocities,

j�MPEi¼ 1ffiffiffiffi
N

p XN�1

n¼0

jc x0;ðN0þnÞh=�i1jc�x0;�ðN0þnÞh=�i2: (9)

Only for clarity we assume that the particles are spatially
separated, positioned at �x0. Moreover, it is clear that
one could equally define modular momentum entangled
(MME) states. Such states could be generated (to good
approximation) by the sequential coherent dissociation of a
diatomic molecule [16]. For convenience we consider a
superposition of product states; correlated components
j�x0;p0;�x0;�p0

i would not modify our conclusions, since

the latter are based on entangled integer momentaNp;j, i.e.,

distinctive ‘‘bulk’’ properties of the particles. This is in
contrast to EPR states, where the relevant correlations
reside in the microscopic fluctuations of the center of
mass and relative variables. Performing position measure-
ments on each side, the nonseparable structure of (9) gives
rise to an interference pattern in the relative position
xrel, jhx1;x2j�MPEij2¼j�ðx1�x0Þj2j�ðx2þx0Þj2FNððx1�
x2Þ=�Þ (with �x0;1 ¼ �x0;2), or, equivalently, to a squeezing

in the modular relative position �xrel ¼ �x1 � �x2.
Modular entanglement criterion.—The correlations in

�xrel and the total integer momentum Np;tot ¼ Np;1 þ Np;2

exhibited by the MPE states (9) can be exploited to
demonstrate the underlying entanglement. In analogy to
[8], we consider the sum of variances, hð�Np;totÞ2i� þ
hð��xrelÞ2i�=‘2. Using the Cauchy-Schwarz inequality

one can show that a separable state of motion, �¼P
ipi�1i	�2i, implies hð�Np;totÞ2i� þ hð��xrelÞ2i�=‘2 �P
i;jpifhð�Np;jÞ2ii þ hð��xjÞ2ii=‘2g, with j ¼ 1, 2. In con-

trast to [8], we cannot use the Robertson UR to estimate the
remaining sums of variances, since the expectation value of
the state-dependent commutator (6) vanishes when eval-
uated for an MPE state (9). However, one can establish a
state-independent additive uncertainty relation for the
modular variables, hð�Np;jÞ2i þ hð��xjÞ2i=‘2 � CNp;�x > 0.

Using this, we immediately get the desired criterion,

hð�Np;totÞ2i� þ 1

‘2
hð��xrelÞ2i� � 2CNp;�x; (10)

which must be satisfied by any separable state. The con-
stant CNp;�x is given by the smallest eigenvalue �0 of the

operator Aj ¼ N2
p;j þ �x2j=‘

2. The corresponding differen-

tial equation in the common eigenbasis of �xj and �pj is

solved by c ð �xj; �pjÞ ¼ expð�� �x2j=‘
2ÞMð���=2þ 1=4;

1=2; 2� �x2j=‘
2Þ�ð �pjÞ, withMða; b; xÞ the Kummer function

and �ð �pÞ arbitrary. Continuity requires a vanishing first
derivative at �xj ¼ ‘=2, which implicitly determines the

TABLE I. Evaluation of the squeezing functions S1ðNÞ and
S2ðNÞ for several superposition ranks N. S1ðNÞ and S2ðNÞ
describe the squeezing of the modular position �x in the single-
particle case (8) and of the modular relative position �x1 � �x2 in
the two-particle entangled case (11), respectively.

N 1 2 3 4 10 100

S1ðNÞ 0.0 0.61 0.71 0.79 0.92 0.99

S2ðNÞ 0.0 0.30 0.46 0.55 0.76 0.96
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(discrete) spectrum f��g of Aj. Its smallest eigenvalue

evaluates numerically as CNp;�x ffi 0:078 235; second order

perturbation theory (with Aj expressed in the common

eigenbasis ofNp;j, �pj) yields a reasonable analytic approxi-
mation, CNp;�x � 1=12ð1–1=15Þ. We note that a criterion

similar to (10) can be established for Nx;tot and �prel.
The MPE states (9) violate the separability criterion (10)

for any N � 2. Indeed, the resulting variances read
hð�Np;totÞ2iMPE ¼ 0 and

hð��xrelÞ2iMPE ¼ �2

6
½1� S2ðNÞ�; (11)

(again with ‘ ¼ �) where the monotonically increasing
squeezing function S2ðNÞ¼ ð6=�2ÞPN�1

j¼1 ðN�jÞ=Nj2<1

is evaluated in Table I for several representative N. This
proves the possibility to deduce entanglement from a non-
local interference pattern. Again, one can achieve perfect
squeezing in the limit N ! 1; the interference pattern (1)
corresponds to N ¼ 2.

The MPE states (9) (and MME states alike) generalize
single-particle interferometric schemes such as double-slit
or grid experiments to the case of two entangled particles.
Aside from the additional requirement to provide the cor-
relations between the particles, the MPE states thus inherit
both the advantages and the challenges of such schemes.
Similar to any interference experiment, the phase �x0 of the
superposed components jc x0;p0

i must be well controlled,

and also all components should share the same shape �ðxÞ
[see (7)]. (On the other hand, the particular shape is to a
large extent irrelevant, which leaves it to the experimenter
to choose easily producible states.) Deviations from these
conditions result in a visibility-reducing blurring of the
fringe pattern and thus in an attenuation of the squeezing
of the modular variable. However, a simple robustness
check, where the MPE states are mixed with merely clas-
sically (integer momentum) correlated states, reveals that
for N ¼ 2 a classically correlated admixture of up to 79%
would sustain the violation of the separability criterion,
corresponding to a fringe visibility of merely 21%. This
robustness, which even improves with increasingN, under-
lines the appropriateness of the separability criterion (10)
to capture entanglement in spatial interference, and it
should leave sufficient freedom to cope with possible
experimental limitations.

A realistic generation protocol for MPE states would,
e.g., gradually dissociate an ultracold diatomic Feshbach
molecule such that subsequent dissociation instants pro-
duce wave packets with staggered kinetic energies [16].
Appropriate dissociation pulses can achieve that all of
these consecutive wave packets meet simultaneously on
each side. This constitutes an approximate MPE state,
where the superposed jc x0;p0

i then realistically differ by

different stages of dispersion. We checked for N ¼ 2 and
lithium atoms that this dispersion-induced shape difference
can easily be kept under control with realistic parameters,

yielding an experimentally resolvable fringe pattern with
� � 100 �m and a visibility of 85%. On the other hand, a
‘‘grid state preparation’’ of transversal MME states, start-
ing, e.g., with an EPR correlated particle pair and then each
particle passing a grating, would provide the identity in
phase and shape of the jc x0;p0

i for any N by means of the

state preparation.
Conclusion.—We presented a scheme to provide and

detect entanglement in the motion of two free material
particles. Elementary position measurements at macro-
scopically distinct sites give rise to a nonlocal interference
pattern; the nonseparability then follows from reduced
fluctuations in adapted modular variables. In this sense,
the scheme allows one to ‘‘deduce entanglement from
interference,’’ and hence to illustrate the wave-particle
duality on a new level including quantum nonlocality.
We emphasize that the modular variables are merely a

matter of interpretation in our scheme and can be deduced
from ordinary position and momentum measurements.
Finally, it is clear that the entanglement criterion is appli-
cable to any bipartite continuous variable system with
conjugate operator pairs, e.g., quadrature amplitudes of
field modes, and could thus offer a valuable alternative to
existing entanglement detection schemes. Homodyning
entangled coherent states [17] may serve as an immediate
example.
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