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Here we provide a more extensive motivation for the many-body form (5) of the modifica-

tion, and a justification for our estimates of the macroscopicities reached in the various experi-

ments. We note that a more detailed analysis of the individual experimental setups might yield

slightly different values, but would not change the overall picture.

1 Many-particle form of the classicalizing modification

The requirement of invariance under Galileian transformations (i) implies that the generator describing the

effect of a minimal modification is of the form

LNρ =

∫
d3sd3v

[
L (s, v) ρL† (s, v) − 1

2

{
L† (s, v) L (s, v) , ρ

}]
. (S1)

The operatorsL (s, v) must satisfy

exp
[
− i
~

(
P · s′ − Mv′ · X)]

L (s, v) exp
[ i
~

(
P · s′ − Mv′ · X)]

= exp
[ ime

~

(
v · s′ − v′ · s)

]
L (s, v) , (S2)

with M =
∑N

n=1 mn the total mass,me an arbitrary reference mass, andX, P the center-of-mass position and

momentum operators. By switching to center-of-mass and relative coordinates it follows from Eq. (S2) that

theL (s, v) induce a net shift of the center-of-mass position and momentum bymes/M andmev, respectively.

However, it remains unspecified how the net shift is to be distributed amongst theN constituents of the

system. This freedom is constrained by the additional assumptions (ii)-(iv).

Assumption (iii) means that theN-particle form (S1) must always reduce to the single-particle form for

the nth particle, Eq. (1) in the main text, if one traces over the other N − 1 constituents, trN−1 (LNρ) =

L1trN−1 (ρ). That is to say, we assign to each particle species of massmn an individual time parameterτn
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and a positive, normalized and isotropic distribution function gn (s, q). They constitute the free parameters

of the single-particle form, as discussed in the main text. At the other end, assumption (iv) recovers the

single-particle form (1) for the center-of-mass degree of freedom provided that theN constituents are well

localized at fixed equilibrium positions close to the center. We denote the corresponding classicalization

parameters byτ(N) andg(N). Finally, theN-particle operatorsL (s, v) must be symmetrized in the case of

indistinguishable particles (ii).

As a first guess one might think that theL (s, v) should be proportional to the unitaryN-particle Weyl

operators,

L (s, v) =

√
m6

e

M3τ(N)
g(N)

(me

M
s,mev

) N⊗

n=1

exp
[ ime

~M
(
mnv · xn − pn · s

)]

=

√
m6

e

M3τ(N)
g(N)

(me

M
s,mev

)
exp

[ i
~

(
mev · X −

me

M
P · s

)]
. (S3)

This way the phase-space shift would be distributed equallyamong all participating particles. The assump-

tions (ii) and (iv) would be fulfilled by construction and, due to the prefactor in (S3), one would reobtain the

center-of-mass distributiong(N) (s, q) in (S1). However, the operators (S3) would leave the relative motion of

any constituent subsystem entirely unaffected, irrespectively of the overall size and extension of theN-body

system. Moreover, assumption (iii) is met only ifτ(N) = τn andg(N) (s, q) = (mn/M)3 gn (s,mnq/M) for

all n, so that the effective classicalization rate 1/τ(N) would not increase with the system size. Therefore,

the operators (S3) cannot induce classical behavior at the macro-scale leaving at the same time microscopic

systems unaffected.

Rather than dividing the phase-space shift among many particles, one may as well compose a solution of

(S2) from single-particle translations,

L (s, v) =
N∑

n=1

(±)n

√
m6

e

m3
nτn

gn

(
me

mn
s,mev

)
exp

[
i
~

(
mev · xn −

me

mn
pn · s

)]
. (S4)

The sign(±)n may differ for distinguishable particles, and it may also depend ons andv. These operators

fulfill (ii) and (iii) by definition. Moreover, in the case of acompact compound, wherexn ≈ X andpn ≈

mnP/M, we recover condition (iv), with the center-of-mass parameters determined by
√

m3
e

M3τ(N)
g(N)

(me

M
s, q

)
=

N∑

n=1

(±)n

√
m3

e

m3
nτn

gn

(
me

mn
s, q

)
. (S5)

Each constituent contributes to the collective classicalization of the center-of-mass variables. For instance, in

the case ofN indistinguishable particles we find that the classicalization rate is amplified by 1/τ(N) = N2/τ.

A formal proof of the operator expression (S4) can be obtained in the picture of second quantization if one

takes the operatorsL (s, v) to be a combination of single-particle terms, i.e. a bilinear form in the annihilation
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and the creation operators of a given particle species. TheN2-scaling of the classicalization rate then follows

immediately.

In general the sign factor(±)n and the single-particle distributionsgn might still differ from species to

species. This is where the scale-invariance argument (iv) can be invoked once again: If we allowed for

different signs and distribution functions for different point-particle species, we would have to define a fixed

set of reference point particles, i.e. single out a distinguished many-body representation of any composite

mechanical system. Moreover, we would end up with different descriptions of the modified time evolution

of approximate point-like compound particles depending ontheir composition.

In order to guarantee true scale invariance, by avoiding an ambiguous treatment of approximate point

particles, one must therefore relate the extensive nature of the modification in (S5) to the elementary exten-

sive property of mechanical systems: their mass. We notice that the summands in (S5) contribute witha

priori different mass scalesmn, each of which might be composed of further sub-units of mass, and so on. A

unified description for any mass scale is obtained only by introducing a single reference time parameterτe

and distribution functionge associated with a fixed reference massme. The composition rule (S5) then holds

naturally once we identify

(±)n

√
m3

e

m3
nτn

gn

(
me

mn
s, q

)
=

mn

me

√
1
τe

ge (s, q) . (S6)

The classicalization effect now scales uniformly with mass, irrespectively of the types of particles involved.

2 Diffraction at gratings and double-slits

The macroscopicity observed in the matter-wave diffraction experiments at gratings and double-slits [1–

6] can be estimated from the height of the first order diffraction peak in the recorded signals. Given the

transmission functiont(x) of a one-dimensionalN-slit-grating with slit distanced and opening widthw, we

find the interference signal of a monochromatic point source(velocity vz) in the paraxial approximation

Ivz(x) ∝
∫

dx1dx2 R(x1 − x2) t(x1)t∗(x2) exp


im
2~


x2

1 − x2
2

T
− 2x(x1 − x2)

T2


 . (S7)

The timeT = T1T2/(T1 + T2) is determined by the times-of-flightT1 from the source to the grating and

T2 from the grating to the screen. In a horizontal alignment they are related to the respective distances

L1,2 = vzT1,2. The signal (S7) must be averaged with respect to the distributions of the velocitiesvz, and over

the extensionsS andD of the source slit and the detector. The single-particle classicalization as described

by equation (1) in the main text blurs the interference signal by the factor

R(x) = exp

{
T1

τ

∫ 1

0
dz

[
g̃1D

(
xz,

mx
T1

)
− 1

]
+

T2

τ

∫ 1

0
dz

[
g̃1D

(
xz,

mx
T2

)
− 1

]}
, (S8)
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involving the reduced Fourier transform̃g1D(x, p) = g̃ (xex, pex) of the distribution functiong. The un-

perturbed fringe pattern exhibits diffraction maxima at screen coordinates close to integer multiples of

x = hT2/md. The classicalization affects them strongest if the contributing interference pathsare completely

resolved by the critical length scale~/σq. In this limit a flat background is added to the overall signal, and

the longitudinal velocity distribution affects only weakly the reduction of the first diffraction maximum; the

latter can thus be used to extract the macroscopicityµ for each experiment according to equation (9) of the

main text. The required parameterf is estimated by the ratio of the measured height of the diffraction peak

and its unperturbed theoretical value, both normalized to the integrated signal. The following table contains

all required parameters of the different experiments, including references to the data used for the comparison.

Ref. Fig. L1/m L2/m N d/µm w/d S/µm D/µm 〈vz〉/ms ∆vz/〈vz〉 m/amu f µ

[1] 9 4.0 5.7 2 107 – 10 30 907 – 1 0.6 4.8

[2] 7 5.0 5.0 2 126 0.17 15 30 216 0.05 1 0.9 6.2

[3] 2b 1.0 1.5 50 0.2 0.5 10 25 1000 0.12 23 0.5 6.8

[4] 3b 0.08 0.11 2 6 0.33 20 20 – – 20 0.8 9.1

[5] 1 0.45 0.52 100 0.1 0.43 10 25 396 0.1 84 0.8 8.3

[6] 2a 1.14 1.25 100 0.1 0.38 10 8 226 0.6 720 0.6 10.6

The neutron interference at a biprism observed in [1] can be related to the coherent superposition of two

virtual sources separated byd = 107µm, 9.7 m away from the detector. The resulting fringe patternthus

resembles a double-slit pattern. The authors of [1] presentthe measured data and a fitted theory curve in

Fig. 9. The data deviates from the predicted height of 200 a.u. of the first diffraction order by roughly 50 a.u.

Subtracting a dark count rate of 60 a.u. leads to the estimatef ∼ 1− 50/140≈ 0.6. The experiment [4] is a

vertically aligned interferometer, where neon atoms are released from a trap. They fall through a double-slit

and into a detector withint ≈ 200 ms. We obtainf by comparing the measured diffraction peak in Fig. 3b

with the theoretical model of [4] in Fig. 3g. For [1–5] we use aGaussian velocity distribution with the mean

〈vz〉 and the FWHM∆vz, as specified in the table. For [6] we use the distribution provided in the article, and

we account for the special detection scheme by replacing thedetector slit by a Gaussian laser focus of waist

D. The dispersive interaction between the particles and the grating walls is taken into account for [5, 6] by

reducing the effective slit opening size.

The macroscopicity of the proposed optical double-slit experiment [7] with silica nanospheres is esti-

mated by considering the Fourier amplitude which corresponds to the expected double-slit fringe oscilla-

tion (S7). The classicalization modifies it by the factorR(d), with the largest proposed value for the slit

distanced = 52 nm. We evaluate the macroscopicity by modeling the particles as homogeneous spheres

(̺ = 2200 kg/m3) of 20 nm radius (see equations (6) and (7) of the main text), and by assuming that at least

50% of the fringe amplitude is observed.
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Talbot-Lau interference with molecules and clusters [8–12] can be treated in a similar manner. The

sinusoidal fringe visibilityVsin of a symmetric setup (T1 = T2 = T) is reduced toR(hT/md)Vsin. Judging

from the error bars at high visibilities, we assume that the measurements are compatible with at least 90%

of the prediction for C70 molecules (Fig. 3 in [8]), 90% for C60F48 (Fig. 5 in [10]), and 80% for PFNS8

(Fig. 4b in [11]). The fringe pattern observed in [9] with C60F48 (Fig. 4) corresponds to 75% of the predicted

visibility.

3 Ramsey-Bord é interference with I 2 molecules

In the experiment [13] a beam of I2 molecules (m = 254 amu) passes two pairs of counter-propagating

running-wave laser beams, as described in detail in [14]. Two paths through the setup contribute to the

recorded Ramsey fringe pattern, as shown in Fig. 2 of Ref. [13]. We must include, however, a significant

contribution from two further paths to the signal [14]. Their interference is washed out over the transverse

velocity distribution of the molecule beam. We assume that they add an offset to the most pronounced

central fringe of the (*)-curve in Fig. 2 of [13]. If all four paths contribute by roughly the same weight

we must halve the offset of the central fringe in the diagram, which yields a two-path fringe visibility of

f ≈ 400 a.u./(2400− 1200) a.u. = 0.33. The passage time is determined by the (35+ 2) mm length of the

interferometer and the mean molecular velocity of 350 m/s. This yieldsµ = 7.3, according to equation (9) of

the main text.

4 Mach-Zehnder-type interference

The two atom interferometers featuring the greatest macroscopicity in Fig. 2 [15,16], as well as the proposed

satellite atom interferometer [17] listed in Tab. 1, are optical Mach-Zehnder-type geometries, which could

in principle yield close to 100% fringe contrast. We use the recorded fringe visibilitiesf = 0.62 (Fig. 19

in [15]) and f = 0.33 (Fig. 3 in [16]), and a hypothetical value off = 0.5 for the proposal [17]. In all

three cases the interfering particles are133Cs atoms, and the interrogation time is given by twice the pulse

separation timeT. The respective values areT = 160 ms, 400 ms, and 2000 s.

In the Na2 molecule interferometer [18] the Mach-Zehnder geometry isrealized with three material

diffraction gratings. The total length of the interferometer including beam collimation is about 2.1 m [19,20],

and the molecules pass it at a mean velocity of 820 m/s. This yields an interrogation time of 2.6 ms. The

maximally possible contrast is limited by two factors: First, the different weights of the interference paths,

which correspond to the zeroth and the first diffraction order at the first grating; they are given byP1/P0 =

sinc(0.3π) /1 = 0.74. Second, the modulation of the interference pattern by the third grating mask; it

contributes a factor of sinc(0.3π) = 0.86 to the fringe amplitude, assuming a sinusoidal fringe pattern and a
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grating opening fraction of 30%. The detected contrast is thus limited to below 85%. We extract a measured

fringe contrast of about 30% from the inset of Fig. 4 in [18], i.e. f = 0.35, which leads toµ = 7.2.

5 Oscillating microresonators

The authors of [21] propose to create a quantum superposition state of an oscillating micromirror by entan-

gling it with a single cavity photon in one arm of a Michelson interferometer. If coherence is maintained in

the mirror motion during one period of oscillation photon interference fringes should be observed at 100%

contrast.

The classicalization master equation (equation (1) in the main text) for the harmonic mirror motion can

be integrated explicitly. We find that it reduces the fringe visibility after one oscillation period 2π/ωm by the

factor

R= exp

{∫ 2π

0

dξ
ωmτ

[
g̃1D

(
2κx0 sin2 ξ

2
,
2~κ
x0

sinξ

)
− 1

]}
(S9)

with g̃1D the reduced Fourier transform of the distributiong. The latter and the time parameterτ are given by

equations (6) and (7) in the main text. The micromirror is modeled as a homogeneous cube of mass density

̺ = 2300 kg/m3, b = 10µm edge length and a mass ofM = ̺b3 = 2.3 ng, which yields

1
τ
=

1
τe

(
M
me

)2

γ3, (S10)

g1D (s, q) = γ−1 M
2πmeσsσq

exp

−
M2s2

2m2
eσ

2
s
− q2

2σ2
q

 sinc2
(
qb
2~

)
, (S11)

with theσq-dependent geometry factor

γ = 2

(
σqb

~

)−2 exp

−
σ2

qb2

2~2

 +
√
π

2

σqb

~
erf

(
σqb
√

2~

)
− 1

 . (S12)

The authors presume a frequencyωm/2π = 500 Hz, a ground state oscillation amplitude ofx0 = 170 fm and

a photon-mirror coupling strength ofκ = 1.63. We findµ = 19.0 for a measured 50% fidelity.

For the hypothetical superposition experiment with an oscillating Al micromembrane, as listed in Table I

of the main text, we use the parameters given in [22]. The membrane massM = 48 pg and the mechanical

frequencyωm/2π = 10.56 MHz yield a tiny ground state amplitude ofx0 =
√

2~/Mωm = 8 fm. To give a

good upper estimate of the macroscopicity of such an experiment we thus approximate the flexural mode

of the membrane by a axial center-of-mass vibration of a homogeneous disc of thicknessb = 100 nm and

radiusR= 7.5µm. We obtain the effective distributiong1D (s, q) of (S11) and a time parameter

1
τ
=

2γ
τe

(
M
me

)2 (
σqR

~

)−2

exp

−
σ2

qR
2

~2



exp


σ2

qR2

~2

 − I0


σ2

qR2

~2

 − I1


σ2

qR2

~2



 , (S13)
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with I0,1 the modified Bessel functions.

We assume that the membrane is prepared in the superpositionstate|ψ〉 = (|0〉 + |1〉) /
√

2 of the zero- and

the one-phonon eigenstate, and that the associated nondiagonal matrix element〈1|ρt |0〉 does not decay by

more than 50% after a timet = 2πn/ωm which corresponds ton = 1000 oscillation cycles. Due to the large

massM and the small amplitudex0 we may neglect the position spreadσs in (S11), and we may Taylor-

expand its Fourier transform̃g1D (x, p) to lowest order inx. With this we arrive at the explicit condition

〈1|ρt |0〉
〈1|ψ〉〈ψ|0〉 =


2πn
ωmτ

x2
0

γb2

1− exp

−
σ2

qb2

2~2



 + 1


−2

≥ 50%, (S14)

which leads to a macroscopicity ofµ = 11.5.

6 BEC interference

The interference of two sodium BECs observed in [23] is modeled using a second quantization phase-space

picture in [24]. Following the same line we define a second quantization form of the characteristic function,

χ̂ (x, p) =
∫

dx0 eipx0/~ψ̂†
(
x0 +

x
2

)
ψ̂

(
x0 −

x
2

)
. (S15)

De Broglie interference of trapped BECs is observed as a fringe pattern in the time-evolved single-particle

densityn̂ (x) = ψ̂† (x) ψ̂ (x) for each individual run of the experiment. The fringe visibility is given by the

corresponding Fourier component of ˆn (x),

χ̂

(
0,

h
λ

)
=

∫
dx0 e2πix0/λn̂ (x0) , (S16)

whereλ denotes the fringe spacing. The pattern observed in each runof the experiment [23] can be assessed

in the case of non-interacting bosons by replacing the annihilation operatorψ̂ (x) with the collective wave

functionψ (x) of the two trapped condensates. A free evolution of (S15) by the timet then yields the visibility

χ (0, h/λ) of the resulting interference pattern. The fringe spacingλ = should be modified to account for

interactions in the BEC [24].

The second quantization form of the reducedN-particle operators (4) reads as

W (s, q) =
m
me

∫
dx e−iqx/~ψ̂† (x) ψ̂

(
x+

me

m
s
)
. (S17)

A straightforward calculation reveals that (S15) then classicalizes at the rate

L χ̂ (x, p) = −
(

m
me

)2 1
τe

[
1− m

me

∫
dsdq ge

(
m
me

s, q

)
ei(qx−ps)/~

]
χ̂ (x, p) (S18)

of a single atom. We therefore estimate the macroscopicity from equation (9) of the main text. The authors

of [23] observed aboutf = 75% interference contrast in a sodium BEC after a time-of-flight of t = 40 ms;
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this yieldsµ = 8.4. In the experiment [25] the phase sensitivity of the interferometer was increased, but at

an interference contrast of only 15% after 200 ms, which leads toµ = 8.3 (not discussed in the main text).

Modern-day experiments with multi-component BECs make useof nonlinear interactions and number

squeezing to increase the coherence time and the phase sensitivity employing internal atomic states [26–28].

The use of such techniques in interference experiments withspatially split BECs would only yield a macro-

scopicityµ that is comparable to single-atom interferometers. This isdue to the fact that the single-particle

nature of the classicalizing effect (S18) holds irrespectively of whether nonlinear interactions modify the

coherent time evolution of the condensate wavefunction. Larger values ofµ could be achieved by increasing

the fringe visibility and the time-of-flight in both single-atom and BEC experiments, possibly carried out in

a microgravity environment.

7 SQUID interference

For the case of SQUID experiments we obtain the exclusion curve of the classicalization parameters in Fig. 1

and theµ-values in Fig. 2 and Tab. 1 by estimating the decay rate of a superposition state of macroscopically

different supercurrents, i.e. different phases across the junctions in a Josephson loop. This was studied

theoretically for spontaneous localization models in [29], whose observable consequences are a special case

of the classicalizing modification discussed here [30].

A state of finite current density| j〉 in a solid with electron densityne is described by a Fermi sphere,

displaced by the momentum~k j, j = nee~k j/me. The undisplaced state|0〉 is taken to be the BCS ground

state of the superconductor [31,32]. It is characterized bythe probability amplitudesvk (uk =

√
1− v2

k) of a

Cooper pair (k ↑,−k ↓) being occupied (unoccupied),

vk =
1
2


1−

k2 − k2
F√(

k2 − k2
F

)2
+

(
2me∆k/~2

)2


. (S19)

Here,~kF = mevF denotes the Fermi momentum and∆k the pairing energy. The latter is approximated

in the usual way by the zero-temperature energy gap∆ = 1.76kBTc for electrons close to the Fermi level,

|k2 − k2
F | ≤ 2meωD/~, and zero otherwise. The termωD denotes the Debye cutoff frequency of the material.

We use the literature valueskF = 1.18 Å−1, ∆ = 1.44 meV,~ωD = 23.7 meV for Nb, andkF = 1.74 Å−1,

∆ = 0.17 meV,~ωD = 36.9 meV for Al, respectively [33,34].

The second quantization form of the classicalization operators (equation (4) in the main text) for electrons

reads as

We (s, ~q) =
∑

σ=↑,↓

∑

k

eik·sa†σ (k) aσ (k + q) . (S20)
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The sum covers all discrete electron momentum states in a given volumeV, each state occupying the elemen-

tary cell (2π~)3/V in momentum space. The classicalization kick distributionge (s, q) must be discretized

accordingly. We find that a superposition stateρ of two distinct supercurrentsj1 and j2 decays at a rate

Γ ≈ −
∂t〈 j1|ρ(t)| j2〉
〈 j1|ρ(t)| j2〉

∣∣∣∣∣∣
t=0

= Γdiff + Γdeph (S21)

due to classicalization. This assumes that〈 j1| j2〉 = 0, and that the net numberδN of electrons occupying

different states in each superposition branch [34] is large. Thedecay rate splits into two contributions. The

first one is related to momentum diffusion, which requires that at least one elementary unit of momentum

2π~/V1/3 is transferred. In the continuum limit
∑

k → V/(2π)3
∫

d3k we find

Γdiff =
2V~3

(2π)3τe

$

q>π/V1/3

d3sd3qd3k ge (s, ~q) ukvk+q

(
ukvk+q + vkuk+qei(2k+q)·s

)
. (S22)

The expression is ultimately bounded byΓdiff ≤ N/τe in the limit of arbitrarily strong momentum kicks,

when allN = neV conducting electrons can be transferred from one branch of the superposition to the other.

It does not depend on the actual value of the supercurrents.

The second contribution represents the dephasing that comes from the classicalization-induced position

kicks, when no momentum redistribution of the electrons takes place,

Γdeph=
4V2
~

3

(2π)6τe

"

q≤π/V1/3

d3sd3q ge (s, ~q)
(
1− eiδk·s

) ∣∣∣∣∣
∫

d3k v2
k eik·s

∣∣∣∣∣
2

. (S23)

Here,~δk = me( j1 − j2)/needenotes the difference in momentum displacement of the two current branches.

It is orders of magnitude smaller than the Fermi momentum, and |δk · s| ≪ 1 holds for any reasonable kick

distributionge. Hence the dephasing contribution scales quadratically with the net difference in occupation

of the two displaced Fermi spheres,δN = 4N|δk|/3kF . While this may potentially be significant for large

SQUID geometries, the diffusion contribution dominates in all existing real-size experiments.

Experimentally measured coherence timesT2 of such current superpositions provide an upper bound

for the decay rateΓ. We estimateT2 by the smallest observed frequency splitting in the experiments [35]

(T2 ≈ 1 ns) and [36] (T2 ≈ 10 ns); the authors of [37] estimateT2 ≈ 15 ns. Classicalization parameters which

lead toΓ > 1/T2 are then excluded by each experiment. This yields the SQUID curve in Fig. 1, as well as

theµ-values plotted in Fig. 2; the latter are computed with the boundary conditionσs ≤ 1 Å ≤ ~/σq, as

discussed in the main text. The superconducting loop is spanned byL = 560µm of Nb in [35], 20µm of Al

in [37], and 180µm of Al in [36]. We assume the respective material cross-sections as 5µm2, 36000 nm2,

and 1µm2. The experiment [37] yields a smaller macroscopicity,µ = 3.3, than [35] (µ = 5.2) due to its

smaller ring geometry. Only the greater value is included inFig. 2. The large hypothetical SQUID in Tab. 1

of the main text is a 20 mm loop of 100µm2 cross-section with a coherence time of 1 ms.
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The actual values of the supercurrents do not influence theµ-values, since the dephasing contribution is

negligible in all cases. We use a current difference ofI1 − I2 = 3µA for Fig. 1, as given in [34].

8 Schr ödinger’s gedankenexperiment

In our version of the famous gedankenexperiment, as listed in Tab. 1 of the main text, we consider the

hypothetical superposition state of an ideal cat sitting attwo placesx1 and x2 that are 10 cm apart. The

center-of-mass coherence of the cat then decays like

∂t〈x1|ρ|x2〉
〈x1|ρ|x2〉

=
1
τ

∫
d3sd3q g(s, q)

(
eiq·(x2−x1)/~ − 1

)
(S24)

due to classicalization. We have neglected the weak position diffusion in the classicalization master equa-

tion (1) here. The mean coherence time of this state shall be 1s. In order to evaluate the above decay rate

using theτ and theg of a compound, as defined by (6) and (7) in the main text, we model the cat as a

homogeneous sphere of water with a mass of 4 kg.
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