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Orbital angular momentum interference of trapped matter waves
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We introduce a matter wave interference scheme based on the quantization of orbital angular momentum in
a ring trap. It operates without beam splitters, is sensitive to geometric phases induced by external gauge fields,
and allows measuring interatomic scattering lengths. We argue that orbital angular momentum interferometry
offers a versatile platform for quantum coherent experiments with cold atoms and Bose-Einstein condensates
using state-of-the-art technology.
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Introduction. Trapped interference experiments [1–8] are
promising platforms for the next generation of force and
acceleration sensors. Guiding matter waves enables atom
interferometers with long interrogation times, while provid-
ing considerable freedom for choosing the geometry [9–12].
Toroidal traps are particularly attractive for fundamental quan-
tum experiments [13–18] and for precision sensing [19–21]
with ultracold gases or fluids. The ring geometry implies
that the orbital angular momentum of the revolving particles
is conserved. As argued in the following, its fundamental
quantization can be exploited to realize trapped interference
schemes requiring no beam splitters.

We note that the free quantum dynamics in a ring ge-
ometry exhibit quantum revivals. An initially well-localized
wave packet quickly disperses along the ring on a timescale
determined by the orbital angular momentum spread. Only
after a much longer quantum revival time, which is inde-
pendent of the initial state, does the localized wave packet
briefly reappear due to the quantization of orbital angular
momentum [22]. Similar revival effects are encountered in
the orientation of revolving molecules [23–25], and they
have been proposed for electromagnetic pulse shaping in
semiconductors [26] as well as for macroscopic quantum
superposition tests with nanorotors [27].

Here, we propose an interference scheme which exploits
the brief emergence of a balanced superposition at half the
revival time. By imprinting a relative phase on the super-
position, one can coherently control at which antipode the
wave packet reappears after the full revival time. The pres-
ence of an additional gauge field induces a rotation of the
revival determined by the accumulated geometric phase. In
contrast to many existing proposals for interference in ring
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traps [19,28,29], orbital angular momentum interference does
not rely on atomic spin states or collective excitations. It is
thus applicable to all matter-wave experiments with a toroidal
geometry, ranging from electrons in solid state quantum
rings [30] to nanoparticles in optomechanical traps [31]. Here
we discuss the special case of optically trapped atomic clouds
or Bose-Einstein condensates (BECs), and show that this
scheme is sufficiently resilient to be realizable with state-of-
the-art technology.

Interference scheme. In order to explain the interference
scheme we first consider the idealized case of a point particle
of mass m confined to a circle of radius R. Its Hamiltonian
reads H = L2

z /2mR2. Since the eigenvalues of the orbital
angular momentum operator Lz are integer multiples of h̄,
with eigenstates |�〉, the time evolution operator U0(t ) =∑

�∈Z exp(−ih̄t�2/2mR2)|�〉〈�| is unity for all even multiples
of the revival time

Trev = 2πmR2

h̄
. (1)

A straightforward calculation shows that the evolution
for the revival time performs a π rotation, U0(nTrev) =
exp(inπLz/h̄), with n ∈ N0. In a similar fashion, free evo-
lution for Trev/2 acts as a beam splitter, preparing a bal-
anced superposition of the initial state and its π -rotated ver-
sion [24,32],

U0

(
Trev

2

)
= e−iπ/4

√
2

(1 + ieiπLz/h̄), (2)

where 1 is the unity operator.
An initially tightly confined wave packet thus first dis-

perses on a short timescale determined by its initial angular
momentum uncertainty. The state then remains delocalized
over the ring for most of time, showing fractional revivals
such as Eq. (2) at fractions of the revival time. The lifetime of
these fractional and full revivals is determined by the initial
dispersion time, and is thus typically orders of magnitude
smaller than the revival time itself.
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FIG. 1. Schematic illustration of the orbital angular momentum
interference effect. A localized wave packet (a) quickly disperses
(b), before reappearing (c) at Trev/2 for a short period of time in a
balanced superposition of the original and mirrored locations; see (1)
and (2). Applying a relative phase ϕ between the two superposition
components controls final population imbalance at the antipodes
(d) after further time evolution for Trev/2. If a gauge field is turned
on quickly after releasing the wave packet, the interference pattern
(black) is rotated with respect to the field-free case (gray) by an angle
γ�/h̄, equal to the Aharonov-Bohm phase [see Eq. (3)].

The dynamical beam splitting described by (2) is exploited
by the following interference scheme; see Fig. 1(a): The
particle is initially prepared in a well-localized state |ψ0〉.
After dispersing on a short timescale, the localized state reap-
pears at half of the revival time in a balanced superposition
(|ψ0〉 + i|ψπ 〉)/

√
2, with the π -rotated initial state |ψπ 〉 =

exp(iπLz/h̄)|ψ0〉. Then a relative phase ϕ is induced between
the two wave packets, for instance gravitationally by tilting
the ring, optically via laser illumination, or in the case of an
atomic cloud via magnetic control of the scattering length.
After imprinting the phase, the state evolves freely for an-
other Trev/2, yielding the final state |ψ f 〉 = cos(ϕ/2)|ψπ 〉 +
i sin(ϕ/2)|ψ0〉. The final position of the particle is thus deter-
mined interferometrically.

Gauge fields and external potentials. The interference ef-
fect depends sensitively on the interaction with external gauge
fields. If the field A(r) is minimally coupled to the canon-
ical angular momentum Lz, the kinetic angular momentum
is Lz − γ RA(α̂). Here γ is the gauge coupling and A(α) =
A(Reρ (α)) · eα (α) is the azimuthal component of the gauge
field evaluated at the angular position α.

The presence of A(r) implies a gauge-invariant flux
� = R

∮
dα A(α) piercing the ring interferometer and thus

modifying the free time evolution of the matter wave. The

unitary time evolution operator becomes

U�(t ) = V exp

(
i
γ�

h̄

t

Trev

Lz

h̄

)
U0(t )V†, (3)

where V = exp (−iγ�α̂/2π h̄ + iγ R/h̄
∫ α̂

0 dα′A(α′)) can al-
ways be set to unity by choosing an appropriate gauge (sym-
metric gauge in the case of a constant field). Thus, a finite
flux induces a rotation of the recurred wave packet by the
Aharanov-Bohm-type phase γ�/h̄.

For example, if the particles are electrically charged, γ =
q, a magnetic flux � through the ring will shift the energy
levels [32,33] causing the wave packet to rotate. In a similar
fashion, the Aharonov-Casher phase [34] can be measured if a
magnetic dipole m = m0ez evolves in presence of the electro-
static field E(Reρ ) = E0eρ produced by a line charge. In this
case one has γ A = m × E/c2, implying γ� = 2πRE0m0/c2.
Likewise, geometric phases can result for a permanent or
induced electric dipole p in a magnetostatic field B, so that
γ A = p × B [35], or for a massive particle in a noninertial
frame rotating with angular frequency ω around the trap
center, so that γ A = mR2ω.

The presence of a weak external potential V (α) =
V0 cos(α − α0), such as that arising from a constant tilt of
the ring, leads to phase dispersion. To leading order in V0, the
energies are shifted by


E (pot)
� ≈ mR2V 2

0

4h̄2

(
�2 − 1

4

)−1

. (4)

Since this is not proportional to �2, a conservative torque
affects the shape of the recurring wave packet. This is in
contrast to gauge fields, which only shift the position of the
revival.

Revivals in 3D torus traps. The evolution of a particle in
a real-world (three-dimensional) torus trap differs from the
idealized situation described so far. The dynamics transverse
to the ring tangent affect the angular dynamics even if the
transverse motion remains in its ground state, since the cen-
trifugal force distorts the level spacing. Shape imperfections
and excitations of the transverse degrees of freedom can
further affect the interference. We will show next that the
proposed orbital angular momentum interference protocol
is nevertheless surprisingly robust and remains feasible for
realistic trap geometries.

To study the dynamics in a real-world torus trap, we
expand the full 3D Hamiltonian of a particle in a torus
trap and consider leading-order corrections in the transverse
size of the wave packet. For this sake, we use a Frenet-
Serret coordinate system (s, u, v) with arc length s and two
transverse coordinates u, v. Thus, the position vector is r =
R(s) + un(s) + vb(s), where R(s) traces the center line of
the torus trap, while n(s) = R′′(s)/κ and b(s) = R′(s) × n(s)
span the transverse plane at each position [36,37]. Here, κ =
|R′′(s)| is the curvature, where prime denotes derivative with
respect to s.

Since the new coordinate system (s, u, v) is curved,
coordinate-space normalization of the wave function includes
the root of the metric determinant (Jacobian) h. Expressing the
latter as h = 1 − κu and assuming that the trapping potential
is separable in the transverse direction yields the Hamilto-
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nian [36,37]

Hs = − h̄2

2m

[
∂s

∂s

h2
+ ∂2

u + ∂2
v + κ2

4h2
+ 5(h′)2

4h4
− h′′

2h3

]

+ Vu(u) + Vv (v), (5)

which acts on the rescaled wave function χ = √
hψ .

If the radially confining potential is harmonic with fre-
quency ω⊥ and assuming that centrifugal distortions and small
deviations from the ideal circular trap can be described by
expanding the Hamiltonian to first order in the small quantities
κσu, κ ′σu/κ , and κ ′′σu/κ

2 (with σu = √
h̄/mω⊥ the width of

the transverse ground state),

Hs ≈ − h̄2

2m

[
(1 + 2κu)

(
∂2

s + κ2

4

)
+ 2κ ′u(1 + 3κu)∂s

+ κ ′′u
2

+ ∂2
u + ∂2

v

]
+ mω2

⊥
2

u2 + Vv (v). (6)

Centrifugal energy corrections. For an ideal torus where
κ = 1/R the stationary Schrödinger equation becomes sepa-
rable. It admits solutions of the form

χ�kn(s, u, v) = 1√
2πR

ei�s/Rξ�k (u)�n(v), (7)

with eigenenergies E�kn = h̄2�2/2mR2 + E (u)
�k + E (v)

n where
k, n ∈ N0. Here, �n(v) are normalized eigenstates of the
harmonic motion out of the ring plane, whose eigenenergies
E (v)

n are independent of � and thus do not affect the revival
structure of the matter wave.

The radially confining harmonic potential in the
Schrödinger equation for ξ�k (u) is centrifugally shifted
by u� = h̄2(�2 − 1/4)/m2ω2

⊥R3,
[
− h̄2

2m
∂2

u + mω2
⊥

2
(u2 + 2uu�)

]
ξ�k (u) = E (u)

�k ξ�k (u). (8)

Thus, the eigenergies

E (u)
�k = h̄ω⊥

(
k + 1

2

)
− h̄4

2m3ω2
⊥R6

(
�2 − 1

4

)2

(9)

are lowered due to the centrifugal barrier.
The � dependence in the eigenenergies (9) can shift and

diminish the revival. Specifically, the �2 term in Eq. (9)
delays the revival without affecting its visibility, while the �4

correction decreases the fidelity of the revival and may further
modify the revival time. The optimal recurrence time can be
determined numerically from this equation.

Shape imperfections. In practice, deviations from the per-
fect circular shape of the torus trap are the most important
source of imperfections for optical traps. In particular, residual
astigmatism in the focusing optics may introduce a finite
ellipticity to the trap, which can be quantified with the help
of (6).

We replace the arc length with the eccentric anomaly β ∈
[−π, π ) used for the standard parametrization of the ellipse.
Thus, ∂s = h−1

ε (β )∂β/R, where R and ε are the semimajor axis
and the eccentricity and hε(β ) =

√
1 − ε2 cos2 β is the Jacobi

determinant of the ellipse. In lowest order of ε, the Hamilto-
nian reads as Hβ = h1/2

ε Hsh−1/2
ε ≈ H(0)

β + ε2H(ε)
β , where H(0)

β

describes the motion on the circle and

H(ε)
β = − h̄2

4mR2

[
1 + 3u

R
+

(
1 + 5u

R

)
cos(2β )

]
∂2
β

+ h̄2 sin(2β )

2mR2

(
1 + 5u

R
+ 9u2

R2

)
∂β

− h̄2

16mR2

[
1 + 3u

R
−

(
1 + 11u

R

)
cos(2β )

]
. (10)

This implies that the eccentricity-induced energy shift reads
in first-order perturbation theory


E (ε)
� = h̄2ε2

8πmR2

(
1 + 3u�

R

)(
�2 − 1

4

)
. (11)

Here we expressed the position expectation value of the radial
state by the centrifugal shift of the harmonic potential (8),
〈u〉 = −u�. The first-order influence of a finite eccentricity is
thus to decrease the revival time, while further diminishing
the revival due to the � dependence of the radial potential
minimum u�.

Implementation with BECs. We are now in a position to
argue that the orbital angular momentum interference scheme
can be realistically carried out with weakly interacting BECs
in an optical torus trap. For concreteness, we consider a
condensate of 39K in a trap formed by two coaxial Gaussian
beams, one repulsive and one attractive, intersected with an
attractive light sheet, as in Ref. [19]. The wavelengths of the
red- and blue-detuned laser beams are assumed to be 830
and 532 nm, respectively, with powers of 2 and 2.5 mW as
well as waists of 13 and 5.5 μm. The light sheet with the
same wavelength as the red-detuned laser has a power of
10 mW and waists of 5 and 200 μm, so that the trap radius
is R ≈ 5.9 μm and the transverse confining frequency ω⊥ ≈
6.4 kHz. The necessary coherence time of Trev ≈ 135 ms is
experimentally within reach [8].

Figure 2 shows the simulated dynamics of the orbital an-
gular momentum interference protocol for (a) a noninteracting
and (b) a weakly interacting BEC of N = 2 × 104 39K atoms.
We assume in both cases that the Feshbach resonances of
39K [38] are used to make the interactions (a) negligibly small
or (b) equivalent to a scattering length of one Bohr radius.
The tightly confined initial wave packet, loaded from three-
dimensional harmonic trap of frequency ω⊥, quickly disperses
around the torus. It then reappears in a superposition after
approximately 65 ms. The presence of interactions diminishes
the revival signal. However, even at a realistic transverse
confinement and interaction strength, the effect is still clearly
visible in the population imbalance displayed in panel (c). The
latter shows that the interference visibility exhibits almost the
ideal dependence on the imprinted phase. The numerical cal-
culations are based on the Trotter-Suzuki expansion [39–41].

For this setup, the centrifugal energy shift (9) amounts to a
few percent of the rotational energy for the highest-populated
� eigenstates (� 	 25). The corresponding correction to the
revival time is at a permille level, but, given the quick disper-
sion time, exact timing on the scale of a few microseconds
is required to imprint the phase and to observe the revival.
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FIG. 2. Mean-field simulation of the interference scheme shown in Fig. 1(a) realized with a BEC of 39K in an optical trap. (a) Snapshots
of the time evolution for a noninteracting condensate: initial particle density, dispersion, recurrent superposition at half of the revival time,
and final interferometrically controlled revival with ϕ = π/3. The external phase of exp(iϕ cos2 α) is applied on the left part of the ring at
Trev/2. The revival time Trev ≈ 135.8 ms is found by maximizing the overlap between the initial and final states for ϕ = 0. (b) As in (a) but
with interatomic interactions characterized by the scattering length of one Bohr radius for a BEC of N = 2 × 104 atoms. As a result of the
interactions the revival time changes to Trev ≈ 136.2 ms. (c) Interference signal as a function of external phase ϕ in the noninteracting [as in
(a), circles] and interacting [as in (b), diamonds] cases, as compared to the ideal situation (dotted line). The population imbalance is defined as
(NR − NL)/(NR + NL), where NR, NL are the numbers of atoms on the right and left sides of the ring, weighted with cos2 α.

In a similar fashion, the corrections of the revival time due
to interactions must be accounted for, as has been done
numerically in Fig. 2(a).

The relative phase ϕ can be imprinted, e.g., optically, via
tilting of the apparatus, or via induced interatomic interac-
tions. For example, if the trap is briefly tilted at Trev/2 the
gravitational potential yields the phase ϕg ≈ 2mgRtd sin θ/h̄,
where θ is the tilt angle and td is the revival lifetime. The
latter is the dispersion timescale td ≈ 1/ω⊥ of the initial
wave packet of width

√
h̄/ω⊥m. For the above example, this

requires tilting with a precision of hundreds of microradians.
Likewise, if the magnetic field on one side of the ring is

detuned from the zero crossing of the Feshbach resonance, the
matter wave acquires a relative phase ϕa ≈ 4π h̄ a nBEC td/m,
where a is the induced scattering length and nBEC is the
particle density in the initial state. With this one can measure
the scattering length with precision 
a ≈ 0.2a0 (with a0 the
Bohr radius), on par with state-of-the-art time-of-flight [42]
and spectroscopic [43] measurements for 39K.

Conclusions. We introduced orbital angular momentum
interference as an attractive platform for trapped matter-wave
interferometry in toroidal geometries. Since the proposed

scheme relies on the universal property of orbital momentum
quantization, realizations with many different systems can
be readily envisioned, e.g., single atoms or BECs in optical
traps, ions in electric traps, electrons in solid state quantum
rings, as well as molecules and nanoparticles in optical or
electrical traps. For the case of a BEC in an optical trap,
we have shown that the protocol is feasible with present-day
technology.

The interference effect is sensitive to the presence of
gauge fields. In the presence of a magnetic field flux �,
for instance, the revival of particles with charge q will be
displaced by the angle q�/h̄. Assuming that displacements on
the size of the initial wave packet can be angularly resolved,
fields below 10−7 T level can be detected with the setup
described above.
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