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We propose an experimentally accessible, objective measure for the macroscopicity of superposition

states in mechanical quantum systems. Based on the observable consequences of a minimal, macrorealist

extension of quantum mechanics, it allows one to quantify the degree of macroscopicity achieved in

different experiments.
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Introduction.—Experiments probing the quantum super-
position principle at the borderline to classical mechanics
are a driving force of modern physics. This includes the
demonstration of superposition states of counterrunning
currents involving 1014 electrons [1,2], of Bose-Einstein
condensed atoms [3], and complex molecules [4].

Various measures have been suggested for the size of
superposition states involving macroscopically distinct
properties of complex quantum systems [5–11]. Most of
them refer to specific types or representations of quantum
states, or count the operational resources required to ana-
lyze them. While most proposals seem to be grounded in a
common information-theoretic framework [12], we still
lack a method of attributing a definite and unbiased mea-
sure to all experimental tests of the quantum superposition
principle.

The task to define a macroscopicity measure ‘‘within’’
quantum theory is confounded by a fundamental problem:
We are free to decompose a many particle Hilbert space
into different tensor products, such that a complicated
single-particle representation of a wave function may
look mundane after a change of variables to collective
degrees of freedom. This highlights the problems of an
ad hoc selection of distinguished observables.

In view of this, we propose to call a quantum state of a
mechanical system the more macroscopic the better its
experimental demonstration allows one to rule out even a
minimal modification of quantummechanics, which would
predict a failure of the superposition principle on the
macroscale. Turning this characterization into a definite
measure requires one to specify the minimal modification.

Fortunately, it is not necessary to worry about the
details of possible nonlinear or stochastic additions to the
Schrödinger equation, which might embody the coarse-
grained effects of a deeper theory, say, incorporating gravi-
tation or a granular space-time [13–15], or might represent
a fundamental stochasticity [16–18]. All that matters em-
pirically are their observable consequences, described by
the dynamics of the many-body density operator. We argue
that basic consistency, symmetry, and scaling arguments

lead to an explicit, parametrizable characterization of the
impact of a minimally intrusive modification. The fact that
no evidence of such physics beyond the Schrödinger equa-
tion is seen in a quantum experiment rules out a certain
parameter region. For a superposition state in a different
experiment to be more macroscopic, its demonstration
must exclude a larger parameter region, implying that
possible modifications must be even weaker. Diverse
experiments can thus be compared without prejudice.
Minimal modification of quantum mechanics.—The

modification must serve to ‘‘classicalize’’ the state evolu-
tion in the sense that superpositions of macroscopically
distinct mechanical states are turned rapidly into mixtures.
The operational description of quantum theory, based on
the state operator �, its completely positive and trace-
preserving time evolution, and a consistent rule of assign-
ing probabilities to measurements [19], allows one to treat
(nonrelativistic) quantum and classical mechanics in a
common general formalism. It is therefore natural to
account for an objective modification of the quantum
time evolution in the framework of dynamical semigroups
[20]. That is, the effect of the modification can be
expressed as a generator LN added to the von Neumann
equation for the state of motion �N of an arbitrary system
of N particles, @t�N ¼ ½H; �N�=i@þLN�N .
In addition, we require the modification (i) to be invari-

ant under Galilean transformations, avoiding a distin-
guished frame of reference, (ii) to leave the exchange
symmetry of identical particles unaffected, (iii) to respect
the ‘‘innocent bystander’’ condition that adding an uncor-
related system leaves the reduced state unchanged, and
(iv) to display scale invariance with respect to the center-
of-mass of a compound system. We will see that these
requirements essentially determine the form of a possible
minimal modification.
Let us first consider an elementary particle of mass m

using the formalism of quantum dynamical semigroups. A
theorem by Holevo [21] states that any Galilean invariant
addition to the von Neumann equation for the state of
motion�must have the form @t� ¼ ½H; ��=i@þL1�, with
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L1� ¼ 1

�

�Z
d3sd3qgðs; qÞWðs; qÞ�Wyðs; qÞ � �

�
; (1)

if one disregards unbounded diffusion terms, which
would yield a substantially more drastic modification.
The operators

W ðs; mvÞ ¼ exp

�
i

@
ðP � s�mv � XÞ

�
(2)

effect a translation s and a velocity boost v of the elemen-
tary particle, while gðs; qÞ is a positive, isotropic, and
normalized phase-space distribution, whose standard devi-
ations for the position and the momentum variable will be
denoted by �s and �q. The von Neumann equation is

reobtained for �s ¼ �q ¼ 0.

The modification (1) serves its purpose of classicalizing
the motion of a single particle: It effects a decay of the
position and the momentum off-diagonal matrix elements
of �. The parameter � provides the corresponding time
scale for those matrix elements which are more than the
critical length scale @=�q off the diagonal in position, or

more than @=�s off in momentum, whereas smaller-scale
coherences may survive much longer. Delocalized super-
position states thus get localized in phase space as time
evolves, ultimately rendering the phase-space representa-
tion of � indistinguishable from an equivalent classical
distribution. At the same time, the modification (1) induces
a position and momentum diffusion, implying that any
bound particle gradually gains energy. For harmonic bind-
ing potentials with frequency !, the energy increases as
�2

q=2mþm!2�2
s=2 per unit of time �.

Many-particle description.—The requirement of
Galilean invariance in a general mechanical system of N
particles implies that the phase-space translation operators
must effect a net shift of the center-of-mass coordinates by
s and v. On the other hand, the scale invariance conditions
with respect to an innocent bystander (iii) and to the center-
of-mass (iv) require that the equation for the N-particle
state reduces to the single-particle form whether one traces
over the other N � 1 particles or over the relative coordi-
nates in a compound object of rigidly bound constituents;
in the latter case the single mass should be replaced by the
total mass M ¼ P

nmn. This is achieved by composing the
N-particle operators as the weighted sum of the single-
particle operators (2),

WNðs; qÞ ¼
XN
n¼1

mn

me

exp

�
i

@

�
Pn � me

mn

s� q � Xn

��
; (3)

where me is an arbitrary reference mass; see Ref. [22]
for details.

We note that the operators (3) conserve the exchange
symmetry of a quantum state. The corresponding
N-particle equation,

LN�N ¼ 1

�e

Z
d3sd3qgeðs; qÞ

�
WNðs; qÞ�NW

y
Nðs; qÞ

� 1

2
fWy

Nðs; qÞWNðs; qÞ; �Ng
�
; (4)

thus leaves boson and fermion statistics invariant (ii). The
equation is completely determined once we specify the
mass me, the coherence time parameter �e, and the nor-
malized distribution function geðs; qÞ for the reference
particle. The innocent bystander condition (iii) guarantees
that no correlations are introduced between different (pos-
sibly uncorrelated or even far apart) subsets of particles.
Property (iv), on the other hand, admits the single-particle
description (1) not only for elementary point particles (e.g.,
electrons) but also for compound objects such as atoms,
molecules, or even solids.
The classicalization of the center-of-mass motion of an

extended compound object of total massM can be approxi-
mated by the single-particle form (1), if the relative motion
of the constituents around their rigidly bound equilibrium

positions can be neglected. The Fourier transform ~%ðqÞ ¼R
d3x%ðxÞe�iq�x=@ of the mass density %ðxÞ of the com-

pound modifies the rate and the phase-space distribution of
the effective center-of-mass classicalization,

1

�
¼ 1

�e

1

m2
e

Z
d3sd3qgeðs; qÞj~%ðqÞj2; (5)

gðs; qÞ ¼ �M3

�em
5
e

ge

�
M

me

s; q

�
j~%ðqÞj2: (6)

The effective coherence time � depends on the relation
between the size of the compound and the critical length
scale @=�q of the reference distribution ge; the effective

distribution g remains normalized. The description fails as
soon as the relative motion of the constituents must be
taken into account. The inner structure of nuclei becomes
relevant for femtometer-scale distribution functions,
@=�q & 10 fm & ðm=meÞ�s, with m � 1 amu the nu-

cleon mass. Here ends the domain of nonrelativistic quan-
tum mechanics, and with it the validity of our approach.
We thus restrict its parameters to about �s & 20 pm and
@=�q * 10 fm, noting that the macroscopicities will not

change if these bounds are varied by a few orders of
magnitude.
The restriction to a single reference distributiongeðs; qÞ in

(4), as opposed to individual distributions for different types
of particles, yields a universal single-particle description (1).
The choice of the reference mass me is arbitrary, since the
coherence time parameter and the distribution rescale to � ¼
�eðme=mÞ2 and gðs; qÞ ¼ ðm=meÞ3geðms=me; qÞ for a point
particle of differentmassm, as follows from (3). This renders
the translation s negligible for heavy objects, m � me.
In the following we will use the electron as the reference

particle fixing both �e and ge. Moreover, we take ge to be a
Gaussian distribution in s and q, fully specified by the
standard deviations �s and �q. The latter determine the
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main behavior of the classicalization effect; a more
involved description with additional parameters would
complicate matters without significantly modifying the
generic behavior.

It is remarkable that a special form of Eq. (4), which we
arrived at using the assumptions (i)–(iv), describes the
observable consequences of the theory of continuous spon-
taneous localization (CSL) [16,23] if one takes�s ¼ 0 [24].
This shows that one can set up explicit theories which
modify the dynamics on the level of the Schrödinger equa-
tion and whose observable consequences fit into the present
framework [25–28]. The stochastic Schrödinger equation in
Refs. [16,23] may thus be seen as one example, but not the
most general form, of a theory which yields a minimal
modification in the sense described above.

Assessing superposition states.—The experimental dem-
onstration of quantum coherence in a mechanical degree of
freedom rules out a certain parameter region of the clas-
sicalizing modification; i.e., it provides a lower bound of
the time parameter �e for any fixed value of �s and �q. For

a superposition state in a different experiment to be more
macroscopic, its demonstration must exclude a larger set of
�e, implying that the modification must be even weaker.

Figure 1 shows the greatest excluded �e for a number of
different setups, as a function of the critical length scale
@=�q and at fixed �s ¼ 20 pm. The solid and the dotted

curve correspond to exemplary modern matter-wave
experiments: the interference of cesium atoms in free fall
over hundreds of milliseconds (solid line) [29], and the

superposition of counterpropagating currents of 1014

superconducting electrons in a Josephson ring (dotted
line) [1]. The dashed and dash-dotted lines illustrate what
would be achieved in proposed superposition experiments
with nanoclusters [30] or micromirrors [31]. Whereas
the value of �s matters for the SQUID experiment, it is
not important for the other cases due to the large masses
involved. Our results then resemble the predictions of a
CSL model with varying localization length @=�q.

Detailed results on each experiment are reported in
Ref. [22].
One observes a common feature of all quantum curves in

Fig. 1: they saturate or assume a local maximum. This is
because the classicalizing modification (4) is bounded in
the operator norm, and any given position or momentum
superposition state of a total mass M thus survives at least
for a time �eðme=MÞ2.
The interferometer results (solid and dashed lines) reach

the maximum where the critical length scale @=�q is com-

parable to the interference path separation. This is where the
solid line saturates, in accordance with the CSL results in
Ref. [27]. The dashed line drops at length scales smaller
than the size of the interfering object, when only a fraction
of its mass contributes to its center-of-mass coherence time,
as given by Eq. (5). The latter also holds if the object is
larger than the path separation (dash-dotted curve). For
smaller values of @=�q the slope is mainly determined by

the mass density %ðxÞ of the interfering object, while in the
diffusive limit of large values it solely depends on �q.

The superposition of persistent currents probed in the
SQUID experiment [1] can be described by displaced
Fermi spheres of Cooper-paired electrons [32]. The clas-
sicalization gradually redistributes and dephases electrons
between the Fermi spheres, thereby undermining the quan-
tum coherence [22]. At large momentum spreads �q the

effect is governed by the redistribution of electrons, as
would be the case in spontaneous localization [33]. The
dotted curve assumes its maximum at a value �q where

the redistribution covers all electrons in the Fermi sphere.
This effect vanishes for smaller �q once the superconduct-

ing energy gap can no longer be overcome; in this limit the
classicalization effect is governed by the dephasing that is
induced by the position diffusion with spread �s.
Because of the diffusion effect inherent in the classical-

izing modification there are also classical experiments not
explicitly demonstrating quantum behavior that can be used
to narrow down the range of plausible coherence time
parameters. This is indicated by the shaded area in Fig. 1
which represents the values of �e excluded by an anticipated
precision measurement of the temperature increase of a
dilute gas of Rb atoms, �2

q=2mRb�Rb < 1:5kB � 1 �K=s.

Macroscopicity measure.—In view of the parameter
bounds displayed by Fig. 1, we suggest to quantify the
macroscopicity of a superposition state realized in an
experiment by the greatest excluded time parameter �e of
the modification (4). In addition, one must comply with the
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FIG. 1 (color online). Lower bounds on the time parameter �e,
as set by various experiments. The calculations are done for the
relevant range of critical length scales @=�q, and at �s ¼ 20 pm.

The solid line corresponds to the atom interferometer of
Ref. [29]; it rules out all time parameters �e below the curve.
Future experiments may exclude a larger set, e.g., by interfer-
ence of 105–107 amu gold clusters [30] (dashed lines) or of
micromirror motion [31] (dash-dotted line). The dotted line
corresponds to demonstrated persistent current superpostions
in a SQUID loop [1]. The shaded region represents the excluded
�e by a conceivable classical measurement of less than 1 �K=s
temperature increase in a Rb gas.
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above restriction to the nonrelativistic domain, �s &
20 pm and @=�q * 10 fm. To set a scale, we take the

logarithm of �e in units of seconds as the measure of
macroscopicity,

� ¼ log10

�
�e
1 s

�
: (7)

That is, a positive value for � is obtained if one demon-
strates an electron to behave like a wave for more than 1 s,
or a proton for about a microsecond.

A simple approximate expression for the macroscopicity
� is obtained for interference experiments with point
particles or with compound objects of total massM, whose
size is much smaller than the path separation. The single-
particle modification (1) predicts an exponential decay of
coherence with time scale � ¼ �eðme=MÞ2, a mass depen-
dence also obtained in the CSL case [25–27]. This is to
be compared with the period t during which coherence
is maintained in the experiment. Measuring with confi-
dence a fraction f < 1 of the expected interference visibil-
ity, one gets

� ¼ log10

���������
1

lnf

��������
�
M

me

�
2 t

1 s

�
: (8)

That is to say, if one measures 30% contrast in an interfer-
ence experiment where the visibility is predicted to be, say,
60%, then f ¼ 0:5 must be used in the above expression.

Macroscopicity of specific experiments.—In Fig. 2 we
present the macroscopicities attained in a selection of

quantum experiments versus their publication date. They
include tests of the superposition principle with neutrons,
electrons, individual and Bose-condensed atoms, and
molecules. Details on the calculations for specific experi-
ments can be found in Ref. [22].
State-of-the-art interferometers achieve macroscopic-

ities of up to � � 12, and various ideas to surpass this
value with future experiments have been suggested. As can
be seen from Table I, the most promising proposals from
the perspective of the macroscopicity measure employ
oscillating micromirrors [31] and nanoclusters [30,36].
Their huge mass would trump a conceivable SQUID ex-
periment with more than 1017 electrons or an atom inter-
ferometer hovering in free space with an interrogation time
of 1 h [35].
Nevertheless, there are more than 30 orders of magni-

tude between experiments conceivable with present-day
technology (� ¼ 12–24) and something as manifestly
macroscopic as an ordinary house cat (�� 57).
Conclusion.—Using the measure proposed in this Letter,

any experiment testing the superposition principle in me-
chanical degrees of freedom can be quantified and com-
pared. By definition it answers an empirically relevant
question, namely, to what extent an observation serves to
exclude minimally invasive modifications of quantum
mechanics that produce classical behavior on the macro-
scale. As such, the measure follows directly from basic
symmetry and consistency arguments and confers physical
meaning on the abstract notion of macroscopicity of a
quantum system.
The proposed measure does not depend on how a com-

pound mechanical object is decomposed into elementary
mass units. For instance, an interfering fullerene buckyball
might be described in terms of 60 carbon atoms or equally
of 1080 nucleons and electrons, and both descriptions
should consistently lead to the same macroscopicity value
for the overall state of the molecule. This issue, which was

neutrons
atoms
molecules
SQUIDs

year of publication

m
ac

ro
sc

op
ic

ity
µ

1960 1970 1980 1990 2000 2010
4

6

8

10

12

FIG. 2 (color online). Timeline of macroscopicities reached in
quantum superposition experiments [22]. The squares, the tri-
angles, and the dots represent interference experiments with
neutrons [37,38], atoms [29,39–42] or atom Bose-Einstein con-
densates [3], and molecules [4,43–48], respectively. One notes
that Bose-Einstein condensates do not substantially exceed the
macroscopicities achieved with atom interferometers. This is due
to the single-particle nature of the condensate wave function.
The many-particle state is more involved in the case of super-
position experiments with persistent supercurrent states in a
large SQUID loop [1,2], as represented by the stars. However,
despite the large number of Cooper pairs contributing to the
current superpositions in SQUIDs, such experiments lag behind
in macroscopicity due to the small coherence times observed.

TABLE I. Expected macroscopicities for various proposed and
hypothetical quantum superposition experiments [22]. The os-
cillating micromembrane setup [34] will reach the stated� value
if coherence between the zero- and one-phonon state can be
observed for over 1000 oscillation cycles. For the SQUID
experiment we assume a loop length of 20 mm, a wire cross
section of 100 �m2, and 1 ms coherence time. In the gedanken
experiment an idealized cat of 4 kg is kept in a spatial superpo-
sition of 10 cm distance for 1 s.

Conceivable experiments �

Oscillating micromembrane 11.5

Hypothetical large SQUID 14.5

Talbot-Lau interference [30] at 105 amu 14.5

Satellite atom (Cs) interferometer [35] 14.5

Oscillating micromirror [31] 19.0

Nanosphere interference [36] 20.5

Talbot-Lau interference [30] at 108 amu 23.3

Schrödinger gedanken experiment �57
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not addressed in previous studies, is explicitly taken
into account in our approach. Moreover, we do not refer
to specific classes of quantum states, or to preferred
measurement operations or observables, rendering the
measure of macroscopicity applicable to arbitrary me-
chanical systems.

The last 20 years have witnessed a remarkable rise in
demonstrated macroscopicities. Yet, new experimental
strategies for quantum tests, in particular, using nanoclus-
ters and microresonators, may soon venture deeper into the
macroworld. As more and more effort is put into this field,
we may well experience an unprecedented leap towards the
macroscopic domain.
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