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Abstract
We study howmatter-wave interferometry with Bose–Einstein condensates is affected by hypothetical
collapsemodels and by environmental decoherence processes.Motivated by recent atom fountain
experiments withmacroscopic arm separations, we focus on the observable signatures offirst-order
and higher-order coherence for different two-mode superposition states, and on their scalingwith
particle number. This can be used not only to assess the impact of environmental decoherence on
many-body coherence, but also to quantify the extent towhichmacrorealistic collapsemodels are
ruled out by such experiments.We find that interference fringes of phase-coherently split condensates
aremost strongly affected by decoherence, whereas the quantum signatures of independent interfering
condensates aremore immune againstmacrorealistic collapse. Amany-body enhanced decoherence
effect beyond the level of a single atom can be probed if higher-order correlations are resolved in the
interferogram.

1. Introduction

Recent years havewitnessed the experimental demonstrationof quantumsuperposition states far beyond the atomic
regime. Inparticular, experiments delocalizingmechanical degrees of freedom, vie for the sheermass or numberof
constituentparticles involved.Center-of-mass interferencewith composite nano-objects iswell established [1–3],
and experimental efforts to cool the vibrationalmodes ofmicromechanical resonators or levitatedparticles are
approaching a regimewhere quantumcoherencemaybecomeobservable [4–7]. Collective quantumcoherence can
also beobserved in interference experimentswithdilute andweakly interactingmany-body systems, suchasCooper-
paired electrons in superconductors [8–10]orBose-condensed atomscoherently split between two spatialmodes
[11–15].Here, number squeezing can lead to a significant amount ofmany-body entanglement between the two
modes of the condensate [12, 14]. At the same time, single-atom interference experiments have reached
unprecedenteddegrees of precision and enormous scales in termsof interference arm lengths [16–18] to the extent
that even tiny gravitational forces and relativistic correctionsof the Schrödinger equation canbedetected [19–21].

These experiments all have in common that they push the domain of quantummechanics far into the
macroscopic regimewith respect to one or another figure ofmerit—be itmass, arm separation, or coherence
time [22]. They are thus raising the stakes for proponents of objective collapse theories andmacrorealism
[23, 24]. In fact, this gives rise to an objective, empiricalmethod to quantify the degree ofmacroscopicity
attained inmechanical quantum superposition experiments, since one experiment can be deemedmore
macroscopic than another if it rules out a greater set ofmacrorealisticmodifications to quantum theory. This can
be turned into a quantitative statement by specifying themathematical formof a generic class of such
modifications, as derived fromanumber of basic symmetry and consistency requirements [25].Wewill refer to
them asminimalmacrorealistic modifications (MMM) in the following. Themodel of continuous spontaneous
localization [24, 26, 27] is a renowned special case, whose impact on optomechanics andmatter-wave
experiments is being scrutinized [28–34]. In turns out that, by this empirical standard ofmacroscopicity, the
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latest atom interferometers are on parwith the heaviestmolecules interfered so far, andwill still be comparable
to superpositions achievable with state-of-the-art optomechanical systems in the near future.

According to Leggett’s classification ofmacroscopically distinct superpositions [23], thementioned
empiricalmacroscopicity [25] complements othermeasures found in the literature, where the degree of
macroscopicity is associated to entanglement in amany-body superposition state [35–39]. For afixed atom
number, a cat, GHZ, orNOON statemarks the top end of the yardstick in these approaches whereas product
states (PS) are at themicroscopic bottom end. Realistic scenarios of weakly interacting two-mode condensates
with a controllable amount of squeezingwould be somewhere in between, even though the actual entanglement
is inferred only indirectly through variances of collective observables, such as the phase and the population
difference [40–43]. The interference of Bose-condensed atoms thus brings about both aspects ofmacroscopicity:
many-body entanglement and sensitivity toMMM.

In a two-mode BEC interferometer, three basic types of nonclassical behavior have been observed: (i) the
bosonic character of the atoms that leads to interference fringes between independent condensates with no
phase relation [44], (ii) phase-stable single-atom interference in a coherently split condensate over spatial
[11–15, 45] or internal [46–48]degrees of freedom, and (iii) genuinemany-particle nonlocality by violating
Tura-Bell inequalities with number-squeezed condensates [49, 50]. The very first BEC superposition
experiments verified indistinguishability (i), possibly theweakest quantumphenomenon in terms of
macroscopicity, known also from laser interferometry [51]. Phase-coherent interference (ii) and nonlocality
tests (iii), on the other hand, aremore suited to testmacrorealism, as theirmeasurement results would be
affected byMMM-induced dephasing at least on the single-particle level.

The goal of the present article is to assess the empiricalmacroscopicity and to discuss the implications of
macrorealisticmodifications acting on various states of a BEC evolving in the two spatially separated arms of a
Mach–Zehnder interferometer, as sketched infigure 1.Our results will also describe the sensitivity of interfering
condensate states and their observed signatures to environmental decoherence. In fact, the genericmaster
equation formacrorealistic collapsemodels adopted here applies to any process that induces single-particle
diffusion and dephasing in an exchange-symmetricmanner.

For the purpose of evaluating the results, wewill focus on a recent experiment with Rb condensates and a
vertical arm separation of half ametre [52]. The claim based on extended datafigure 3 in [52] that the
measurement rules outMMMat this size scale has caused some controversy [53, 54] due to the fact that phase-
stable interference fringes in the atom count statistics of the two output ports were not directly observed. (Phase
stability was improved in a subsequent dual-interferometer scheme at smaller wave packet separation [55].)
According to the criticism, the original experiment leaves room for doubts as towhether a coherent splittingwas
at all realized in the experiment orwhether the same statistics could in principle result from two condensates
without phase relation.Wewill show that, from a strictly empirical standpoint, this ambiguity implies a
significantly different sensitivity tomacrorealistic collapse and decoherence.

Specifically, wewill analyze the impact ofMMMon themeasurement statistics and results of generic
observables for three different condensate states. The empiricalmacroscopicity of an ideal single-atom

Figure 1.Generic two-armMach–Zehnder configuration leading tomatter-wave interference in two outputmodes. (a)NBose-
condensed atoms (red) are coherently split into a superposition of twomodes with distinctmomenta, evolve dispersively along
spatially separate arms, get reflected, and recombined after accumulating a total phase difference j (including the beam-splitter
phase). By varying j an interference signal can be recorded in the atom counts detected in each outputmode a b, . Dephasing and
uncontrolled phase fluctuations overmany runs result in awashed-out interferogram. Second-order interferencewith a random
phase j in each run is also observed by preparing two independent condensates of N 2 atoms in eachMach–Zehnder arm (green,
dashed). (b)Abstraction of the schemewhere the two diverging and reconvergingmodes are substituted by twowave packets at rest,
displaced by an effective distance xD . Both schemes are essentially equivalent regarding the effect of decoherence and objective
collapse.
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interferometer can be reproducedwith condensates that formPS of single-atom superpositions, but notwith
phase-averaged product states (PAPS) or dual Fock states (DFS).Moreover, phase coherence in a single run
cannot be deduced from the statistics of atom counts in the two outputmodes accumulated overmany phase-
randomized runs. This all implies that a PS yields the highest value ofmacroscopicity in a given phase-stable
experiment, equal to that of an equivalent single-atom interferometer operatedwith the same number of
particles. Given afixed population difference between the two arms, a PAPS can be distinguished fromaDFS of
independent condensates if single atom counts are resolved [56]. This level of precisionwould then imply that
also higher-order correlations between the atoms could be detected, whichwould increase themacroscopicity of
the experiment as they aremore vulnerable to decoherence.

The paper is organized as follows. In section 2, wefirst introduce the experimental setting and the
investigatedMMMclass of decoherencemodels, beforewe present themain results applied to the atom fountain
experiment of [52]. Section 3 proceeds with a detailed treatment of the predictions ofMMMin a single-particle
phase-space framework. Using the formalismof second quantizationwe then show in section 4 how the results
of the previous section can be applied to single-atomobservables in two-mode condensates and, in typical
scenarios where single-mode dispersion is negligible, also to higher-order observables and the full atom count
distribution.We concludewith an outlook in section 5.

2. Two-mode interference, decoherence, andmacroscopicity

According to the empiricalmeasure ofmacroscopicity [25] a BEC interference experiment is to be graded only
according to themeasurement data.We shall therefore not ask howmacroscopic a presumably realizedmany-
body superposition state would be in itself, e.g.in terms of its entanglement properties. Rather, we assess a
quantum experiment by analyzing towhat extent it rules out the generic decoherence and collapse effects that
are associatedwith aMMM.

The observable consequences ofMMMcan be described by a universal Lindblad superoperator  that is
added to the vonNeumann equation for an arbitrarymechanical system, , it H  r r r¶ = +[ ] . For the case
of a single bosonic particle species ofmassm considered here, the incoherent term can bewritten in second
quantization as [25, 57]
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r s r r r s

r r s r s r r r s r s r

m

m

d d d

2
e

1

2

1

2
. 1

r r

e e s

s
2

2 3
2 2q s

2 2 2 2 2
 òr

t ps
y y ry y

y y y y r ry y y y

=
¢

- ¢ ¢ -

- ¢ ¢ - - - ¢ ¢ - -

s s- - ¢ - ⎡
⎣⎢

⎤
⎦⎥

( ˜ )
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

( ) ˜ † †

† † † †

Here, rŷ ( ) denotes the bosonic field operator; the formulation for a single particle infirst quantization follows

by replacing r ry  ñˆ ( ) ∣†
.

Equation (1) describes a gradual decay ofmotional coherencewith a single-particle rate m m1 e e
2t t= ( )

beyond a critical length scale of q s and a criticalmomentum scale of s s̃ . Its form follows essentially by
imposing a number of basic symmetry and consistency requirements such asGalilean covariance, exchange
symmetry, scale invariance, and boundedness [25]. The positive parameters et , qs , and ss̃ , defined at the
referencemassme of an electron, are undetermined, but one assumes m m 20s es < ´˜ ( ) pm and 10q s <
fm to avoid nuclear excitations. A successful quantum superposition experiment provides further bounds on
these values, and themacroscopicity reached can be assessed in terms of the greatest value of t ruled out by the
observation [25]. One prominent example of aMMMcovered by (1) is themodel of continuous spontaneous
localization [24, 26], where 2 100q s = nmand 0ss =˜ . A regularized version of the self-gravitational
collapsemodel [58, 59] can be brought into a similar form [30, 60].

We note that for the dilute and atmost weakly interacting atoms considered in this article afinite value of
10ss ˜ fm is practically unobservable so thatwe can safely assume 0ss =˜ in the following. The dynamics

described by equation (1) can then be interpreted as resulting froma point process of randommomentum
displacements at an average strength qs and rate 1 t that does not distinguish between the atoms in the
condensate.

To be explicit, we can rewrite (1)with 0ss =˜ and m me e
2t t= ( ) as

q qg
1

2
d , , , 2q qA A òr

t
r=( ) ( )[ [ ]] ( )†

with q qg g=( ) (∣ ∣) an isotropicGaussian distribution of standard deviation qs . The operator

p p q pd 3qA a aò= +( ) ( ) ( )†
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describes a single-particlemomentumdisplacement by q.Master equations of this type appear in the description
of environmental decoherence, e.g.by scattering background gas or thermal radiation [61–65]. There, the
distribution ofmomentumdisplacements is notGaussian, but determined by the differential scattering cross-
section and the ensemble state of the incident scatterers. For instance, the generator (2) could describe
decoherence by isotropic scattering of radiation at the atom cloud in each arm, if g t were given by a frequency-
dependent scattering rate. Hence, as we analyze the impact ofMMMonBEC interferometry in the following, we
alsomake a statement about the sensitivity ofmany-body superposition states to environmental decoherence.

In the two-mode BEC scenario withwell separated arms considered here,MMM induce two effects:
(i) decoherence of coherent superpositions at a rate of atmost 1 t and (ii) particle loss from the condensate due
to isotropic diffusion heating at m3 2q

2s t of power per atom. Themacroscopicity of a given condensate state
realized in the experiment will thus depend on how sensitive its observed signatures are to those two effects.

In this article, we consider three relevant states ofN condensed atoms distributed equally into two arms of a
Mach–Zehnder setup.We assume that the two arms (ormodes) a b, are represented by single-particle
wavefunctions a b,y and the corresponding bosonic annihilation operators ac , bc . Thefirst condensate state is a
PS ofN single-particle superpositions of the form r rt t, e , 2a b

iy y+ f[ ( ) ( )] , which represents a coherently
split BECwith a stable relative phase f,

N

1

2
e vac . 4

N
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N
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ic cfY ñ = + ñf∣ ( )
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It can also be understood as the analog of a coherent state in the language of collective spins [66–68]. Note that
the single-modewavefunctions r t,a b,y ( )maydepend explicitly on time to reflect the freemotion and dispersion
in each arm. An experimental realization of the PSwould result in stable interference fringes as a function of f,
but it requires perfect phase stability from shot to shot.

For N 1 , the single-shot behavior thenmatches the average overmany runs, and it can be approximated
by themacroscopic wavefunction, an order parameter determining themean-field density and phase of the
condensate [69]. In this case, theMMM-induced dephasing effect can also be accounted for in themean-field
picture, as discussed in detail in section 3.2. The results are the same as for a single atom:MMM-induced
dephasing reduces the average interference fringe visibility a bc c µ á ñ∣ ∣† approximately by the factor

D
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given the interference timeT and the arm separation xD .
Note that although D ,qs t( ) can be used to reproduce the green curves of extended datafigure3 in [52], it

strictly applies only to the average interference contrast. And the observation of an average contrast 0obs >
requires a pure PS, or at a best amildly phase-averaged one. This would then rule out allMMMparameters for
which D ,q obss t <( ) . In particular, thoseMMMwith critical length scales smaller than the arm separation,

q x s D , are ruled outmost effectively, which yields amacroscopicity
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according to the logarithmicmeasure defined in [25]. It would amount to 12m » for the settings of [52] if a
phase-stable interferogramhad been recorded at 95%visibility4.

The second type of state describes a scenariowhere the relative phase of the two arms is not stable, but
fluctuates randomly from shot to shot, e.g.due to setup vibrations, as is the case in [52]. Assuming that the atom
numberN and the splitting ratio of the condensate remains stable, themeasurement statistics accumulated over
many shots is described by a phase-averaged ensemble of product states (PAPS),
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This state does not exhibit any first-order phase coherence or interference fringes, 0a bc cá ñ =† . Hence it is
insensitive to dephasing between the two arms, andMMMaffect it only in asmuch as they deplete the
condensate through diffusion heating. Yet, in each single run a condensate is coherently split, afixed (random)
phase is established between the arms, and the two parts can interfere upon recombination in the output beam
splitter. In fact, a spatial image of the overlapping cloudswould reveal interference fringes. Theoretically, such
random-phase single-shot fringe patterns are reflected in the second-order correlation functions. In the binary
setting discussed here, only the number of atoms in the two output ports is recorded per shot; there is no spatial

4
Notice theweak divergence as 1obs  . Although themacroscopicity grows the closer one gets to a perfect 100%contrast,measurements

can never reach it with certainty, but only up to a finite confidencewith lower bound 1obs < .

4
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imaging of single-shot interferograms. The second-order correlations then describe bunching and anti-
bunching, as reflected in the values of a a a ac c c cá ñ† † , b b b bc c c cá ñ† † , and a b a bc c c cá ñ† † .

The third type of input state considered here, is theDFS, a pure two-mode statewith no phase information,

N

1

2
vac . 8a b

N
DFS

2c cY ñ = ñ∣
( )!

( ) ∣ ( )† †

It represents two independent condensates of N 2 atoms, each occupying one arm, as was realized in the very
first BEC interference experiment [44], and also in a two-mode settingwith twin-atombeams [70]. Like the
PAPS, theDFS yields spatial imageswith high-contrast interference patterns in every single shot, butwith a
randomphase so that no pattern remains after averaging [71]. It is thus not affected byMMM-induced
dephasing either. The fringes are a consequence of particle exchange symmetry—in itself a quantum feature of
atoms—bearing close analogy to laser interferometry [72]. Both PAPS andDFS are less sensitive toMMMthan a
PS, i.e.have lowermacroscopicity. This sensitivity does not depend on the arm separation, nomatter how large
the lattermay be, given afixed interference time.

If the interferometric setup cannotmaintain a stable phase it is nownatural to ask if there is anyway to infer
from themeasurement data whether a coherently split condensate or two separate ones were present in each
run? In otherwords, do the experimental signatures of a PAPS and aDFS differ?Our detailed assessment in
section 4 shows that these states can be distinguished, but it requires a high precision, down to the level of single
atoms, both in the preparation of the condensate and in the count statistics.

This is exemplified byfigure 2, which compares second-order correlations of a PAPS (circles) to those of a
DFS (triangles) as a function of the atomnumberN. The upper and the lower data sets correspond to the
normalized normally ordered products of the atom count number in the same and in different output ports,
respectively, i.e., Na a a a

2c c c cá ñ† † and Na b a b
2c c c cá ñ† † . The averaging over the relative phase f in a PAPS (7)

generally leads to a higher probability of detectingmost atoms in either of the ports than of a balanced outcome,
aswewill show explicitly in section 4.3 andfigure 4.Hence, the correlation function for atoms in the same port is
higher than that for different ports. This holds true in the limit N  ¥ of a classical wave that is split and
recombined between the two arms (solid gray lines). In theDFS case, theHong–Ou–Mandel (HOM) effect [73]
predicts bunching of particle pairs in the same output port, which yields amore pronounced difference in the
second-order correlation functions infigure 2. The deviation between the PAPS and theDFS case vanisheswith
growingN as the discrete nature of the output ‘intensities’ in each port becomes less relevant and the classical
wave limit is approached.

The observable difference between a PAPS and aDFS ismost clearly captured by the full atom count statistics
in the output ports of thefinal beam splitter, as discussed in section 4.3. At evenN, theDFS yields alternating
counting probabilities P n( )with destructiveHOM interference at odd numbers and constructive interference at
even numbers, whereas the PAPS probabilities approximate the classical continuous distribution
g p p p1 1p= -( ) ( ) for p=n/N and N 1 . If the alternating behavior of adjacent count numbers n and
n 1 cannot be resolved due to a finitemeasurement resolution aDFS cannot be distinguished fromaPAPS.

Figure 3 compares the three types of states in terms of their sensitivity toMMMdecoherence in the
experiment. It shows the range ofMMMparameters ,e qt s ruled out by various (hypothetical)measurement

Figure 2.Normalized second-order correlation functions for a PAPS (circles) and aDFS (triangles) as a function of the atomnumber
N.We assume equal splitting at evenN. The upper and the lower data refer to the number of atoms detected in the same and in
differentmodes, respectively. The dashed curves are plotted to guide the eye, and the dash-dotted lines correspond to the asymptotes
N  ¥, see equations (31)–(34) in section 4.2.
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scenarios in aMach–Zehnder setupwith Rb condensates, assuming the parameters of [52]. The respective
macroscopicities are then given by log 1 se10 ,maxm t= ( ), with e,maxt the greatest ruled out et value for a
particularmeasurement [25]. The parameter et is related to the single-atom coherence decay time t in the
MMMgenerator (2) through themass ratio of a single Rb atomand an electron, m me e

2t t= ( ) . A quantitative
derivation of the results plotted infigure 3will be given in section 4.

The red solid line corresponds to the experimental observation of less than 5%atom loss during the
interference timeT. AllMMMparameters below the curve are then excluded by themeasurement data as they
would cause a stronger depletion of the condensate. The curve assumes amaximumwhere the criticalMMM
length scale q s is smaller or comparable to the dimension of the atom cloud in each arm. Themeasurement
does not require any phase coherence, any condensate state would give the same result. In fact, one could achieve
the same sensitivity by detecting atom losses in a single-mode condensate.

The black solid line infigure 3 represents the sensitivity ofHOM interference with aDFS of 30 atoms,
assuming that the particular weightedHOMdip visibility (42) defined in section 4.3 can be extracted from the
count statistics atmore than 80%of its ideal value. This scenario, which requires single-atomprecision in the
state preparation and detection, rules outmore parameters than the depletionmeasurement, but the relevant
length scale is still set by themm-size of the atom cloud. A high sensitivity on the half-metre scale is only
achievedwith PS, i.e.in experimental scenarios with coherently-split condensates and phase-stable
interferograms. The red dashed curve corresponds to an observation of phase-stable interference fringes ofmore
than 95%contrast. Here, the sensitivity drops sharply in the regimewhereMMMwould predominantly deplete
the condensate since the interference signal comprises only the remaining atoms.

Finally, the black dashed curve infigure 3 showcases what could be achieved by sampling overmany runs of
phase-stable coherent splitting; it assumes that the atom count distribution of a PS of 105 atoms at afixed relative
phase is recorded in one output port with ameasurement accuracy in the atomnumber of 1%. This specific
experiment could resolve an increase of the initial variance in the atomnumber bymore than a factor 40, thereby
ruling out thewidest range ofMMMparameters. It yields the highestmacroscopicity of the four plotted
examples, which implies that it is also themost sensitive to environmental decoherence.

All three types of states discussed here have in common that they contain no useful formofmany-body
entanglement (apart fromwhat appears to be entangled in thefirst quantization picture after symmetrization).
Hence onemight expect that their realization in the lab cannot bemore sensitive toMMMdecoherence than an
equivalent single-atom interferometer at a comparable number of repetitions.Wewill see in the following that
this holds true as long as single-atomobservables aremeasured. Precision experiments detecting higher-order
observables, however, can lead to an enhancedmeasure ofmacroscopicity.Whether and how experimental
signatures of genuine entanglement, such as squeezing, can go beyond the single-particle level in terms of
macroscopicity is a different issue thatwill be discussed elsewhere.

Figure 3.MMMparameters excluded by various realizations ofMach–Zehnder interferencewith 87Rb condensates, assuming
T 2.08 s= interference time, 0.5 mxD = arm separation, and w 1 mmx y z, , = initial width of the condensate. Detecting an average
of at least 95%of the initially prepared atoms in the output ports rules out the region below the red solid line, whilemeasuring an
average 95%of phase-stable interference contrast excludes everything below the red dashed curve. The black solid line corresponds to
measuring a specificmany-body observable (42) at 80% accuracy that captures theHoung-Ou-Mandel signature of two independent
condensates. The black dashed curve represents an experimental sample of the atom count distribution P na( ) in one of the output
ports, where the variance in na is nomore than 40 times the ideal value predicted for a coherently split condensate.
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3. Theoreticalmodel of theMMMeffect

In the following, we describe in detail a two-modemodel for the BECMach–Zehnder interferometer and the
influence ofMMM-like decoherence.We start with a few assumptions that will simplify the calculations, before
we discuss the impact ofMMMon the single-particle level in section 3.2. The results will be employed in
section 4 to analyze theMMMeffect in a second quantization picture.

3.1. Basic assumptions
Themain ingredients for our theoretical description of the two-mode interferometer sketched infigure 1 are the
wavefunctions a b,y representing the twoMach–Zehnder arms.We assume them to be one-dimensional
Gaussianwave packets of equal initial widthwx. The arm splitting shall occur in the formof amomentum
splitting pD along the x-coordinate, andwewill ignore the condensate profile along y z, most of the time. It will
play a role in the assessment ofMMM-induced heating depletion later.Moreover, we assume that thewave
packets are approximately orthogonal and clearly separated for almost the entire interference timeT, i.e.,

T m wp xD  .
Immediately after thefirst beam splitter the configuration offigure 1(a) corresponds to a superposition of

wave packets that are separated by pD inmomentum, x w x w2 exp 4a x x
2 1 4 2 2y p= --( ) ( ) ( ) and xby =( )

x xexp i p a yD( ) ( ). Note that, without loss of generality, we operate in the rest frame of arm a. TheMMMare
invariant underGalilean transformations between inertial frames, and the constant gravitational acceleration in
a vertical setup can be accounted for in the relative phase f. In order to recombine thewave packets at the second
beam splitter at timeT, themotion of arm b shall be reversed atT 2 with help of amomentumdisplacement
operation by 2 p- D .

As shown in appendix A, we can increase the level of abstraction bymodeling the two-mode configuration as
a superposition of spatially separatedwave packets at rest, i.e. x xexp ib a xy f y= + D( ) ( ) ( )with an effective
relative phase f and an average arm separation T m2 3x pD = D ( ). The time evolution then reduces to a free

dispersion described by the complex time-dependent term w t w t mw1 i 2x x x
2 2 2= +( ) ( ). As far as theMMM-

induced decoherence effect is concerned, this is a good approximation provided that w tx xD  ∣ ( )∣at all times.
Now let us associate Fock space annihilation operators a b,c with the two dispersingmodes at time t.

Expanded in terms of the Schrödinger picturefield operators, we have

t
w

w t
x x

2
d e 9a

x

x

x w t
2

4 x
2 2

c òp
y= -( )

( )
ˆ ( ) ( )† ( ) †

and tbc ( )† defined accordingly using the xD -shiftedwave packet. In the absence ofMMM, theHeisenberg picture
renders thesemode operators constant, since the unitary evolution of the field operators cancels the explicit time
dependence in equation (9). To account forMMMwewill switch to the interaction picture belowwhere the
time-dependence of the a b,c describes the interplay of wave packet dispersion and incoherent dynamics.

The recombining beam splitter is represented by the linear transformation

T T
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a a b
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with a a tunable phase shift between the transmitted and the reflected state. It can be absorbed in the overall
phase between the arms, f j f a = - .We assume a balanced splitting into the output ports, 4q p= . The
atom count statistics are then determined by the respective number operators and their eigenstates.

To account for the effect ofMMMwe can distinguish between two limiting regimes, depending on the
average strength qs of themomentumdisplacements: (i) wq xs  , whereMMMare equivalent to a random
loss process depleting the condensate at the rate 1 t , and (ii) wq xs  , where theMMM-induced dephasing
dominates the atom loss caused by diffusion.Notice here that the assumption of perfectmodematching
between the beam splitter transformation and the dispersedwave packets implies that we overestimate the
MMM-induced atom loss—a consequence of the reduced two-mode description. In principle,MMMdiffusion
in (ii) causes an additional incoherent broadening of the condensate in each arm, and a realistic beam splitter
would transformboth the condensate and the thermal cloud, essentially without losses. In other words, if the
overlapping cloudswere directly imaged, the result would bewashed out fringes instead of a lower atom
number. To estimate the incoherent broadening in the present two-mode setting, onemay consider theworst
case scenario: all atoms lost from the two-mode condensate state remain in the cloud that arrives at the
recombining beam splitter and form a phase-incoherent thermal background that enters both output ports and
reduces the interference contrast. For an evenmore realistic assessment, the exact beam splitter profilemust be
taken into account to determine the fraction of incoherent background contributing to the detection signal in a
particular experimental setting. Herewe neglect this contribution and resort to the best case scenario that none
of the atoms lost from the condensate will be detected.
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3.2. Effective single-particle treatment
If a single atom travels through the interferometer in the presence ofMMMthe time evolution can be solved
analytically in the characteristic function representation [25, 57]. Accordingly, this solution applies as well to the
time evolution of single-particle operators in second quantization if we introduce the single-particle
characteristic function operator,

x p x x
x

x
x

, d e
2 2

. 11px
0

i
0 00 òc y y= + -⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ˆ ( ) ˆ ˆ ( )†

In the sameway as every rank-one operator ij i jM y y= ñá∣ ∣ infirst quantization is fully characterized by its
characteristic function, we can expand normally ordered operators of the form i jc c† in terms of (11). To be
specific,

x p
M x p x p

d d

2
, , , 12i j ijc c

ò p
c= - -( ) ˆ ( ) ( )†

with M x p,ij ( ) the characteristic function representation of the operator ;ij i jM y y= ñá∣ ∣ for projectors we use
the convention M x p P x p, ,ii i=( ) ( ). The operator x p,ĉ( ) constitutes an eigenvector of theMMMgenerator
(2) (in its 1D version),

x p x p,
e 1

, . 13
x 2q

2 2 2




c
t

c=
-s-

[ ˆ ( )] ˆ ( ) ( )

This facilitates explicit solutions of the non-interactingmany-body problem in presence ofMMM.
Themultiplicative term in (13) and the expansion (12) suggest that themodified time evolution of single-

particle expectation values is best described in terms of effective equations ofmotion in the first-quantization
framework. In the end, wewill then be left with evaluating the expectation values of x p,ĉ( )with respect to the
initial states (PS, PAPS,DFS) of two-mode condensates. Expanding the field operators in the two-mode basis
and omitting all unoccupiedmode contributions one obtains

x p P x p P x p M x p M x p, , , , , , 14a a a b b b ba a b ab b ac c c c c c c ccá ñ = á ñ + á ñ + á ñ + á ñˆ ( ) ( ) ( ) ( ) ( ) ( )† † † †

with the characteristic functions given in equation (18) below.
At this point, onemight askwhetherMMMdecoherence can be accounted for in the effectivemean-field

description of condensates bymeans of amacroscopic order parameter [74]. In this spirit,Wallis et al [75]
introduced aWigner function operator in second quantization—the Fourier transformof (11)—and suggested
to replace the field operators by amacroscopic wavefunction that describes the condensate in a single run of the
experiment. In the present case, this would be x t N x t x t, 2 , e ,a bmac

iy y y= + f( ) [ ( ) ( )] [71, 75].
Equations (11) and (13) imply that this effectivemean-field phase-space treatment yields the correct predictions
for expectation values of single-particle observables, implying an average overmany runs.However, switching
from macy to themean-fieldWigner function and subjecting it to incoherent dynamics does not necessarily
reflect the time evolution of the condensate in a single run.

Wewill stay on the safe side and address random single-run interference only in terms of second-order
correlations in the overallmeasurement statistics, for which the single-particle treatment does not apply directly.
Moreover, we do not incorporate atom-atom interactions in the formof aGross–Pitaevskii equation [76], which
would lead to a buildup of correlations [77], broadening of the condensate [78], and phase dispersion between
the twomodes [79]. By restricting to dilute, non-interacting condensates we neglect these additional effects and
attribute a potential loss of interference visibility entirely toMMM.

3.2.1. Effective time evolution
Ageneral solution for themodified time evolution ofN-atom two-mode condensate states tr ( ) in the presence
ofMMMis tedious to compute. Alternatively, we can resort to effective equations ofmotion for the first- and
second-order correlation functions. They are the expectation values of normally ordered products of the output
modes’ creation and annihilation operators (10), whose counterparts infirst quantization are linear
combinations of the two projectors t t ta b a b a b, , ,P y y= ñá( ) ∣ ( ) ( )∣, and of the operator t t tab a bM y y= ñá( ) ∣ ( ) ( )∣
and its conjugate at t=T.

In the Schrödinger picture used so far, the expectation values with respect to the twowave packets traveling
through the interferometer are determined by a time-dependent state tr ( ) ofN atoms.Wenow focus on the
MMMeffects by switching into the interaction picture. Of course, it is not guaranteed that theMMMmaster
equation retains a simple form in the interaction frame, but it turns out that it does so for single-particle states
and the corresponding observables.
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In the interaction picture infirst quantization a single-particle state t t t tI U Ur r=( ) ( ) ( ) ( )† , with
t t mexp i 22U p = -( ) ( ), evolves underMMMaccording to

t
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t t
1 e d

2
e e . 15t I
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I
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I
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2 2
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Once again, thismaster equation has an explicit solution in the characteristic function representation. For the
evolution of expectation values of an observable O, onemay aswell solve the adjoint equation, given by the same
Lindblad generator.We define its characteristic function representation as

O x p x x
x

x
x

, d e
2 2

. 16I
px

I0
i

0 00 Oò= - +( ) ( )

As discussed in section 3.1, in the absence ofMMMthe relevant observables are constant in the interaction
frame. In presence ofMMMthe adjoint solution to (15) then results in amodified characteristic function
O x p t, ,I ( ) that explicitly depends on time; it ismultiplied by an exponential decoherence factor,
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t t
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At this point, we do not carry out the time integration in the exponent (whichwould result in an error function).
Expectation values are obtained from the overlap integral t x p O x p t x pd d , , , 2I 0O ò c pá ñ = - -( ) ( ) ( ) , with

0c the characteristic function of the initial state 0r ( ). Here, it is sufficient to consider the characteristic functions
appearing in (14),
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Weproceed by approximating theMMMeffect for these operators in the relevant parameter regimes. It will
turn out that, for all practical purposes, the dispersion of the two arms can be ignored in the evaluation of
MMM-induced heating and dephasing.

3.2.2. Strong depletion regime
A simple result follows in the limit of strongMMM-inducedmomentumdisplacement, wq xs  .When
applied to theGaussian functions (18), the decoherence factor in (17) can be approximated by a uniform
exponential decay texp t-( ) almost everywhere, except at x p, 0»( ) where it assumes unity,
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( )

The second term in thefirst line vanishes forMab, but we also neglect it for Pa b, since it will contribute only a
small correction suppressed by wq x s to the overlap integrals of expectation values.Hence, the exponential
decay affects both the two-mode occupation and the coherenceMab in approximately the sameway.

This limit describes an exponential depletion of the two-mode condensate at the rate1 t . To see this, we
identify thenumber operator for the two arms, t t t t ta a b bN c c c c= +( ) ( ) ( ) ( ) ( )† † , as the second-quantization
counterpart of the single-particle projector t t ta bP P P= +( ) ( ) ( ). The average atomnumber at the recombining
beamsplitter, and thus themean atomcount rate in the output ports, is then reduced to the fraction Texp t-( ).

At the same time, the expectation value of the interference term t ta bc c( ) ( )† decays with equal rate. This
implies that the average first-order interference contrast between the output ports, which is proportional to

T T Ta bc c Ná ñ á ñ∣ ( ) ( ) ∣ ( )† , remains unaffected. The reason is that our two-modemodel assumes that none of the
atoms that are lost from the condensate will ever reach the detectors. As discussed above, an alternative worst-
case estimate accounts for the lost fraction t1 exp t- -( ) of atoms in terms of aflat background that raises the
mean count rate and thereby decreases the interference contrast. An experiment could then rule outmore
MMMparameters thanwhat themore conservative two-modemodel predicts. In practice, the actualMMM-
induced loss will depend on howmuch background can reach the final beam splitter, whichwould require a full
solution of themodifiedmany-body time evolution.

3.2.3. Dephasing regime
In the regime of smallmomentumparameters, w tq xs  ∣ ( )∣,MMMdecoherence cannot ‘resolve’ the size of
the individual dispersing wave packets. The depletion rate of the condensate is then suppressed, whereas
dephasing between the two arms can still occur at the fullMMMrate 1 t as long as q xs D .
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Applying (17) to the populations, we can expand to lowest order in the argument of theGaussian function of
theMMMterm,
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For the coherence termMab, wemay ignore the small variations of the argument around x w tx x= D  ∣ ( )∣and
find to lowest non-vanishing order

M x p t
t

M x p, , exp 1 e , . 21ab ab
2q x
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Strictly speaking, this expression is only valid for wq x xs D , which is a tighter requirement for the
dephasing regime.However, sincewe also assume wx xD  , corrections to theGaussian in (21)will onlymatter
in a regimewhere theGaussian is already nearly zero anyway, wq x x x s D D . In this limit,MMM
dephasing occurs at the full rate 1 t .

Notice that the decay ofMab in the dephasing regime translates directly into the loss of interference contrast
described by (5), M x p T D M x p, , , ,ab q abs t=( ) ( ) ( ). It also agrees with the result (19) for the strong depletion
regime at large qs . The crucial point is that dephasing saturates at themaximum rate if q xs D , whereas
strong depletion requires wq xs  .

3.2.4. The relevance of dispersion
Wecannow evaluate the expectation values of the population and coherence between the twomodes by
integrating themodified functions P x p t, ,a b, ( ) and M x p t, ,ab ( )with the characteristic function associated to
the initial state 0I0r r= ( ). Under the assumption of far separated and practically orthogonal wave packets,

wx xD  , we are left with

T
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In the parameter regimes discussed here, the size and dispersion of thewave packets impacts equation (22) only
in the dephasing regime,
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Here, the higher powers inT are corrections due to the dispersion of thewave packets. They are of second order
in the ratio of the interference timeT and the characteristic diffraction time scale t mwxd

2 = of aGaussian
wave. For the experimental scenario studied hereT t 1d  , which renders the free dispersion irrelevant.We
may then approximate

x p
P x p T P x p
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which also assumes a not too largeT t—a technicality since the strongMMM-induced depletion implied at
Tt  is in any case ruled out by the experiment.

The depletion term H ,qs t( ), which determines the probability for an atom to remain in the condensate, is
nowwritten in such away that it interpolates between the dephasing and the strong depletion regime. Both (21)
and (25) describe these regimes correctly, but in the transient regime of wq xs ~ they can serve only as
qualitative estimates of theMMMeffect. It will be an essential prerequisite for obtaining analytically tractable
results in the subsequentmany-body treatment thatwe omit the free dispersion. This amounts to removing the
freeHamiltonian 0H from the time evolution and solving the simplifiedmaster equation t r r¶ = with two
staticmodes.

So far, we have described the condensate state in terms of one-dimensional wave functions, assuming that
the spatial separation takes place along the x-direction. Indeed, the shape and confinement of the condensate in
the perpendicular directions y z, does not affect theMMM-induced dephasing between the two arms, as given
by (23). But the heating rate (25)describing the atom loss in each armdoes increase as the atoms are also subject
to diffusion along y and z. Assuming a common gaussian profile for both armswithwaists w w,y z , we can
account for the additional diffusion by replacing the above heating ratewith
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H
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, exp 1 e , 26q
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i.e.substitutingwx by w w w wx y z
2 2 2= + + . For isotropic wave packets, this triples the effective loss rate

compared to the one-dimensional description in the dephasing regime, while the rate remains the same 1 t in
the strong depletion limit.

4. BEC interference in second quantization

Wenow study the impact ofMMMon the interference visibility andmeasurement statistics of theMach–
Zehnder interferometer for the three types of two-mode BEC states introduced in section 2, the PS, the PAPS,
and theDFS.Wefirst consider expectation values offirst-order (or single-particle) observables exhibiting stable
interference fringes for phase-coherent PS.We then extend our dispersionless treatment ofMMMto the
second-order (two-particle) correlations that are necessary to account for the random-phase single-shot
interference of PAPS andDFS. Finally, we evaluate the phase-averaged atom count statistics in the output ports
andfind that it is insensitive to decoherence and affected only byMMM-induced particle loss.

4.1. First-order interference
First-orderMach–Zehnder interference of single atoms or coherently split condensates yields a phase-
dependent fringe oscillation of the atom counts in each output port, as reflected in the first-order expectation
values a a,out ,outc cá ñ† and b b,out ,outc cá ñ† . By virtue of the beam splitter transformation (10) and the two-mode
characteristic function expansion in (12) and (14), we can apply the results of the previous section and solve the
modified evolution of the single-particle observables in the interaction picture. Assuming non-overlapping
arms, we get
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Here, we evaluate the expectation values with respect to the undispersedmodes and the initial condensate states.
Thefirst terms involve the atomnumber operator a a b bN c c c c= +† † and represent the average count rate if no
phase information is available. The second terms describe first-order interference.We restrict to output port a in
the following.

For the phase-coherent PS (4), the fringe pattern appears as a function of the differencej f a= - of the
relative phase f between the two arms and the beam splitter phase a,

N
H D

2
, cos , . 28a a q q,out ,out PSc c s t j s tá ñ = -[ ( ) ( ) ( )] ( )†

The fringe contrast diminishes in proportion to D H, ,q qs t s t( ) ( ). It is well approximated by D ,qs t( ) in the
relevant dephasing regime, as already anticipated in (5). In the strong depletion regime, on the other hand,
MMMyield no loss of contrast since all affected atoms are removed from the condensate.

For the PAPS (7) and theDFS (8), there is no phase informationwhen averaged overmany runs, and the
first-order coherence vanishes, 0a bc cá ñ =† . The ensemble-averaged count rate in each port is given by N 2
times theMMMdepletion term H ,qs t( ). Thismerely allows one to rule out thoseMMMparameters ,qs t( )
that predict a higher overall loss of atoms than observed (provided that the initial atomnumber is known to
some extent). For example, if we assume that the PAPS observed in the interferometer of [52] still contains a
fraction P 95% of the initially prepared atoms upon detection, this rules out allMMMparameters with
H P,qs t <( ) . Following [25], the greatest ruled out t parameter, i.e.themaximumof the function qt s( ) given
by H P,qs t =( ) , would set themacroscopicity of the experiment, 12m » . However, this value is inferred from
an entirely classical observation of the total atomnumber, which does not require any quantum coherence to be
generated during the interrogation timeT 2.08= s. In order to confirm the quantum superposition principle at
the same level ofmacroscopicity, one needs to detect the phase-stable interference fringes of a PS at 95%
visibility. The difference between both scenarios becomes apparent if we compare them in terms of the amount
of falsifiedMMMparameters, as given by the conditions H P,qs t <( ) versus D P,qs t <( ) . Only the latter
coversmacroscopic t-values on the half-metre scale, q x s ~ D , as it is shown infigure 3.

4.2. Second-order correlations
While single-particle observables can be used to demonstrate the phase-stable interference of a PS, they do not
reveal possible quantum features of aDFS or PAPS as implied by the indistinguishability of the atoms. For this
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wemust consider second-order correlations, i.e.two-particle observables. Theirmodified time evolution can be
solved explicitly if we neglect the free dispersion in the two arms, following the arguments of section 3. This
amounts to integrating t O O¶ á ñ = á ñ( ) for any two-particle (or higher-order) observable O, see appendix B for
details.

For a PS ofN single-atom superpositions, wefind the second-order correlations
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withj f a= - . The probabilities of detecting two atoms in the same or in different output ports are thus
affected by bothMMM-induced depletion and dephasing. In equation (29) the decay rate for thefirst order
fringes, i.e. for the termproportional to cos j( ), is the same as in the first-order observable (28), whereas the
depletion rate for the offset termdoubles. The fact that the dephasing rate quadruples for the second-order
fringes, which are proportional to cos 2j( ), provides away to gainmacroscopicity from increasedmeasurement
resolution.

The results for a PAPS are obtained by averaging the above terms overj, they are thus insensitive to
dephasing,
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Comparing this to a balancedDFS (8)with N 2 atoms in each arm,wefind the same dependence onMMM-
induced depletion,
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TheDFS and the PAPS differ by N 8 in the prefactor. Given the overallN2 scaling, the relative difference is
practically irrelevant for BEC experiments with N 1 atoms. A clear distinction can only bemade for small
atomnumbers, as illustrated infigure 2.

Our reasoning can be generalized in a straightforwardmanner to arbitrary correlations of orderK in the
creation and annihilation operators associated to the twomodes. SuchKth-order correlations are given in terms
of normally ordered products ofK creation andK annihilation operators. (Other observables can be brought to
normal order with help of the canonical commutation relations.)Taking the expectation valuewith respect to
coherently split condensate states will result in a linear combination of phase-insensitive terms (orKthmoments
of the populations in the twomodes) and of coherence terms that depend onmultiples of the relative phase, kj
with k K . Only the latter—which are absent in the case ofDFS or PAPS—will be affected byMMM-induced
dephasing and decay like D k,q

2s t( ), at an enhanced rate of up to k2 t if q x s D  . The populations, on the
other hand, will decay byMMM-induced depletion in eachmode, as described by H K,qs t( ). The linearly
enhanced depletion rate saturates at K t for wq s  , withw characterizing the three-dimensional Gaussian
waist as in (26).

The quintessence of ourfindings is twofold. On the one hand, they show that amany-body enhanced
macroscopicity or test of collapse and decoherencemodels (falling under the class ofMMM)with BEC
interference experiments requires the detection of genuinemany-atom correlations. Otherwise, the BEC
experiment is nomoremacroscopic than an equivalent single-atom interferometer at the same level of
experimental uncertainty. On the other hand, tests of the superposition principle by probing collapsemodels on
the level ofmacroscopic arm separations and amplified decoherence rates can only be donewith phase-coherent
superposition states.

4.3. Count statistics
So farwe have focused on the influence ofMMMdephasing and depletion on expectation values of one- and
two-particle observables. They are natural quantities to assess interference phenomena, but in the actual
experiment they are derived from the raw sample of atom counts in the two output ports recorded overmany
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runs. This data contains all the accessible information to distinguish different two-mode BEC states in terms of
their quantum features and their sensitivity toMMMdecoherence.

In the following, we shall discuss the theoretical predictions for the atom count statistics, as described by the
probabilities P n N,a( ) of detecting na atoms in output port a and n N nb a= - atoms in b, whereN is the initial
(even)number of atoms in the condensate. In second quantization, the probabilities are given byN-particle
expectation values at timeT,

P n N
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,
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Asmentioned in the previous section andworked out in appendix B, thisNth order expectation value comprises
phase-independent terms and terms oscillating likemultiples of the relative phasej, depending on the
properties of the condensate state. The former terms are only affected byMMM-induced depletion, whereas the
latter by the dephasing effect.We see this explicitly after expanding (35) for the phase-coherent PS (4) in terms of
the phase dependence,
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Like in section 4.2, the dephasing rate grows as the square of the order of oscillationwithj. On the other
hand, the depletion of all the phase-independent offset terms occurs at the samemany-body amplified rate

N t , since the above probabilities refer to situationswhere allN atoms remain in the condensate. The
correspondingmarginal probability is thus given by P n N H N, ,n a qPSa

s tå =( ) ( ).
Figure 4 illustrates the effect ofMMMdephasing on the count statistics for an exemplary PS containing

N=30 atoms.We chose a parameter regime that results inmoderate dephasing andnegligible depletion losses.
The peaked unmodified distribution (triangles) is smeared out (squares). At stronger dephasing, it will
eventually approach the distribution of the associated PAPS (open dots). The statistics of both the PAPS and the
correspondingDFS (filled dots) are not affected by the dephasing.

This suggests thatMMMdephasing can be probed directly by accumulating atom counts of a PS at afixed
phase andmeasuring thewidth of the count distribution P n N,a a a,out ,outc c= á ñ( )† , thus evading the
reconstruction of stable interference fringes from repeatedmeasurements at varying phase shifts. For an initially
pure PS of N 1 atoms, theMMM-induced increase of the variance in P n N,a( ) is given by

Figure 4.Atom count distribution P n , 30a( ) in output port a for balanced two-mode BECs of 30 atoms subject toMMM-induced
decoherence. (a)WechoseMMMparameters with amoderate dephasing strength (5), 1q x s D = and T 0.2t = , while assuming
negligible heating losses in the two arms, H , 30 1qs t »( ) . The triangles and squares correspond to a PSwith phase difference

3 8j p= - in the absence and presence of dephasing, respectively. (b)The open and thefilled dots represent a PAPS and aDFS, both
of which are unaffected byMMM.Notice theHOMdips of theDFS, and the classical approximation (dashed line) for the PAPS.
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as follows by applying the results of sections 4.1 and 4.2.We see that the broadening depends on the same
dephasing factor (5) that reduces the interference fringe visibility. In the second line, we approximate the
expression at the point of highest sensitivity to theMMM-induced broadening, 2j p=  . There the variance
can grow from N 4 to themaximumvalue N N 1 8+( ) that corresponds to a PAPS.Measuring any value
smaller than thismaximumwill place bounds on the dephasing strength. The black dotted curve infigure 3, for
example,marks theMMMparameters that would be ruled out bymeasuring a less than fourty-fold increase in
the variance for N 105= atoms, given the experimental parameters used in [52].

The count statistics for the PAPS (7) follow by averaging the PS distribution (36) over the phasej,
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We see that it is affected by the depletion effect only, uniformly reducing all probabilities at a given atomnumber
N by the constant prefactorH. For themany-atom limit N 1 , we have used Stirling’s approximation of the
gamma function. The depletion factor aside, the count distribution then approximates the continuous classical
expression P I I I I I1 ;a a acl p= -( ∣ ) ( ) the latter describes the distribution of intensities Ia expected for classical
waves in one output port of a balanced beam splitter when it receives two input beams of equal intensity I 2 but
randomphase difference [56]. Infigure 4, where it is given by the dashed line, it approximates well the PAPS
distribution forN=30. The classical expression is also used in the data analysis of [52], see equation (3)with
c=1 there. A further smearing out of the distribution (c 1< )might arise if atoms are lost orN is not precisely
known.

For evenN, the count distribution of theDFS can bewritten as
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whichmakes theHOMeffect explicit. The bosonic statistics of the condensate leads to constructive (destructive)
interference for even (odd) atom counts in the detector. Once again, the distribution is affected uniformly by
depletion as it contains no phase coherence. In the limit ofmany atoms5, theHOMdips of zero probability at
odd atomnumbers persist, andwe obtain amodulation of the classical distribution, P j N2 , 1DFS »( )
P j N H N2 2 , ,qcl s t( ) ( ), as seen infigure 4.Distinguishing between aDFS and a PAPS in the experiment thus
requires a detection efficiency and resolution on the single-atom level.

Finally, if phase coherence cannot bemaintained and/or depletion losses were to be tested in an experiment,
the data analysis should account for the fact that the initial orfinal atomnumbermight not be precisely known.
One can do this by averaging conditional count probabilities P n Na dPS( ∣ ) thatNd atoms are detected in total to
arrive at the unconditional distribution. The former is given by the corresponding undepleted count
probabilities P n N P n N,a d a d HPS PS 1= =( ∣ ) [ ( )] . For a PS, pure or phase-averaged, depletion can bemodeled as a
Bernoulli process characterized by the survival probability H H ,qs t= ( ),
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An experimental scenario where the initial atomnumberN is not precisely known can be described
straightforwardly by aweighted average.

For aDFS, the unconditional count distribution follows from an average over two independent depletion
processes removing atoms in each of the two independent condensates,
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5
Notice that Stirling’s approximation is formally valid for N n n, 1a a-  only. In practice, this leads tominor deviations at themargins.
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The undepleted distributions P n N N,a a b( ∣ ) forDFS populations N N N, 2a b ¹ , as well as their differentHOM
signatures, are examined in detail in [56].

The impact of particle loss on aDFS and a PAPS of 30 atoms is shown infigure 5. Panel (a) corresponds to an
average loss of one atom, and panel (b) to a loss of 25%of the atoms, H 1 1 30= - andH=0.75, respectively.
Compare this to the undepleted distributions infigure 4(b).We observe that the count probabilities and in
particular theHOMsignature of theDFS prevail at the lower end of the count spectrum, whereas they are
quickly diminished for higher count numbers na rendering theDFS and the PAPS indistinguishable. Indeed, the
relative frequency of detecting amaximumof na=30 atoms in the experiment would be themost sensitive to
depletion losses as it decays likeH30.

Alternatively, by distinguishing between even and odd atom counts, theHOMsignature of theDFS can be
cast into a fairly simple quantumobservable that comprises the fullmeasurement record and achieves a
comparable sensitivity.Wefind that the atom count numbermultipliedwith its parity serves this purpose well,
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N

H
2

, . 42a
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n
a

n
a

N
qDFS

4 3a
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This approximate dependence on the depletion factorwas inferred from anumerical evaluation of half-split DFS
of N 100 atoms, substituting (41) for the count probabilities P na( ).Measuring a value greater than, say, 12 in
an experiment with 30 atomswould exclude all H , 0.9944qs t <( ) , as represented by the black solid line in
figure 3.Note that such a sensitivemeasurement would require a stable preparation of aDFSwith exactly 30
atoms inmany runs of the experiment, as well as single-atom resolution in the detector. This suggests that
MMM-induced depletion can be effectively probed by interfering small (independent) condensates, at an
exponentially growing sensitivity.

5. Conclusions

We studied how a generic class ofmacrorealistic collapse theories and corresponding decoherencemodels affect
superposition states of Bose–Einstein condensates in a two-modeMach–Zehnder setting. The quantum
signatures of these states, as typically detected bymeans offirst- or second-order observables in the atom
number, are then subject to dephasing and depletion, depending on themodel parameters. By thesemeans, the
empiricalmacroscopicity of an interference experiment can be understood as the degree towhich coherence-
reducing processes are ruled out by the successful observation of quantum interference. This degree will thus
depend on both the preparedmany-body quantum state and on themeasurement precision.

The interference of phase-coherent superposition states, i.e.coherently split condensates, is in this sense
alwaysmoremacroscopic than the (second-order) interference of independent condensates with nofixed phase
relation.While the former is vulnerable to both dephasing and depletion, the quantum signatures of the latter,
which are a consequence of exchange symmetry, suffer only fromdepletion.However, depletion can also be
probed in a purely classical scenario, e.g.bymonitoring atom losses in an incoherently split, or phase-averaged
condensate. Sensing depletion and dephasingmay even result in a comparablemacroscopicity, if defined in
terms of the greatest possible decoherence time ruled out by the experiment [25]. The difference is that phase-
coherent interferometry probes these decoherence times on the level of the possiblymacroscopic arm
separation, whereas the sensitivity of phase-incoherent experiments is limited to the size of the condensate in
each arm.

Figure 5. If the condensates loses a significant amount of particles due to heating, theHOMeffect of theDFS (red full dots) gets partly
destroyed. (a) In case that on average one particle is removed from the condensates per run, the statistics for small na are essentially
unaffected, while theHOMdips vanish on the other side of the spectrum. (b)Even if 25%of all particles are lost per shot, remnants of
theHOMeffect can verify aDFS. For comparison, the black open dots show the respective PAPS after the same amount of heating.
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By observing a stable interference contrast at lowparticle loss, an interference experiment with split atom
condensates will never yield a highermacroscopicity than single-atom interference at a comparable number of
repetitions with similar contrast and loss.We have shown that it is possible to exceed the single-atom sensitivity
only by detecting higher-order phase fringes in themulti-particle correlation functions of the recombined
condensate, which requires high-precisionmeasurements in condensates ofmany atoms.Here future
experimentsmay benefit from two-mode squeezing in particle number or phase if the goal is to improve the
degree ofmacroscopicity. Number squeezing helps to achieve longer interference times byminimizing the phase
dispersion effect related to atom interactions in dense condensate [12, 14], whereas phase squeezing can be used
in dilute condensates to enhance the contrast of the higher-order fringe oscillations [68, 80].

Using the empiricalmacroscopicity employed here as a yardstick, the latest single-atom and atomic
condensate interferometers with their high phase sensitivity and long interrogation times are on parwith state-
of-the-artmolecule interference experiments. This is remarkable since the latter realizeNOON-type cat states of
more than a hundred constituent atoms, whereas the former stay on the single-atom level. In this regard, one
should keep inmind that the empiricalmeasure ofmacroscopicity can be used to assess quantum states thatmay
be viewed as Schrödinger cats, but that it does not in itself serve to certify that a given statemay be viewed as such.
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AppendixA.Mean effective arm separation formomentum-split condensates

In themain text, the two arms of the interferometer are represented byGaussianwave packets with a static
separation of xD . In practice, the incident condensate is initially split inmomentum, diverges, gets reflected, and
eventually recombines again at the output beam splitter. Here, we show the equivalence of both cases as far as
MMMdecoherence is concerned.

According to the single-particle description in section 3.2, the characteristic function of the split condensate
can be expanded like (14), given theGaussianwavefunction xay ( ) formode a and x x xexp ib p ay y= D( ) ( ) ( ).
The characteristic function term associated to the coherence between both arms reads as
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replacing (18). The population terms P x p,a b, ( ) need not be considered, since theMMM-induced heatingwill
affect them in the sameway as before.

The time evolution of the condensates can be described by three consecutive steps. First there is a free
propagation over the timeT 2. Then themode b gets reflected, whichwe canmodel as amomentum
displacement by 2 p- D . The third step is another propagation byT 2. Inserting theMMM-induced coherence
decay, we arrive at the overall transformation
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Themomentum-split analog of the coherence term (23) is then given by the overlap integral
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assuming orthogonality of the twomodes. Note that the integrand term M x p,ab ( ) is localized around x=0 and
p p= D . If we once again assume amuch larger typical arm separation thanwave packet size, T m w2p xD  ,
and negligible dispersion, t Td  , thenwe can approximate
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Strictly speaking, the exponentialMMMterm replaces the dephasing function D ,qs t( ) in (23) formomentum-
split superpositions. However, the function also yields amaximumdephasing rate of 1 t in the limit of large

m Tq ps D , and a rate suppressed by the factor T m 24q p
2s D( ) in the opposite limit. Hencewe can

describe the transition between both regimes approximately by the dephasing function (5)with an effective static
arm separation of T m2 3x pD = D . Deviations from the dephasing function, limited to the regimewhere

q x s D ~ , are irrelevant when considering the range of experimentally excludedMMMparameters on the
logarithmic scale infigure 3.

Appendix B. Second quantization calculations

EveryKth order correlation function KCá ñ is the expectation value of a normally ordered combination of theK
creation andK annihilation operators in both outputmodes. Expanded in terms offield operators,

x x xdj j,out ,outc ò y y= ( ) ˆ ( )†
, with the twowavefunctions x x xexp i 2a a b,outy y a y= -( ) [ ( ) ( ) ( )] and
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To obtain theMMMeffect in the absence of dispersion, we apply theMMMgenerator (2) to each normally
ordered product KF offield operators. The resulting time evolution can be solved explicitly using the canonical
commutation relations.We arrive at
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where 0á ñ denotes the expectation value predicted in the absence ofMMM.
Computing the expectation value of KF for aDFSwithNa+Nb atoms in the twomodes, onefinds that only

those combinations of wavefunctions survive where the coordinates xm are all localized in one of the arms. In the
dephasing regime wq x s  we expand theGaussians in the exponent of (B.3) to second order. Together with
theGaussianwavefunctions, this can then be inserted back into (B.1).We express the resulting
multidimensional Gaussian integral in terms of the K K2 2´ matrix
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Expressing the result in terms of the functionH accounts also for the opposite regime of strong depletion,
wq x s  , where theKth order decay rate saturates at K t .
In particular, the second-order correlations of aDFS read as
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see (33) and (34) for the balanced case N N N 2a b= = .
A similar calculation can be done for a PS. In this case, KFá ñwill consist of products ofK arbitrary pairs of

mutually conjugate wavefunctions. Repeating all previous approximations, onefinds that if a term contains
k K mixed pairs a b*y y or a b*y y , it will dephase like D k,q

2s t( ), i.e.at a quadratically enhanced rate. The
remaining termswith nomixed pairs are subject to the linearly enhanced depletion H K,qs t( ) as before.
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