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Here we provide a more extensive motivation for the manyydodm (5) of the modifica-
tion, and a justification for our estimates of the macrostitips reached in the various experi-
ments. We note that a more detailed analysis of the indiViekgerimental setups might yield

slightly different values, but would not change the overall picture.

1 Many-particle form of the classicalizing modification

The requirement of invariance under Galileian transforomat (i) implies that the generator describing the

effect of a minimal modification is of the form
Lup = [Pxtu|Lis oL’ (60 - 3 (L (@WLEY ) (s1)
The operators (s, v) must satisfy
exp —%(P. s - M\/.X)]L(s,v)exp[% (P-8 - M\/‘X)] = exp[i%}(v- s-Vv. s)]L(s,v), (S2)

with M = 3N my the total massie an arbitrary reference mass, axdP the center-of-mass position and
momentum operators. By switching to center-of-mass aradivelcoordinates it follows from Eq. (S2) that
theL (s, v) induce a net shift of the center-of-mass position and moamerity mes/M andmgv, respectively.
However, it remains unspecified how the net shift is to beribisted amongst th&l constituents of the
system. This freedom is constrained by the additional aptans (ii)-(iv).

Assumption (iii) means that thid-particle form (S1) must always reduce to the single-plartiorm for
the nth particle, Eq. (1) in the main text, if one traces over thieeoN — 1 constituents, {1 (Lnp) =

Latrn-1 (o). That is to say, we assign to each particle species of mass individual time parameter,
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and a positive, normalized and isotropic distribution fior g, (s, g). They constitute the free parameters
of the single-particle form, as discussed in the main text.th& other end, assumption (iv) recovers the
single-particle form (1) for the center-of-mass degreereédom provided that thl constituents are well
localized at fixed equilibrium positions close to the centéfe denote the corresponding classicalization
parameters by™ andgN). Finally, theN-particle operators. (s, v) must be symmetrized in the case of
indistinguishable particles (ii).

As a first guess one might think that thés, v) should be proportional to the unitaly-particle Weyl

operators,
N iMe
L(sV) = 313 (N)g ssrrW)®exp[m(mnV-xn—pn‘S)]
n=1
—— N s, mev) exp[ (mev - X = rT—1eP . s)] (S3)
M3T(N) M '

This way the phase-space shift would be distributed eqaatigng all participating particles. The assump-
tions (ii) and (iv) would be fulfilled by construction and,alto the prefactor in (S3), one would reobtain the
center-of-mass distributiogt) (s, ) in (S1). However, the operators (S3) would leave the redatiotion of
any constituent subsystem entirely tieated, irrespectively of the overall size and extensiomeN-body
system. Moreover, assumption (iii) is met onlyrff¥) = 7, andg™ (s,q) = (mn/M)3gn (s, ma/M) for
all n, so that the fiective classicalization rate/2\) would not increase with the system size. Therefore,
the operators (S3) cannot induce classical behavior at Hwoyscale leaving at the same time microscopic
systems un@ected.

Rather than dividing the phase-space shift among manycfestione may as well compose a solution of

(S2) from single-particle translations,

N ) .
Me Me l Me
L(sV) = + ———0n|—5 mev|exp| = V-Xq——pPn-S||. S4
(s9= 3 )n\/mﬁTn@m(mn mav)exp| - (v xo - 75p, - o| (s4)
The sign(+), may difer for distinguishable particles, and it may also depend andv. These operators

fulfill (if) and (iii) by definition. Moreover, in the case of eempact compound, whersg, ~ X andp,, =

m,P/M, we recover condition (iv), with the center-of-mass parersedetermined by

N
\/MSEN) " (Free) = 25 \/ %QH (%Sﬂ)- (s5)

Each constituent contributes to the collective classiasibbn of the center-of-mass variables. For instance, in

the case oN indistinguishable particles we find that the classicailiatate is amplified by &r™N) = N2/r.
A formal proof of the operator expression (S4) can be obthinghe picture of second quantization if one

takes the operatots(s, v) to be a combination of single-particle terms, i.e. a bilrfeam in the annihilation
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and the creation operators of a given particle species NPkgcaling of the classicalization rate then follows
immediately.

In general the sign factde),, and the single-particle distributiorgs might still differ from species to
species. This is where the scale-invariance argument én)be invoked once again: If we allowed for
different signs and distribution functions fofférent point-particle species, we would have to define a fixed
set of reference point particles, i.e. single out a dististged many-body representation of any composite
mechanical system. Moreover, we would end up witfiedént descriptions of the modified time evolution
of approximate point-like compound particles dependingh&ir composition.

In order to guarantee true scale invariance, by avoidingnaliguous treatment of approximate point
particles, one must therefore relate the extensive nafutreanodification in (S5) to the elementary exten-
sive property of mechanical systems: their mass. We ndtiaethe summands in (S5) contribute wéh
priori different mass scales,, each of which might be composed of further sub-units of mess so on. A
unified description for any mass scale is obtained only hyihtcing a single reference time parametgr
and distribution functiomye associated with a fixed reference mags The composition rule (S5) then holds

naturally once we identify

oM (me Vo [T
(£)n \/ nﬁTngn(mnssq)—me Tege(s,q). (S6)

The classicalizationfect now scales uniformly with mass, irrespectively of thesty of particles involved.

2 Diffraction at gratings and double-slits

The macroscopicity observed in the matter-wavirattion experiments at gratings and double-slits [1—
6] can be estimated from the height of the first orddfradction peak in the recorded signals. Given the
transmission functiom(x) of a one-dimensionaN-slit-grating with slit distancel and opening widthv, we

find the interference signal of a monochromatic point so(vetocity v,) in the paraxial approximation

} . (S7)

The timeT = T1T,/(T1 + T») is determined by the times-of-flight; from the source to the grating and

X=X 2X(x1 = %)
T Ts

= f dxdxz R (x1. = X2) )t (x2) exp{g [

T, from the grating to the screen. In a horizontal alignmeny thee related to the respective distances
L12 = v, T12. The signal (S7) must be averaged with respect to the disiwits of the velocities,, and over
the extension$ andD of the source slit and the detector. The single-particlesitalization as described

by equation (1) in the main text blurs the interference diggahe factor

1 1
R(X) = exp{% deZ[ﬁm (xz r;]—lx) -1+ % fodZ[ﬁw (XZ ?—:) - 1]} (S8)




involving the reduced Fourier transforfip(x, p) = g(xex, pex) of the distribution functiong. The un-
perturbed fringe pattern exhibitsfffaction maxima at screen coordinates close to integer phestiof

x = hTo/md The classicalizationfBects them strongest if the contributing interference patasompletely
resolved by the critical length scatgoq. In this limit a flat background is added to the overall sigmaald
the longitudinal velocity distributionféects only weakly the reduction of the firsffiaction maximum; the
latter can thus be used to extract the macroscopicityr each experiment according to equation (9) of the
main text. The required parametkis estimated by the ratio of the measured height of tiieadition peak
and its unperturbed theoretical value, both normalizethédritegrated signal. The following table contains

all required parameters of thefidirent experiments, including references to the data useddaomparison.

Ref. Fig. | Lyym Lym N dum w/d S/um D/um (vﬁ/% AV, /{(V;)  myamu | f u

[1] 9 4.0 5.7 2 107 - 10 30 907 - 1|06 438
[2] 7 5.0 5.0 2 126 0.17 15 30 216 0.05 1109 6.2
[B] 2b 1.0 15 50 0.2 0.5 10 25 1000 0.12 23/ 0.5 6.8
[4] 3b | 0.08 0.11 2 6 0.33 20 20 - - 201 0.8 9.1
[5] 1 045 052 100 0.1 043 10 25 396 0.1 84 0.8 8.3
[6(] 2a | 1.14 125 100 0.1 0.38 10 8 226 0.6 720 0.6 10.6

The neutron interference at a biprism observed in [1] carelzgad to the coherent superposition of two
virtual sources separated by= 107um, 9.7 m away from the detector. The resulting fringe patthaus
resembles a double-slit pattern. The authors of [1] preentmeasured data and a fitted theory curve in
Fig. 9. The data deviates from the predicted height of 200 the first difraction order by roughly 50 a.u.
Subtracting a dark count rate of 60 a.u. leads to the estifmatd — 50/140 ~ 0.6. The experiment [4] is a
vertically aligned interferometer, where neon atoms aesased from a trap. They fall through a double-slit
and into a detector withib~ 200 ms. We obtairf by comparing the measuredftaction peak in Fig. 3b
with the theoretical model of [4] in Fig. 3g. For [1-5] we us&aussian velocity distribution with the mean
(vz) and the FWHMAv,, as specified in the table. For [6] we use the distributiorvioled in the article, and
we account for the special detection scheme by replacinddtector slit by a Gaussian laser focus of waist
D. The dispersive interaction between the particles and thiéng walls is taken into account for [5, 6] by
reducing the ffective slit opening size.

The macroscopicity of the proposed optical double-sliteexpent [7] with silica nanospheres is esti-
mated by considering the Fourier amplitude which corredpdin the expected double-slit fringe oscilla-
tion (S7). The classicalization maodifies it by the fack{d), with the largest proposed value for the slit
distanced = 52nm. We evaluate the macroscopicity by modeling the pastias homogeneous spheres
(o = 2200 kgm?) of 20 nm radius (see equations (6) and (7) of the main temt), by assuming that at least

50% of the fringe amplitude is observed.



Talbot-Lau interference with molecules and clusters [§-<Eh be treated in a similar manner. The
sinusoidal fringe visibility'Vsi, of a symmetric setuply = T» = T) is reduced tdR (hT/md) V.. Judging
from the error bars at high visibilities, we assume that tleasaurements are compatible with at least 90%
of the prediction for Go molecules (Fig. 3 in [8]), 90% for §F4s (Fig. 5 in [10]), and 80% for PFNS8
(Fig. 4b in [11]). The fringe pattern observed in [9] witlRdE4s (Fig. 4) corresponds to 75% of the predicted
visibility.

3 Ramsey-Bord é interference with | , molecules

In the experiment [13] a beam of molecules h = 254 amu) passes two pairs of counter-propagating
running-wave laser beams, as described in detail in [14]0 Paths through the setup contribute to the
recorded Ramsey fringe pattern, as shown in Fig. 2 of Rel. [ must include, however, a significant
contribution from two further paths to the signal [14]. Thieiterference is washed out over the transverse
velocity distribution of the molecule beam. We assume thaytadd an fiset to the most pronounced
central fringe of the (*)-curve in Fig. 2 of [13]. If all fourgihs contribute by roughly the same weight
we must halve thefset of the central fringe in the diagram, which yields a tvadhpfringe visibility of

f ~ 400au./(2400- 1200) au. = 0.33. The passage time is determined by the«{3j mm length of the
interferometer and the mean molecular velocity of 33€.rthis yieldsu = 7.3, according to equation (9) of

the main text.

4 Mach-Zehnder-type interference

The two atom interferometers featuring the greatest maopisity in Fig. 2 [15,16], as well as the proposed
satellite atom interferometer [17] listed in Tab. 1, arei@cgtMach-Zehnder-type geometries, which could
in principle yield close to 100% fringe contrast. We use theorded fringe visibilitiesf = 0.62 (Fig. 19

in [15]) and f = 0.33 (Fig. 3 in [16]), and a hypothetical value 6f= 0.5 for the proposal [17]. In all
three cases the interfering particles &fCs atoms, and the interrogation time is given by twice theeul
separation timé& . The respective values afe= 160 ms, 400 ms, and 2000 s.

In the N@ molecule interferometer [18] the Mach-Zehnder geometryealized with three material
diffraction gratings. The total length of the interferometetiding beam collimation is about?m [19, 20],
and the molecules pass it at a mean velocity of 8% rithis yields an interrogation time ofé&dns. The
maximally possible contrast is limited by two factors: Eitke diferent weights of the interference paths,
which correspond to the zeroth and the firdtrdiction order at the first grating; they are givenRy Py =
sinc(0.37) /1 = 0.74. Second, the modulation of the interference pattern bythird grating mask; it

contributes a factor of sin@.37) = 0.86 to the fringe amplitude, assuming a sinusoidal fringéegpatand a



grating opening fraction of 30%. The detected contrastus thmited to below 85%. We extract a measured

fringe contrast of about 30% from the inset of Fig. 4 in [18}, = 0.35, which leads tq = 7.2.

5 Oscillating microresonators

The authors of [21] propose to create a quantum superpogtade of an oscillating micromirror by entan-
gling it with a single cavity photon in one arm of a Michelsornerferometer. If coherence is maintained in
the mirror motion during one period of oscillation photoreirfierence fringes should be observed at 100%
contrast.

The classicalization master equation (equation (1) in taertext) for the harmonic mirror motion can
be integrated explicitly. We find that it reduces the fringghility after one oscillation periods2 wm by the

factor

21
R= exp{fo % [ﬁlo (2:<xo sin? % % sing) - 1]} (S9)

with 91p the reduced Fourier transform of the distributmnThe latter and the time parametesire given by
equations (6) and (7) in the main text. The micromirror is mled as a homogeneous cube of mass density

o = 2300 kgm?, b = 10um edge length and a massMf= ob® = 2.3 ng, which yields

2
1 = 1 (M) 3 (S10)
T Te \IMe
M M2 ? ). ,(qb
=yl — "  ex (—— - —)smc2 (—) S11

with the o-q-dependent geometry factor

-2 2|2
_ o(ab o \ﬁa_qb )
Y—Z(h) [exp[ 2h2)+ 2herf o 1].

The authors presume a frequenay;/2r = 500 Hz, a ground state oscillation amplitudexgf= 170 fm and

(S12)

a photon-mirror coupling strength of= 1.63. We findu = 19.0 for a measured 50% fidelity.

For the hypothetical superposition experiment with anliadirig Al micromembrane, as listed in Table |
of the main text, we use the parameters given in [22]. The mangomasdM = 48 pg and the mechanical
frequencywm/2r = 10.56 MHz yield a tiny ground state amplitude ®f = v24/Mwn, = 8fm. To give a
good upper estimate of the macroscopicity of such an expetiwe thus approximate the flexural mode
of the membrane by a axial center-of-mass vibration of a lyggmeous disc of thickneés= 100 nm and

radiusR = 7.5um. We obtain the fective distributiong:p (s, ) of (S11) and a time parameter

1 2y(M 2 (oqR\? O’%R2 (réRz créR2 créR2
;—T—e(@) (7) exP{‘? s I ] I

: (S13)




with 1o 1 the modified Bessel functions.

We assume that the membrane is prepared in the superpcstiety) = (|0) + 1)) / V2 of the zero- and
the one-phonon eigenstate, and that the associated nondlagatrix elementl|o;|0) does not decay by
more than 50% after a time= 27n/wm Which corresponds to = 1000 oscillation cycles. Due to the large
massM and the small amplitudg, we may neglect the position spread in (S11), and we may Taylor-

expand its Fourier transforighp (X, p) to lowest order irx. With this we arrive at the explicit condition

e (2 X5
L WI0) ~ | wnr 702

which leads to a macroscopicity pf= 11.5.

O'sz]

-2
1- exp(—# + 1] > 50% (S14)

6 BEC interference

The interference of two sodium BECs observed in [23] is medieising a second quantization phase-space
picture in [24]. Following the same line we define a secondtjmation form of the characteristic function,

R (xp) = fde P/t (XO - g)t?/(x() - g) (S15)

De Broglie interference of trapped BECs is observed as gdrjpattern in the time-evolved single-particle
densityrf(x) = ¢' (X) ¢ (x) for each individual run of the experiment. The fringe viltiiis given by the

corresponding Fourier componentrofX),
£(0.3)= [aoeinoo, (s16)

wherea denotes the fringe spacing. The pattern observed in eaadf the experiment [23] can be assessed
in the case of non-interacting bosons by replacing the #atign operatony (x) with the collective wave
functiony (X) of the two trapped condensates. A free evolution of (S15hbyimet then yields the visibility

x (0,h/2) of the resulting interference pattern. The fringe spacing should be modified to account for
interactions in the BEC [24].

The second quantization form of the redudégbarticle operators (4) reads as

W (s, q) = % fdx g X/t (X)lZ/(X+ %s) (S17)

A straightforward calculation reveals that (S15) thengitzdizes at the rate

2
cren--{]2

-2 f dsda ge(%s q)é(qx-pgfh])z(x, 0 (s18)

of a single atom. We therefore estimate the macroscopimiy quation (9) of the main text. The authors

of [23] observed about = 75% interference contrast in a sodium BEC after a time-ghfloft = 40 ms;
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this yieldsu = 8.4. In the experiment [25] the phase sensitivity of the imtereter was increased, but at
an interference contrast of only 15% after 200 ms, whichddag = 8.3 (not discussed in the main text).
Modern-day experiments with multi-component BECs makeafs®onlinear interactions and number
squeezing to increase the coherence time and the phastvitgresnploying internal atomic states [26—28].
The use of such techniques in interference experimentsspdhially split BECs would only yield a macro-
scopicityu that is comparable to single-atom interferometers. Thikiesto the fact that the single-particle
nature of the classicalizingffect (S18) holds irrespectively of whether nonlinear intéoas modify the
coherent time evolution of the condensate wavefunctiongéravalues of: could be achieved by increasing
the fringe visibility and the time-of-flight in both singktom and BEC experiments, possibly carried out in

a microgravity environment.

7 SQUID interference

For the case of SQUID experiments we obtain the exclusiovecnirthe classicalization parameters in Fig. 1
and theu-values in Fig. 2 and Tab. 1 by estimating the decay rate oparposition state of macroscopically
different supercurrents, i.e.fifirent phases across the junctions in a Josephson loop. Hsistwdied
theoretically for spontaneous localization models in [2#ose observable consequences are a special case
of the classicalizing modification discussed here [30].

A state of finite current densityj) in a solid with electron density, is described by a Fermi sphere,
displaced by the momenturk;, j = neefikj/me. The undisplaced stat®) is taken to be the BCS ground
state of the superconductor [31,32]. It is characterizethbyprobability amplitudesy (ux = /1 - vﬁ) ofa

Cooper pairk T, —k |) being occupied (unoccupied),

k? — k2

- )
V(2 =12) + 2menr/n2)?

Here, ik = mgvg denotes the Fermi momentum ang the pairing energy. The latter is approximated

(S19)

1
Vk==[1-
k=2

in the usual way by the zero-temperature energy yap 1.76kg T, for electrons close to the Fermi level,
k2 — kﬁl < 2mewp/h, and zero otherwise. The terdn denotes the Debye cufdrequency of the material.
We use the literature valudg = 1.18 A1, A = 1.44meV,7iwp = 23.7meV for Nb, anckg = 1.74 A1,
A =0.17 meV,iwp = 36.9 meV for Al, respectively [33, 34].

The second quantization form of the classicalization dpesdequation (4) in the main text) for electrons

reads as

We(sha) = > > € al (Ka, (k+q). (S20)

o=T,1 k



The sum covers all discrete electron momentum states irea gmumeV, each state occupying the elemen-
tary cell (2r7)3/V in momentum space. The classicalization kick distributigiis, g) must be discretized
accordingly. We find that a superposition stataf two distinct supercurrents and j, decays at a rate

Dl o™ T (520
due to classicalization. This assumes tfjatj,) = 0, and that the net numbéN of electrons occupying
different states in each superposition branch [34] is large.d€hbay rate splits into two contributions. The
first one is related to momentumfidision, which requires that at least one elementary unit ahemum

2nh/VY3 is transferred. In the continuum limit, — V/(2r)® [d®k we find

Vi

Laifr = W ff d3sd3q d3k ge(s, hQ) UkVk+q (Uka+q + VkUk+qei(2k+q)'s) . (822)
e
g>n/V1/3

The expression is ultimately bounded Byyz < N/7¢ in the limit of arbitrarily strong momentum kicks,
when allN = nV conducting electrons can be transferred from one brandhedfuperposition to the other.
It does not depend on the actual value of the supercurrents.

The second contribution represents the dephasing thatscfsoma the classicalization-induced position

kicks, when no momentum redistribution of the electrongs$gilace,

253 .
L'deph = 2re f d*sd®q g (s 7ig) (1 - €°49)
SSN/V1/3

2
: (S23)

fd3k vegks

Here,ick = me(j; — jo)/Ne€ denotes the dlierence in momentum displacement of the two current branches
It is orders of magnitude smaller than the Fermi momenturd,|@n- § <« 1 holds for any reasonable kick
distributionge. Hence the dephasing contribution scales quadratically thi net diference in occupation
of the two displaced Fermi spheredy = 4N|5k|/3kr. While this may potentially be significant for large
SQUID geometries, the filusion contribution dominates in all existing real-size eximents.

Experimentally measured coherence tinfesof such current superpositions provide an upper bound
for the decay rat&. We estimatel, by the smallest observed frequency splitting in the expenis [35]
(T2 = 1ns) and [36] T2 ~ 10 ns); the authors of [37] estimale ~ 15 ns. Classicalization parameters which
lead toI” > 1/T, are then excluded by each experiment. This yields the SQUH2edn Fig. 1, as well as
the u-values plotted in Fig. 2; the latter are computed with tharstary conditionors < 1 A < 7i/oq, as
discussed in the main text. The superconducting loop isrgshhyL = 560um of Nb in [35], 20um of Al
in [37], and 18Qum of Al in [36]. We assume the respective material crossisestas 5:m?, 36000 nr,
and 1um?. The experiment [37] yields a smaller macroscopicity= 3.3, than [35] f = 5.2) due to its
smaller ring geometry. Only the greater value is includeBiq 2. The large hypothetical SQUID in Tab. 1

of the main text is a 20 mm loop of 1(n? cross-section with a coherence time of 1 ms.
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The actual values of the supercurrents do not influenca-thedues, since the dephasing contribution is

negligible in all cases. We use a currerftelience ofl; — I, = 3uA for Fig. 1, as given in [34].

8 Schrodinger’s gedankenexperiment

In our version of the famous gedankenexperiment, as listetab. 1 of the main text, we consider the
hypothetical superposition state of an ideal cat sittingnat placesx; and x, that are 10cm apart. The
center-of-mass coherence of the cat then decays like

B0 2 [t (ere-20t
due to classicalization. We have neglected the weak poditibusion in the classicalization master equa-
tion (1) here. The mean coherence time of this state shallsbdriorder to evaluate the above decay rate
using ther and theg of a compound, as defined by (6) and (7) in the main text, we inbdecat as a

homogeneous sphere of water with a mass of 4 kg.
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